//===-------- SplitKit.h - Toolkit for splitting live ranges ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the SplitAnalysis class as well as mutator functions for // live range splitting. // //===----------------------------------------------------------------------===// #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/IndexedMap.h" #include "llvm/ADT/IntervalMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/CodeGen/SlotIndexes.h" namespace llvm { class ConnectedVNInfoEqClasses; class LiveInterval; class LiveIntervals; class LiveRangeEdit; class MachineInstr; class MachineLoopInfo; class MachineRegisterInfo; class TargetInstrInfo; class TargetRegisterInfo; class VirtRegMap; class VNInfo; class raw_ostream; /// At some point we should just include MachineDominators.h: class MachineDominatorTree; template class DomTreeNodeBase; typedef DomTreeNodeBase MachineDomTreeNode; /// SplitAnalysis - Analyze a LiveInterval, looking for live range splitting /// opportunities. class SplitAnalysis { public: const MachineFunction &MF; const VirtRegMap &VRM; const LiveIntervals &LIS; const MachineLoopInfo &Loops; const TargetInstrInfo &TII; // Instructions using the the current register. typedef SmallPtrSet InstrPtrSet; InstrPtrSet UsingInstrs; // Sorted slot indexes of using instructions. SmallVector UseSlots; // The number of instructions using CurLI in each basic block. typedef DenseMap BlockCountMap; BlockCountMap UsingBlocks; /// Additional information about basic blocks where the current variable is /// live. Such a block will look like one of these templates: /// /// 1. | o---x | Internal to block. Variable is only live in this block. /// 2. |---x | Live-in, kill. /// 3. | o---| Def, live-out. /// 4. |---x o---| Live-in, kill, def, live-out. /// 5. |---o---o---| Live-through with uses or defs. /// 6. |-----------| Live-through without uses. Transparent. /// struct BlockInfo { MachineBasicBlock *MBB; SlotIndex Start; ///< Beginining of block. SlotIndex Stop; ///< End of block. SlotIndex FirstUse; ///< First instr using current reg. SlotIndex LastUse; ///< Last instr using current reg. SlotIndex Kill; ///< Interval end point inside block. SlotIndex Def; ///< Interval start point inside block. /// Last possible point for splitting live ranges. SlotIndex LastSplitPoint; bool Uses; ///< Current reg has uses or defs in block. bool LiveThrough; ///< Live in whole block (Templ 5. or 6. above). bool LiveIn; ///< Current reg is live in. bool LiveOut; ///< Current reg is live out. // Per-interference pattern scratch data. bool OverlapEntry; ///< Interference overlaps entering interval. bool OverlapExit; ///< Interference overlaps exiting interval. }; /// Basic blocks where var is live. This array is parallel to /// SpillConstraints. SmallVector LiveBlocks; private: // Current live interval. const LiveInterval *CurLI; // Sumarize statistics by counting instructions using CurLI. void analyzeUses(); /// calcLiveBlockInfo - Compute per-block information about CurLI. bool calcLiveBlockInfo(); /// canAnalyzeBranch - Return true if MBB ends in a branch that can be /// analyzed. bool canAnalyzeBranch(const MachineBasicBlock *MBB); public: SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, const MachineLoopInfo &mli); /// analyze - set CurLI to the specified interval, and analyze how it may be /// split. void analyze(const LiveInterval *li); /// clear - clear all data structures so SplitAnalysis is ready to analyze a /// new interval. void clear(); /// getParent - Return the last analyzed interval. const LiveInterval &getParent() const { return *CurLI; } /// hasUses - Return true if MBB has any uses of CurLI. bool hasUses(const MachineBasicBlock *MBB) const { return UsingBlocks.lookup(MBB); } /// isOriginalEndpoint - Return true if the original live range was killed or /// (re-)defined at Idx. Idx should be the 'def' slot for a normal kill/def, /// and 'use' for an early-clobber def. /// This can be used to recognize code inserted by earlier live range /// splitting. bool isOriginalEndpoint(SlotIndex Idx) const; typedef SmallPtrSet BlockPtrSet; // Print a set of blocks with use counts. void print(const BlockPtrSet&, raw_ostream&) const; /// getMultiUseBlocks - Add basic blocks to Blocks that may benefit from /// having CurLI split to a new live interval. Return true if Blocks can be /// passed to SplitEditor::splitSingleBlocks. bool getMultiUseBlocks(BlockPtrSet &Blocks); }; /// SplitEditor - Edit machine code and LiveIntervals for live range /// splitting. /// /// - Create a SplitEditor from a SplitAnalysis. /// - Start a new live interval with openIntv. /// - Mark the places where the new interval is entered using enterIntv* /// - Mark the ranges where the new interval is used with useIntv* /// - Mark the places where the interval is exited with exitIntv*. /// - Finish the current interval with closeIntv and repeat from 2. /// - Rewrite instructions with finish(). /// class SplitEditor { SplitAnalysis &SA; LiveIntervals &LIS; VirtRegMap &VRM; MachineRegisterInfo &MRI; MachineDominatorTree &MDT; const TargetInstrInfo &TII; const TargetRegisterInfo &TRI; /// Edit - The current parent register and new intervals created. LiveRangeEdit *Edit; /// Index into Edit of the currently open interval. /// The index 0 is used for the complement, so the first interval started by /// openIntv will be 1. unsigned OpenIdx; typedef IntervalMap RegAssignMap; /// Allocator for the interval map. This will eventually be shared with /// SlotIndexes and LiveIntervals. RegAssignMap::Allocator Allocator; /// RegAssign - Map of the assigned register indexes. /// Edit.get(RegAssign.lookup(Idx)) is the register that should be live at /// Idx. RegAssignMap RegAssign; typedef DenseMap, VNInfo*> ValueMap; /// Values - keep track of the mapping from parent values to values in the new /// intervals. Given a pair (RegIdx, ParentVNI->id), Values contains: /// /// 1. No entry - the value is not mapped to Edit.get(RegIdx). /// 2. Null - the value is mapped to multiple values in Edit.get(RegIdx). /// Each value is represented by a minimal live range at its def. /// 3. A non-null VNInfo - the value is mapped to a single new value. /// The new value has no live ranges anywhere. ValueMap Values; typedef std::pair LiveOutPair; typedef IndexedMap LiveOutMap; // LiveOutCache - Map each basic block where a new register is live out to the // live-out value and its defining block. // One of these conditions shall be true: // // 1. !LiveOutCache.count(MBB) // 2. LiveOutCache[MBB].second.getNode() == MBB // 3. forall P in preds(MBB): LiveOutCache[P] == LiveOutCache[MBB] // // This is only a cache, the values can be computed as: // // VNI = Edit.get(RegIdx)->getVNInfoAt(LIS.getMBBEndIdx(MBB)) // Node = mbt_[LIS.getMBBFromIndex(VNI->def)] // // The cache is also used as a visited set by extendRange(). It can be shared // by all the new registers because at most one is live out of each block. LiveOutMap LiveOutCache; // LiveOutSeen - Indexed by MBB->getNumber(), a bit is set for each valid // entry in LiveOutCache. BitVector LiveOutSeen; /// defValue - define a value in RegIdx from ParentVNI at Idx. /// Idx does not have to be ParentVNI->def, but it must be contained within /// ParentVNI's live range in ParentLI. The new value is added to the value /// map. /// Return the new LI value. VNInfo *defValue(unsigned RegIdx, const VNInfo *ParentVNI, SlotIndex Idx); /// markComplexMapped - Mark ParentVNI as complex mapped in RegIdx regardless /// of the number of defs. void markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI); /// defFromParent - Define Reg from ParentVNI at UseIdx using either /// rematerialization or a COPY from parent. Return the new value. VNInfo *defFromParent(unsigned RegIdx, VNInfo *ParentVNI, SlotIndex UseIdx, MachineBasicBlock &MBB, MachineBasicBlock::iterator I); /// extendRange - Extend the live range of Edit.get(RegIdx) so it reaches Idx. /// Insert PHIDefs as needed to preserve SSA form. void extendRange(unsigned RegIdx, SlotIndex Idx); /// updateSSA - Insert PHIDefs as necessary and update LiveOutCache such that /// Edit.get(RegIdx) is live-in to all the blocks in LiveIn. /// Return the value that is eventually live-in to IdxMBB. VNInfo *updateSSA(unsigned RegIdx, SmallVectorImpl &LiveIn, SlotIndex Idx, const MachineBasicBlock *IdxMBB); /// transferSimpleValues - Transfer simply defined values to the new ranges. /// Return true if any complex ranges were skipped. bool transferSimpleValues(); /// extendPHIKillRanges - Extend the ranges of all values killed by original /// parent PHIDefs. void extendPHIKillRanges(); /// rewriteAssigned - Rewrite all uses of Edit.getReg() to assigned registers. void rewriteAssigned(bool ExtendRanges); /// rewriteComponents - Rewrite all uses of Intv[0] according to the eq /// classes in ConEQ. /// This must be done when Intvs[0] is styill live at all uses, before calling /// ConEq.Distribute(). void rewriteComponents(const SmallVectorImpl &Intvs, const ConnectedVNInfoEqClasses &ConEq); /// deleteRematVictims - Delete defs that are dead after rematerializing. void deleteRematVictims(); public: /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. /// Newly created intervals will be appended to newIntervals. SplitEditor(SplitAnalysis &SA, LiveIntervals&, VirtRegMap&, MachineDominatorTree&); /// reset - Prepare for a new split. void reset(LiveRangeEdit&); /// Create a new virtual register and live interval. void openIntv(); /// enterIntvBefore - Enter the open interval before the instruction at Idx. /// If the parent interval is not live before Idx, a COPY is not inserted. /// Return the beginning of the new live range. SlotIndex enterIntvBefore(SlotIndex Idx); /// enterIntvAtEnd - Enter the open interval at the end of MBB. /// Use the open interval from he inserted copy to the MBB end. /// Return the beginning of the new live range. SlotIndex enterIntvAtEnd(MachineBasicBlock &MBB); /// useIntv - indicate that all instructions in MBB should use OpenLI. void useIntv(const MachineBasicBlock &MBB); /// useIntv - indicate that all instructions in range should use OpenLI. void useIntv(SlotIndex Start, SlotIndex End); /// leaveIntvAfter - Leave the open interval after the instruction at Idx. /// Return the end of the live range. SlotIndex leaveIntvAfter(SlotIndex Idx); /// leaveIntvBefore - Leave the open interval before the instruction at Idx. /// Return the end of the live range. SlotIndex leaveIntvBefore(SlotIndex Idx); /// leaveIntvAtTop - Leave the interval at the top of MBB. /// Add liveness from the MBB top to the copy. /// Return the end of the live range. SlotIndex leaveIntvAtTop(MachineBasicBlock &MBB); /// overlapIntv - Indicate that all instructions in range should use the open /// interval, but also let the complement interval be live. /// /// This doubles the register pressure, but is sometimes required to deal with /// register uses after the last valid split point. /// /// The Start index should be a return value from a leaveIntv* call, and End /// should be in the same basic block. The parent interval must have the same /// value across the range. /// void overlapIntv(SlotIndex Start, SlotIndex End); /// closeIntv - Indicate that we are done editing the currently open /// LiveInterval, and ranges can be trimmed. void closeIntv(); /// finish - after all the new live ranges have been created, compute the /// remaining live range, and rewrite instructions to use the new registers. void finish(); /// dump - print the current interval maping to dbgs(). void dump() const; // ===--- High level methods ---=== /// splitSingleBlocks - Split CurLI into a separate live interval inside each /// basic block in Blocks. void splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks); }; }