//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the TwoAddress instruction pass which is used // by most register allocators. Two-Address instructions are rewritten // from: // // A = B op C // // to: // // A = B // A op= C // // Note that if a register allocator chooses to use this pass, that it // has to be capable of handling the non-SSA nature of these rewritten // virtual registers. // // It is also worth noting that the duplicate operand of the two // address instruction is removed. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "twoaddrinstr" #include "llvm/CodeGen/Passes.h" #include "llvm/Function.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" using namespace llvm; STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk"); STATISTIC(NumReMats, "Number of instructions re-materialized"); namespace { class VISIBILITY_HIDDEN TwoAddressInstructionPass : public MachineFunctionPass { const TargetInstrInfo *TII; const TargetRegisterInfo *TRI; MachineRegisterInfo *MRI; LiveVariables *LV; bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI, unsigned Reg, MachineBasicBlock::iterator OldPos); bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC, MachineInstr *MI, MachineInstr *DefMI, MachineBasicBlock *MBB, unsigned Loc, DenseMap &DistanceMap); public: static char ID; // Pass identification, replacement for typeid TwoAddressInstructionPass() : MachineFunctionPass(&ID) {} virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved(); AU.addPreservedID(MachineLoopInfoID); AU.addPreservedID(MachineDominatorsID); AU.addPreservedID(PHIEliminationID); MachineFunctionPass::getAnalysisUsage(AU); } /// runOnMachineFunction - Pass entry point. bool runOnMachineFunction(MachineFunction&); }; } char TwoAddressInstructionPass::ID = 0; static RegisterPass X("twoaddressinstruction", "Two-Address instruction pass"); const PassInfo *const llvm::TwoAddressInstructionPassID = &X; /// Sink3AddrInstruction - A two-address instruction has been converted to a /// three-address instruction to avoid clobbering a register. Try to sink it /// past the instruction that would kill the above mentioned register to reduce /// register pressure. bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI, unsigned SavedReg, MachineBasicBlock::iterator OldPos) { // Check if it's safe to move this instruction. bool SeenStore = true; // Be conservative. if (!MI->isSafeToMove(TII, SeenStore)) return false; unsigned DefReg = 0; SmallSet UseRegs; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isRegister()) continue; unsigned MOReg = MO.getReg(); if (!MOReg) continue; if (MO.isUse() && MOReg != SavedReg) UseRegs.insert(MO.getReg()); if (!MO.isDef()) continue; if (MO.isImplicit()) // Don't try to move it if it implicitly defines a register. return false; if (DefReg) // For now, don't move any instructions that define multiple registers. return false; DefReg = MO.getReg(); } // Find the instruction that kills SavedReg. MachineInstr *KillMI = NULL; for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg), UE = MRI->use_end(); UI != UE; ++UI) { MachineOperand &UseMO = UI.getOperand(); if (!UseMO.isKill()) continue; KillMI = UseMO.getParent(); break; } if (!KillMI || KillMI->getParent() != MBB) return false; // If any of the definitions are used by another instruction between the // position and the kill use, then it's not safe to sink it. // // FIXME: This can be sped up if there is an easy way to query whether an // instruction is before or after another instruction. Then we can use // MachineRegisterInfo def / use instead. MachineOperand *KillMO = NULL; MachineBasicBlock::iterator KillPos = KillMI; ++KillPos; unsigned NumVisited = 0; for (MachineBasicBlock::iterator I = next(OldPos); I != KillPos; ++I) { MachineInstr *OtherMI = I; if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost. return false; ++NumVisited; for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) { MachineOperand &MO = OtherMI->getOperand(i); if (!MO.isRegister()) continue; unsigned MOReg = MO.getReg(); if (!MOReg) continue; if (DefReg == MOReg) return false; if (MO.isKill()) { if (OtherMI == KillMI && MOReg == SavedReg) // Save the operand that kills the register. We want to unset the kill // marker if we can sink MI past it. KillMO = &MO; else if (UseRegs.count(MOReg)) // One of the uses is killed before the destination. return false; } } } // Update kill and LV information. KillMO->setIsKill(false); KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); KillMO->setIsKill(true); if (LV) LV->replaceKillInstruction(SavedReg, KillMI, MI); // Move instruction to its destination. MBB->remove(MI); MBB->insert(KillPos, MI); ++Num3AddrSunk; return true; } /// isTwoAddrUse - Return true if the specified MI is using the specified /// register as a two-address operand. static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) { const TargetInstrDesc &TID = UseMI->getDesc(); for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) { MachineOperand &MO = UseMI->getOperand(i); if (MO.isRegister() && MO.getReg() == Reg && (MO.isDef() || TID.getOperandConstraint(i, TOI::TIED_TO) != -1)) // Earlier use is a two-address one. return true; } return false; } /// isProfitableToReMat - Return true if the heuristics determines it is likely /// to be profitable to re-materialize the definition of Reg rather than copy /// the register. bool TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC, MachineInstr *MI, MachineInstr *DefMI, MachineBasicBlock *MBB, unsigned Loc, DenseMap &DistanceMap){ bool OtherUse = false; for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg), UE = MRI->use_end(); UI != UE; ++UI) { MachineOperand &UseMO = UI.getOperand(); if (!UseMO.isUse()) continue; MachineInstr *UseMI = UseMO.getParent(); MachineBasicBlock *UseMBB = UseMI->getParent(); if (UseMBB == MBB) { DenseMap::iterator DI = DistanceMap.find(UseMI); if (DI != DistanceMap.end() && DI->second == Loc) continue; // Current use. OtherUse = true; // There is at least one other use in the MBB that will clobber the // register. if (isTwoAddrUse(UseMI, Reg)) return true; } } // If other uses in MBB are not two-address uses, then don't remat. if (OtherUse) return false; // No other uses in the same block, remat if it's defined in the same // block so it does not unnecessarily extend the live range. return MBB == DefMI->getParent(); } /// runOnMachineFunction - Reduce two-address instructions to two operands. /// bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) { DOUT << "Machine Function\n"; const TargetMachine &TM = MF.getTarget(); MRI = &MF.getRegInfo(); TII = TM.getInstrInfo(); TRI = TM.getRegisterInfo(); LV = getAnalysisToUpdate(); bool MadeChange = false; DOUT << "********** REWRITING TWO-ADDR INSTRS **********\n"; DOUT << "********** Function: " << MF.getFunction()->getName() << '\n'; // ReMatRegs - Keep track of the registers whose def's are remat'ed. BitVector ReMatRegs; ReMatRegs.resize(MRI->getLastVirtReg()+1); // DistanceMap - Keep track the distance of a MI from the start of the // current basic block. DenseMap DistanceMap; for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end(); mbbi != mbbe; ++mbbi) { unsigned Dist = 0; DistanceMap.clear(); for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end(); mi != me; ) { MachineBasicBlock::iterator nmi = next(mi); const TargetInstrDesc &TID = mi->getDesc(); bool FirstTied = true; DistanceMap.insert(std::make_pair(mi, ++Dist)); for (unsigned si = 1, e = TID.getNumOperands(); si < e; ++si) { int ti = TID.getOperandConstraint(si, TOI::TIED_TO); if (ti == -1) continue; if (FirstTied) { ++NumTwoAddressInstrs; DOUT << '\t'; DEBUG(mi->print(*cerr.stream(), &TM)); } FirstTied = false; assert(mi->getOperand(si).isRegister() && mi->getOperand(si).getReg() && mi->getOperand(si).isUse() && "two address instruction invalid"); // If the two operands are the same we just remove the use // and mark the def as def&use, otherwise we have to insert a copy. if (mi->getOperand(ti).getReg() != mi->getOperand(si).getReg()) { // Rewrite: // a = b op c // to: // a = b // a = a op c unsigned regA = mi->getOperand(ti).getReg(); unsigned regB = mi->getOperand(si).getReg(); assert(TargetRegisterInfo::isVirtualRegister(regA) && TargetRegisterInfo::isVirtualRegister(regB) && "cannot update physical register live information"); #ifndef NDEBUG // First, verify that we don't have a use of a in the instruction (a = // b + a for example) because our transformation will not work. This // should never occur because we are in SSA form. for (unsigned i = 0; i != mi->getNumOperands(); ++i) assert((int)i == ti || !mi->getOperand(i).isRegister() || mi->getOperand(i).getReg() != regA); #endif // If this instruction is not the killing user of B, see if we can // rearrange the code to make it so. Making it the killing user will // allow us to coalesce A and B together, eliminating the copy we are // about to insert. if (!mi->killsRegister(regB)) { // If this instruction is commutative, check to see if C dies. If // so, swap the B and C operands. This makes the live ranges of A // and C joinable. // FIXME: This code also works for A := B op C instructions. if (TID.isCommutable() && mi->getNumOperands() >= 3) { assert(mi->getOperand(3-si).isRegister() && "Not a proper commutative instruction!"); unsigned regC = mi->getOperand(3-si).getReg(); if (mi->killsRegister(regC)) { DOUT << "2addr: COMMUTING : " << *mi; MachineInstr *NewMI = TII->commuteInstruction(mi); if (NewMI == 0) { DOUT << "2addr: COMMUTING FAILED!\n"; } else { DOUT << "2addr: COMMUTED TO: " << *NewMI; // If the instruction changed to commute it, update livevar. if (NewMI != mi) { if (LV) // Update live variables LV->replaceKillInstruction(regC, mi, NewMI); mbbi->insert(mi, NewMI); // Insert the new inst mbbi->erase(mi); // Nuke the old inst. mi = NewMI; DistanceMap.insert(std::make_pair(NewMI, Dist)); } ++NumCommuted; regB = regC; goto InstructionRearranged; } } } // If this instruction is potentially convertible to a true // three-address instruction, if (TID.isConvertibleTo3Addr()) { // FIXME: This assumes there are no more operands which are tied // to another register. #ifndef NDEBUG for (unsigned i = si + 1, e = TID.getNumOperands(); i < e; ++i) assert(TID.getOperandConstraint(i, TOI::TIED_TO) == -1); #endif MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV); if (NewMI) { DOUT << "2addr: CONVERTING 2-ADDR: " << *mi; DOUT << "2addr: TO 3-ADDR: " << *NewMI; bool Sunk = false; if (NewMI->findRegisterUseOperand(regB, false, TRI)) // FIXME: Temporary workaround. If the new instruction doesn't // uses regB, convertToThreeAddress must have created more // then one instruction. Sunk = Sink3AddrInstruction(mbbi, NewMI, regB, mi); mbbi->erase(mi); // Nuke the old inst. if (!Sunk) { DistanceMap.insert(std::make_pair(NewMI, Dist)); mi = NewMI; nmi = next(mi); } ++NumConvertedTo3Addr; break; // Done with this instruction. } } } InstructionRearranged: const TargetRegisterClass* rc = MRI->getRegClass(regA); MachineInstr *DefMI = MRI->getVRegDef(regB); // If it's safe and profitable, remat the definition instead of // copying it. if (DefMI && DefMI->getDesc().isAsCheapAsAMove() && DefMI->isSafeToReMat(TII, regB) && isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist,DistanceMap)){ DEBUG(cerr << "2addr: REMATTING : " << *DefMI << "\n"); TII->reMaterialize(*mbbi, mi, regA, DefMI); ReMatRegs.set(regB); ++NumReMats; } else { TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc); } MachineBasicBlock::iterator prevMi = prior(mi); DOUT << "\t\tprepend:\t"; DEBUG(prevMi->print(*cerr.stream(), &TM)); // Update live variables for regB. if (LV) { LiveVariables::VarInfo& varInfoB = LV->getVarInfo(regB); // regB is used in this BB. varInfoB.UsedBlocks[mbbi->getNumber()] = true; if (LV->removeVirtualRegisterKilled(regB, mi)) LV->addVirtualRegisterKilled(regB, prevMi); if (LV->removeVirtualRegisterDead(regB, mi)) LV->addVirtualRegisterDead(regB, prevMi); } // Replace all occurences of regB with regA. for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) { if (mi->getOperand(i).isRegister() && mi->getOperand(i).getReg() == regB) mi->getOperand(i).setReg(regA); } } assert(mi->getOperand(ti).isDef() && mi->getOperand(si).isUse()); mi->getOperand(ti).setReg(mi->getOperand(si).getReg()); MadeChange = true; DOUT << "\t\trewrite to:\t"; DEBUG(mi->print(*cerr.stream(), &TM)); } mi = nmi; } } // Some remat'ed instructions are dead. int VReg = ReMatRegs.find_first(); while (VReg != -1) { if (MRI->use_empty(VReg)) { MachineInstr *DefMI = MRI->getVRegDef(VReg); DefMI->eraseFromParent(); } VReg = ReMatRegs.find_next(VReg); } return MadeChange; }