//===-- DWARFDebugFrame.h - Parsing of .debug_frame -------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "DWARFDebugFrame.h" #include "llvm/ADT/SmallString.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; using namespace dwarf; /// \brief Abstract frame entry defining the common interface concrete /// entries implement. class llvm::FrameEntry { public: enum FrameKind {FK_CIE, FK_FDE}; FrameEntry(FrameKind K, DataExtractor D, uint64_t Offset, uint64_t Length) : Kind(K), Data(D), Offset(Offset), Length(Length) {} virtual ~FrameEntry() { } FrameKind getKind() const { return Kind; } virtual uint64_t getOffset() const { return Offset; } /// \brief Parse and store a sequence of CFI instructions from our data /// stream, starting at *Offset and ending at EndOffset. If everything /// goes well, *Offset should be equal to EndOffset when this method /// returns. Otherwise, an error occurred. virtual void parseInstructions(uint32_t *Offset, uint32_t EndOffset); /// \brief Dump the entry header to the given output stream. virtual void dumpHeader(raw_ostream &OS) const = 0; /// \brief Dump the entry's instructions to the given output stream. virtual void dumpInstructions(raw_ostream &OS) const; protected: const FrameKind Kind; /// \brief The data stream holding the section from which the entry was /// parsed. DataExtractor Data; /// \brief Offset of this entry in the section. uint64_t Offset; /// \brief Entry length as specified in DWARF. uint64_t Length; /// An entry may contain CFI instructions. An instruction consists of an /// opcode and an optional sequence of operands. typedef std::vector Operands; struct Instruction { Instruction(uint8_t Opcode) : Opcode(Opcode) {} uint8_t Opcode; Operands Ops; }; std::vector Instructions; /// Convenience methods to add a new instruction with the given opcode and /// operands to the Instructions vector. void addInstruction(uint8_t Opcode) { Instructions.push_back(Instruction(Opcode)); } void addInstruction(uint8_t Opcode, uint64_t Operand1) { Instructions.push_back(Instruction(Opcode)); Instructions.back().Ops.push_back(Operand1); } void addInstruction(uint8_t Opcode, uint64_t Operand1, uint64_t Operand2) { Instructions.push_back(Instruction(Opcode)); Instructions.back().Ops.push_back(Operand1); Instructions.back().Ops.push_back(Operand2); } }; // See DWARF standard v3, section 7.23 const uint8_t DWARF_CFI_PRIMARY_OPCODE_MASK = 0xc0; const uint8_t DWARF_CFI_PRIMARY_OPERAND_MASK = 0x3f; void FrameEntry::parseInstructions(uint32_t *Offset, uint32_t EndOffset) { while (*Offset < EndOffset) { uint8_t Opcode = Data.getU8(Offset); // Some instructions have a primary opcode encoded in the top bits. uint8_t Primary = Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK; if (Primary) { // If it's a primary opcode, the first operand is encoded in the bottom // bits of the opcode itself. uint64_t Op1 = Opcode & DWARF_CFI_PRIMARY_OPERAND_MASK; switch (Primary) { default: llvm_unreachable("Impossible primary CFI opcode"); case DW_CFA_advance_loc: case DW_CFA_restore: addInstruction(Primary, Op1); break; case DW_CFA_offset: addInstruction(Primary, Op1, Data.getULEB128(Offset)); break; } } else { // Extended opcode - its value is Opcode itself. switch (Opcode) { default: llvm_unreachable("Invalid extended CFI opcode"); case DW_CFA_nop: case DW_CFA_remember_state: case DW_CFA_restore_state: case DW_CFA_GNU_window_save: // No operands addInstruction(Opcode); break; case DW_CFA_set_loc: // Operands: Address addInstruction(Opcode, Data.getAddress(Offset)); break; case DW_CFA_advance_loc1: // Operands: 1-byte delta addInstruction(Opcode, Data.getU8(Offset)); break; case DW_CFA_advance_loc2: // Operands: 2-byte delta addInstruction(Opcode, Data.getU16(Offset)); break; case DW_CFA_advance_loc4: // Operands: 4-byte delta addInstruction(Opcode, Data.getU32(Offset)); break; case DW_CFA_restore_extended: case DW_CFA_undefined: case DW_CFA_same_value: case DW_CFA_def_cfa_register: case DW_CFA_def_cfa_offset: // Operands: ULEB128 addInstruction(Opcode, Data.getULEB128(Offset)); break; case DW_CFA_def_cfa_offset_sf: // Operands: SLEB128 addInstruction(Opcode, Data.getSLEB128(Offset)); break; case DW_CFA_offset_extended: case DW_CFA_register: case DW_CFA_def_cfa: case DW_CFA_val_offset: // Operands: ULEB128, ULEB128 addInstruction(Opcode, Data.getULEB128(Offset), Data.getULEB128(Offset)); break; case DW_CFA_offset_extended_sf: case DW_CFA_def_cfa_sf: case DW_CFA_val_offset_sf: // Operands: ULEB128, SLEB128 addInstruction(Opcode, Data.getULEB128(Offset), Data.getSLEB128(Offset)); break; case DW_CFA_def_cfa_expression: case DW_CFA_expression: case DW_CFA_val_expression: // TODO: implement this report_fatal_error("Values with expressions not implemented yet!"); } } } } void FrameEntry::dumpInstructions(raw_ostream &OS) const { // TODO: at the moment only instruction names are dumped. Expand this to // dump operands as well. for (std::vector::const_iterator I = Instructions.begin(), E = Instructions.end(); I != E; ++I) { uint8_t Opcode = I->Opcode; if (Opcode & DWARF_CFI_PRIMARY_OPCODE_MASK) Opcode &= DWARF_CFI_PRIMARY_OPCODE_MASK; OS << " " << CallFrameString(Opcode) << ":\n"; } } namespace { /// \brief DWARF Common Information Entry (CIE) class CIE : public FrameEntry { public: // CIEs (and FDEs) are simply container classes, so the only sensible way to // create them is by providing the full parsed contents in the constructor. CIE(DataExtractor D, uint64_t Offset, uint64_t Length, uint8_t Version, SmallString<8> Augmentation, uint64_t CodeAlignmentFactor, int64_t DataAlignmentFactor, uint64_t ReturnAddressRegister) : FrameEntry(FK_CIE, D, Offset, Length), Version(Version), Augmentation(Augmentation), CodeAlignmentFactor(CodeAlignmentFactor), DataAlignmentFactor(DataAlignmentFactor), ReturnAddressRegister(ReturnAddressRegister) {} ~CIE() { } void dumpHeader(raw_ostream &OS) const { OS << format("%08x %08x %08x CIE", (uint32_t)Offset, (uint32_t)Length, DW_CIE_ID) << "\n"; OS << format(" Version: %d\n", Version); OS << " Augmentation: \"" << Augmentation << "\"\n"; OS << format(" Code alignment factor: %u\n", (uint32_t)CodeAlignmentFactor); OS << format(" Data alignment factor: %d\n", (int32_t)DataAlignmentFactor); OS << format(" Return address column: %d\n", (int32_t)ReturnAddressRegister); OS << "\n"; } static bool classof(const FrameEntry *FE) { return FE->getKind() == FK_CIE; } private: /// The following fields are defined in section 6.4.1 of the DWARF standard v3 uint8_t Version; SmallString<8> Augmentation; uint64_t CodeAlignmentFactor; int64_t DataAlignmentFactor; uint64_t ReturnAddressRegister; }; /// \brief DWARF Frame Description Entry (FDE) class FDE : public FrameEntry { public: // Each FDE has a CIE it's "linked to". Our FDE contains is constructed with // an offset to the CIE (provided by parsing the FDE header). The CIE itself // is obtained lazily once it's actually required. FDE(DataExtractor D, uint64_t Offset, uint64_t Length, int64_t LinkedCIEOffset, uint64_t InitialLocation, uint64_t AddressRange) : FrameEntry(FK_FDE, D, Offset, Length), LinkedCIEOffset(LinkedCIEOffset), InitialLocation(InitialLocation), AddressRange(AddressRange), LinkedCIE(NULL) {} ~FDE() { } void dumpHeader(raw_ostream &OS) const { OS << format("%08x %08x %08x FDE ", (uint32_t)Offset, (uint32_t)Length, (int32_t)LinkedCIEOffset); OS << format("cie=%08x pc=%08x...%08x\n", (int32_t)LinkedCIEOffset, (uint32_t)InitialLocation, (uint32_t)InitialLocation + (uint32_t)AddressRange); if (LinkedCIE) { OS << format("%p\n", LinkedCIE); } } static bool classof(const FrameEntry *FE) { return FE->getKind() == FK_FDE; } private: /// The following fields are defined in section 6.4.1 of the DWARF standard v3 uint64_t LinkedCIEOffset; uint64_t InitialLocation; uint64_t AddressRange; CIE *LinkedCIE; }; } // end anonymous namespace DWARFDebugFrame::DWARFDebugFrame() { } DWARFDebugFrame::~DWARFDebugFrame() { for (EntryVector::iterator I = Entries.begin(), E = Entries.end(); I != E; ++I) { delete *I; } } static void LLVM_ATTRIBUTE_UNUSED dumpDataAux(DataExtractor Data, uint32_t Offset, int Length) { errs() << "DUMP: "; for (int i = 0; i < Length; ++i) { uint8_t c = Data.getU8(&Offset); errs().write_hex(c); errs() << " "; } errs() << "\n"; } void DWARFDebugFrame::parse(DataExtractor Data) { uint32_t Offset = 0; while (Data.isValidOffset(Offset)) { uint32_t StartOffset = Offset; bool IsDWARF64 = false; uint64_t Length = Data.getU32(&Offset); uint64_t Id; if (Length == UINT32_MAX) { // DWARF-64 is distinguished by the first 32 bits of the initial length // field being 0xffffffff. Then, the next 64 bits are the actual entry // length. IsDWARF64 = true; Length = Data.getU64(&Offset); } // At this point, Offset points to the next field after Length. // Length is the structure size excluding itself. Compute an offset one // past the end of the structure (needed to know how many instructions to // read). // TODO: For honest DWARF64 support, DataExtractor will have to treat // offset_ptr as uint64_t* uint32_t EndStructureOffset = Offset + static_cast(Length); // The Id field's size depends on the DWARF format Id = Data.getUnsigned(&Offset, IsDWARF64 ? 8 : 4); bool IsCIE = ((IsDWARF64 && Id == DW64_CIE_ID) || Id == DW_CIE_ID); FrameEntry *Entry = 0; if (IsCIE) { // Note: this is specifically DWARFv3 CIE header structure. It was // changed in DWARFv4. We currently don't support reading DWARFv4 // here because LLVM itself does not emit it (and LLDB doesn't // support it either). uint8_t Version = Data.getU8(&Offset); const char *Augmentation = Data.getCStr(&Offset); uint64_t CodeAlignmentFactor = Data.getULEB128(&Offset); int64_t DataAlignmentFactor = Data.getSLEB128(&Offset); uint64_t ReturnAddressRegister = Data.getULEB128(&Offset); Entry = new CIE(Data, StartOffset, Length, Version, StringRef(Augmentation), CodeAlignmentFactor, DataAlignmentFactor, ReturnAddressRegister); } else { // FDE uint64_t CIEPointer = Id; uint64_t InitialLocation = Data.getAddress(&Offset); uint64_t AddressRange = Data.getAddress(&Offset); Entry = new FDE(Data, StartOffset, Length, CIEPointer, InitialLocation, AddressRange); } assert(Entry && "Expected Entry to be populated with CIE or FDE"); Entry->parseInstructions(&Offset, EndStructureOffset); if (Offset == EndStructureOffset) { // Entry instrucitons parsed successfully. Entries.push_back(Entry); } else { std::string Str; raw_string_ostream OS(Str); OS << format("Parsing entry instructions at %lx failed", Entry->getOffset()); report_fatal_error(Str); } } } void DWARFDebugFrame::dump(raw_ostream &OS) const { OS << "\n"; for (EntryVector::const_iterator I = Entries.begin(), E = Entries.end(); I != E; ++I) { FrameEntry *Entry = *I; Entry->dumpHeader(OS); Entry->dumpInstructions(OS); OS << "\n"; } }