//===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the VirtRegMap class. // // It also contains implementations of the Spiller interface, which, given a // virtual register map and a machine function, eliminates all virtual // references by replacing them with physical register references - adding spill // code as necessary. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "VirtRegMap.h" #include "LiveDebugVariables.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveStackAnalysis.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include using namespace llvm; STATISTIC(NumSpillSlots, "Number of spill slots allocated"); STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting"); //===----------------------------------------------------------------------===// // VirtRegMap implementation //===----------------------------------------------------------------------===// char VirtRegMap::ID = 0; INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false) bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) { MRI = &mf.getRegInfo(); TII = mf.getTarget().getInstrInfo(); TRI = mf.getTarget().getRegisterInfo(); MF = &mf; Virt2PhysMap.clear(); Virt2StackSlotMap.clear(); Virt2SplitMap.clear(); grow(); return false; } void VirtRegMap::grow() { unsigned NumRegs = MF->getRegInfo().getNumVirtRegs(); Virt2PhysMap.resize(NumRegs); Virt2StackSlotMap.resize(NumRegs); Virt2SplitMap.resize(NumRegs); } unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) { int SS = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(), RC->getAlignment()); ++NumSpillSlots; return SS; } unsigned VirtRegMap::getRegAllocPref(unsigned virtReg) { std::pair Hint = MRI->getRegAllocationHint(virtReg); unsigned physReg = Hint.second; if (TargetRegisterInfo::isVirtualRegister(physReg) && hasPhys(physReg)) physReg = getPhys(physReg); if (Hint.first == 0) return (TargetRegisterInfo::isPhysicalRegister(physReg)) ? physReg : 0; return TRI->ResolveRegAllocHint(Hint.first, physReg, *MF); } int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) { assert(TargetRegisterInfo::isVirtualRegister(virtReg)); assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && "attempt to assign stack slot to already spilled register"); const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg); return Virt2StackSlotMap[virtReg] = createSpillSlot(RC); } void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) { assert(TargetRegisterInfo::isVirtualRegister(virtReg)); assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && "attempt to assign stack slot to already spilled register"); assert((SS >= 0 || (SS >= MF->getFrameInfo()->getObjectIndexBegin())) && "illegal fixed frame index"); Virt2StackSlotMap[virtReg] = SS; } void VirtRegMap::print(raw_ostream &OS, const Module*) const { OS << "********** REGISTER MAP **********\n"; for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) { OS << '[' << PrintReg(Reg, TRI) << " -> " << PrintReg(Virt2PhysMap[Reg], TRI) << "] " << MRI->getRegClass(Reg)->getName() << "\n"; } } for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { unsigned Reg = TargetRegisterInfo::index2VirtReg(i); if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) { OS << '[' << PrintReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg] << "] " << MRI->getRegClass(Reg)->getName() << "\n"; } } OS << '\n'; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void VirtRegMap::dump() const { print(dbgs()); } #endif //===----------------------------------------------------------------------===// // VirtRegRewriter //===----------------------------------------------------------------------===// // // The VirtRegRewriter is the last of the register allocator passes. // It rewrites virtual registers to physical registers as specified in the // VirtRegMap analysis. It also updates live-in information on basic blocks // according to LiveIntervals. // namespace { class VirtRegRewriter : public MachineFunctionPass { MachineFunction *MF; const TargetMachine *TM; const TargetRegisterInfo *TRI; const TargetInstrInfo *TII; MachineRegisterInfo *MRI; SlotIndexes *Indexes; LiveIntervals *LIS; VirtRegMap *VRM; void rewrite(); void addMBBLiveIns(); public: static char ID; VirtRegRewriter() : MachineFunctionPass(ID) {} virtual void getAnalysisUsage(AnalysisUsage &AU) const; virtual bool runOnMachineFunction(MachineFunction&); }; } // end anonymous namespace char &llvm::VirtRegRewriterID = VirtRegRewriter::ID; INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter", "Virtual Register Rewriter", false, false) INITIALIZE_PASS_DEPENDENCY(SlotIndexes) INITIALIZE_PASS_DEPENDENCY(LiveIntervals) INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) INITIALIZE_PASS_DEPENDENCY(LiveStacks) INITIALIZE_PASS_DEPENDENCY(VirtRegMap) INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter", "Virtual Register Rewriter", false, false) char VirtRegRewriter::ID = 0; void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) { MF = &fn; TM = &MF->getTarget(); TRI = TM->getRegisterInfo(); TII = TM->getInstrInfo(); MRI = &MF->getRegInfo(); Indexes = &getAnalysis(); LIS = &getAnalysis(); VRM = &getAnalysis(); DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n" << "********** Function: " << MF->getName() << '\n'); DEBUG(VRM->dump()); // Add kill flags while we still have virtual registers. LIS->addKillFlags(VRM); // Live-in lists on basic blocks are required for physregs. addMBBLiveIns(); // Rewrite virtual registers. rewrite(); // Write out new DBG_VALUE instructions. getAnalysis().emitDebugValues(VRM); // All machine operands and other references to virtual registers have been // replaced. Remove the virtual registers and release all the transient data. VRM->clearAllVirt(); MRI->clearVirtRegs(); return true; } // Compute MBB live-in lists from virtual register live ranges and their // assignments. void VirtRegRewriter::addMBBLiveIns() { SmallVector LiveIn; for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) { unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx); if (MRI->reg_nodbg_empty(VirtReg)) continue; LiveInterval &LI = LIS->getInterval(VirtReg); if (LI.empty() || LIS->intervalIsInOneMBB(LI)) continue; // This is a virtual register that is live across basic blocks. Its // assigned PhysReg must be marked as live-in to those blocks. unsigned PhysReg = VRM->getPhys(VirtReg); assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register."); // Scan the segments of LI. for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I != E; ++I) { if (!Indexes->findLiveInMBBs(I->start, I->end, LiveIn)) continue; for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) if (!LiveIn[i]->isLiveIn(PhysReg)) LiveIn[i]->addLiveIn(PhysReg); LiveIn.clear(); } } } void VirtRegRewriter::rewrite() { SmallVector SuperDeads; SmallVector SuperDefs; SmallVector SuperKills; for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); MBBI != MBBE; ++MBBI) { DEBUG(MBBI->print(dbgs(), Indexes)); for (MachineBasicBlock::instr_iterator MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) { MachineInstr *MI = MII; ++MII; for (MachineInstr::mop_iterator MOI = MI->operands_begin(), MOE = MI->operands_end(); MOI != MOE; ++MOI) { MachineOperand &MO = *MOI; // Make sure MRI knows about registers clobbered by regmasks. if (MO.isRegMask()) MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) continue; unsigned VirtReg = MO.getReg(); unsigned PhysReg = VRM->getPhys(VirtReg); assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Instruction uses unmapped VirtReg"); assert(!MRI->isReserved(PhysReg) && "Reserved register assignment"); // Preserve semantics of sub-register operands. if (MO.getSubReg()) { // A virtual register kill refers to the whole register, so we may // have to add operands for the super-register. A // partial redef always kills and redefines the super-register. if (MO.readsReg() && (MO.isDef() || MO.isKill())) SuperKills.push_back(PhysReg); if (MO.isDef()) { // The flag only makes sense for sub-register defs, and // we are substituting a full physreg. An operand // from the SuperKills list will represent the partial read of the // super-register. MO.setIsUndef(false); // Also add implicit defs for the super-register. if (MO.isDead()) SuperDeads.push_back(PhysReg); else SuperDefs.push_back(PhysReg); } // PhysReg operands cannot have subregister indexes. PhysReg = TRI->getSubReg(PhysReg, MO.getSubReg()); assert(PhysReg && "Invalid SubReg for physical register"); MO.setSubReg(0); } // Rewrite. Note we could have used MachineOperand::substPhysReg(), but // we need the inlining here. MO.setReg(PhysReg); } // Add any missing super-register kills after rewriting the whole // instruction. while (!SuperKills.empty()) MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true); while (!SuperDeads.empty()) MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true); while (!SuperDefs.empty()) MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI); DEBUG(dbgs() << "> " << *MI); // Finally, remove any identity copies. if (MI->isIdentityCopy()) { ++NumIdCopies; if (MI->getNumOperands() == 2) { DEBUG(dbgs() << "Deleting identity copy.\n"); if (Indexes) Indexes->removeMachineInstrFromMaps(MI); // It's safe to erase MI because MII has already been incremented. MI->eraseFromParent(); } else { // Transform identity copy to a KILL to deal with subregisters. MI->setDesc(TII->get(TargetOpcode::KILL)); DEBUG(dbgs() << "Identity copy: " << *MI); } } } } // Tell MRI about physical registers in use. for (unsigned Reg = 1, RegE = TRI->getNumRegs(); Reg != RegE; ++Reg) if (!MRI->reg_nodbg_empty(Reg)) MRI->setPhysRegUsed(Reg); }