//===-- llvm/Target/TargetSchedule.cpp - Sched Machine Model ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a wrapper around MCSchedModel that allows the interface // to benefit from information currently only available in TargetInstrInfo. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/TargetSchedule.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" using namespace llvm; static cl::opt EnableSchedModel("schedmodel", cl::Hidden, cl::init(true), cl::desc("Use TargetSchedModel for latency lookup")); static cl::opt EnableSchedItins("scheditins", cl::Hidden, cl::init(true), cl::desc("Use InstrItineraryData for latency lookup")); bool TargetSchedModel::hasInstrSchedModel() const { return EnableSchedModel && SchedModel.hasInstrSchedModel(); } bool TargetSchedModel::hasInstrItineraries() const { return EnableSchedItins && !InstrItins.isEmpty(); } static unsigned gcd(unsigned Dividend, unsigned Divisor) { // Dividend and Divisor will be naturally swapped as needed. while(Divisor) { unsigned Rem = Dividend % Divisor; Dividend = Divisor; Divisor = Rem; }; return Dividend; } static unsigned lcm(unsigned A, unsigned B) { unsigned LCM = (uint64_t(A) * B) / gcd(A, B); assert((LCM >= A && LCM >= B) && "LCM overflow"); return LCM; } void TargetSchedModel::init(const MCSchedModel &sm, const TargetSubtargetInfo *sti, const TargetInstrInfo *tii) { SchedModel = sm; STI = sti; TII = tii; STI->initInstrItins(InstrItins); unsigned NumRes = SchedModel.getNumProcResourceKinds(); ResourceFactors.resize(NumRes); ResourceLCM = SchedModel.IssueWidth; for (unsigned Idx = 0; Idx < NumRes; ++Idx) { unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; if (NumUnits > 0) ResourceLCM = lcm(ResourceLCM, NumUnits); } MicroOpFactor = ResourceLCM / SchedModel.IssueWidth; for (unsigned Idx = 0; Idx < NumRes; ++Idx) { unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0; } } unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI, const MCSchedClassDesc *SC) const { if (hasInstrItineraries()) { int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass()); return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, MI); } if (hasInstrSchedModel()) { if (!SC) SC = resolveSchedClass(MI); if (SC->isValid()) return SC->NumMicroOps; } return MI->isTransient() ? 0 : 1; } // The machine model may explicitly specify an invalid latency, which // effectively means infinite latency. Since users of the TargetSchedule API // don't know how to handle this, we convert it to a very large latency that is // easy to distinguish when debugging the DAG but won't induce overflow. static unsigned convertLatency(int Cycles) { return Cycles >= 0 ? Cycles : 1000; } /// If we can determine the operand latency from the def only, without machine /// model or itinerary lookup, do so. Otherwise return -1. int TargetSchedModel::getDefLatency(const MachineInstr *DefMI, bool FindMin) const { // Return a latency based on the itinerary properties and defining instruction // if possible. Some common subtargets don't require per-operand latency, // especially for minimum latencies. if (FindMin) { // If MinLatency is invalid, then use the itinerary for MinLatency. If no // itinerary exists either, then use single cycle latency. if (SchedModel.MinLatency < 0 && !hasInstrItineraries()) { return 1; } return SchedModel.MinLatency; } else if (!hasInstrSchedModel() && !hasInstrItineraries()) { return TII->defaultDefLatency(&SchedModel, DefMI); } // ...operand lookup required return -1; } /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require /// evaluation of predicates that depend on instruction operands or flags. const MCSchedClassDesc *TargetSchedModel:: resolveSchedClass(const MachineInstr *MI) const { // Get the definition's scheduling class descriptor from this machine model. unsigned SchedClass = MI->getDesc().getSchedClass(); const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass); #ifndef NDEBUG unsigned NIter = 0; #endif while (SCDesc->isVariant()) { assert(++NIter < 6 && "Variants are nested deeper than the magic number"); SchedClass = STI->resolveSchedClass(SchedClass, MI, this); SCDesc = SchedModel.getSchedClassDesc(SchedClass); } return SCDesc; } /// Find the def index of this operand. This index maps to the machine model and /// is independent of use operands. Def operands may be reordered with uses or /// merged with uses without affecting the def index (e.g. before/after /// regalloc). However, an instruction's def operands must never be reordered /// with respect to each other. static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) { unsigned DefIdx = 0; for (unsigned i = 0; i != DefOperIdx; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.isDef()) ++DefIdx; } return DefIdx; } /// Find the use index of this operand. This is independent of the instruction's /// def operands. /// /// Note that uses are not determined by the operand's isUse property, which /// is simply the inverse of isDef. Here we consider any readsReg operand to be /// a "use". The machine model allows an operand to be both a Def and Use. static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) { unsigned UseIdx = 0; for (unsigned i = 0; i != UseOperIdx; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isReg() && MO.readsReg()) ++UseIdx; } return UseIdx; } // Top-level API for clients that know the operand indices. unsigned TargetSchedModel::computeOperandLatency( const MachineInstr *DefMI, unsigned DefOperIdx, const MachineInstr *UseMI, unsigned UseOperIdx, bool FindMin) const { int DefLatency = getDefLatency(DefMI, FindMin); if (DefLatency >= 0) return DefLatency; if (hasInstrItineraries()) { int OperLatency = 0; if (UseMI) { OperLatency = TII->getOperandLatency(&InstrItins, DefMI, DefOperIdx, UseMI, UseOperIdx); } else { unsigned DefClass = DefMI->getDesc().getSchedClass(); OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx); } if (OperLatency >= 0) return OperLatency; // No operand latency was found. unsigned InstrLatency = TII->getInstrLatency(&InstrItins, DefMI); // Expected latency is the max of the stage latency and itinerary props. // Rather than directly querying InstrItins stage latency, we call a TII // hook to allow subtargets to specialize latency. This hook is only // applicable to the InstrItins model. InstrSchedModel should model all // special cases without TII hooks. if (!FindMin) InstrLatency = std::max(InstrLatency, TII->defaultDefLatency(&SchedModel, DefMI)); return InstrLatency; } assert(!FindMin && hasInstrSchedModel() && "Expected a SchedModel for this cpu"); const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); unsigned DefIdx = findDefIdx(DefMI, DefOperIdx); if (DefIdx < SCDesc->NumWriteLatencyEntries) { // Lookup the definition's write latency in SubtargetInfo. const MCWriteLatencyEntry *WLEntry = STI->getWriteLatencyEntry(SCDesc, DefIdx); unsigned WriteID = WLEntry->WriteResourceID; unsigned Latency = convertLatency(WLEntry->Cycles); if (!UseMI) return Latency; // Lookup the use's latency adjustment in SubtargetInfo. const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI); if (UseDesc->NumReadAdvanceEntries == 0) return Latency; unsigned UseIdx = findUseIdx(UseMI, UseOperIdx); return Latency - STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID); } // If DefIdx does not exist in the model (e.g. implicit defs), then return // unit latency (defaultDefLatency may be too conservative). #ifndef NDEBUG if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit() && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef()) { std::string Err; raw_string_ostream ss(Err); ss << "DefIdx " << DefIdx << " exceeds machine model writes for " << *DefMI; report_fatal_error(ss.str()); } #endif return DefMI->isTransient() ? 0 : 1; } unsigned TargetSchedModel::computeInstrLatency(const MachineInstr *MI) const { // For the itinerary model, fall back to the old subtarget hook. // Allow subtargets to compute Bundle latencies outside the machine model. if (hasInstrItineraries() || MI->isBundle()) return TII->getInstrLatency(&InstrItins, MI); if (hasInstrSchedModel()) { const MCSchedClassDesc *SCDesc = resolveSchedClass(MI); if (SCDesc->isValid()) { unsigned Latency = 0; for (unsigned DefIdx = 0, DefEnd = SCDesc->NumWriteLatencyEntries; DefIdx != DefEnd; ++DefIdx) { // Lookup the definition's write latency in SubtargetInfo. const MCWriteLatencyEntry *WLEntry = STI->getWriteLatencyEntry(SCDesc, DefIdx); Latency = std::max(Latency, convertLatency(WLEntry->Cycles)); } return Latency; } } return TII->defaultDefLatency(&SchedModel, MI); } unsigned TargetSchedModel:: computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx, const MachineInstr *DepMI) const { // MinLatency == -1 is for in-order processors that always have unit // MinLatency. MinLatency > 0 is for in-order processors with varying min // latencies, but since this is not a RAW dep, we always use unit latency. if (SchedModel.MinLatency != 0) return 1; // MinLatency == 0 indicates an out-of-order processor that can dispatch // WAW dependencies in the same cycle. // Treat predication as a data dependency for out-of-order cpus. In-order // cpus do not need to treat predicated writes specially. // // TODO: The following hack exists because predication passes do not // correctly append imp-use operands, and readsReg() strangely returns false // for predicated defs. unsigned Reg = DefMI->getOperand(DefOperIdx).getReg(); const MachineFunction &MF = *DefMI->getParent()->getParent(); const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(DepMI)) return computeInstrLatency(DefMI); // If we have a per operand scheduling model, check if this def is writing // an unbuffered resource. If so, it treated like an in-order cpu. if (hasInstrSchedModel()) { const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); if (SCDesc->isValid()) { for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc), *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) { if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->IsBuffered) return 1; } } } return 0; }