//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the common interface used by the various execution engine // subclasses. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "jit" #include "Interpreter/Interpreter.h" #include "JIT/VM.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/ModuleProvider.h" #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/ExecutionEngine/GenericValue.h" #include "llvm/Target/TargetData.h" #include "Support/Debug.h" #include "Support/Statistic.h" #include "Support/DynamicLinker.h" #include "Config/dlfcn.h" Statistic<> NumInitBytes("lli", "Number of bytes of global vars initialized"); ExecutionEngine::ExecutionEngine(ModuleProvider *P) : CurMod(*P->getModule()), MP(P) { assert(P && "ModuleProvider is null?"); } ExecutionEngine::ExecutionEngine(Module *M) : CurMod(*M), MP(0) { assert(M && "Module is null?"); } ExecutionEngine::~ExecutionEngine() { delete MP; } /// If possible, create a JIT, unless the caller specifically requests an /// Interpreter or there's an error. If even an Interpreter cannot be created, /// NULL is returned. /// ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, bool ForceInterpreter, bool TraceMode) { ExecutionEngine *EE = 0; // If there is nothing that is forcing us to use the interpreter, make a JIT. if (!ForceInterpreter && !TraceMode) EE = VM::create(MP); // If we can't make a JIT, make an interpreter instead. try { if (EE == 0) EE = Interpreter::create(MP->materializeModule(), TraceMode); } catch (...) { EE = 0; } return EE; } /// getPointerToGlobal - This returns the address of the specified global /// value. This may involve code generation if it's a function. /// void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { if (Function *F = const_cast(dyn_cast(GV))) return getPointerToFunction(F); assert(GlobalAddress[GV] && "Global hasn't had an address allocated yet?"); return GlobalAddress[GV]; } /// FIXME: document /// GenericValue ExecutionEngine::getConstantValue(const Constant *C) { GenericValue Result; if (ConstantExpr *CE = const_cast(dyn_cast(C))) { switch (CE->getOpcode()) { case Instruction::GetElementPtr: { Result = getConstantValue(CE->getOperand(0)); std::vector Indexes(CE->op_begin()+1, CE->op_end()); uint64_t Offset = TD->getIndexedOffset(CE->getOperand(0)->getType(), Indexes); Result.LongVal += Offset; return Result; } case Instruction::Cast: { // We only need to handle a few cases here. Almost all casts will // automatically fold, just the ones involving pointers won't. // Constant *Op = CE->getOperand(0); // Handle cast of pointer to pointer... if (Op->getType()->getPrimitiveID() == C->getType()->getPrimitiveID()) return getConstantValue(Op); // Handle a cast of pointer to any integral type... if (isa(Op->getType()) && C->getType()->isIntegral()) return getConstantValue(Op); // Handle cast of long to pointer... if (isa(C->getType()) && (Op->getType() == Type::LongTy || Op->getType() == Type::ULongTy)) return getConstantValue(Op); break; } case Instruction::Add: if (CE->getOperand(0)->getType() == Type::LongTy || CE->getOperand(0)->getType() == Type::ULongTy) Result.LongVal = getConstantValue(CE->getOperand(0)).LongVal + getConstantValue(CE->getOperand(1)).LongVal; else break; return Result; default: break; } std::cerr << "ConstantExpr not handled as global var init: " << *CE << "\n"; abort(); } switch (C->getType()->getPrimitiveID()) { #define GET_CONST_VAL(TY, CLASS) \ case Type::TY##TyID: Result.TY##Val = cast(C)->getValue(); break GET_CONST_VAL(Bool , ConstantBool); GET_CONST_VAL(UByte , ConstantUInt); GET_CONST_VAL(SByte , ConstantSInt); GET_CONST_VAL(UShort , ConstantUInt); GET_CONST_VAL(Short , ConstantSInt); GET_CONST_VAL(UInt , ConstantUInt); GET_CONST_VAL(Int , ConstantSInt); GET_CONST_VAL(ULong , ConstantUInt); GET_CONST_VAL(Long , ConstantSInt); GET_CONST_VAL(Float , ConstantFP); GET_CONST_VAL(Double , ConstantFP); #undef GET_CONST_VAL case Type::PointerTyID: if (isa(C)) { Result.PointerVal = 0; } else if (const ConstantPointerRef *CPR = dyn_cast(C)){ Result = PTOGV(getPointerToGlobal(CPR->getValue())); } else { assert(0 && "Unknown constant pointer type!"); } break; default: std::cout << "ERROR: Constant unimp for type: " << C->getType() << "\n"; abort(); } return Result; } /// FIXME: document /// void ExecutionEngine::StoreValueToMemory(GenericValue Val, GenericValue *Ptr, const Type *Ty) { if (getTargetData().isLittleEndian()) { switch (Ty->getPrimitiveID()) { case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; case Type::UShortTyID: case Type::ShortTyID: Ptr->Untyped[0] = Val.UShortVal & 255; Ptr->Untyped[1] = (Val.UShortVal >> 8) & 255; break; Store4BytesLittleEndian: case Type::FloatTyID: case Type::UIntTyID: case Type::IntTyID: Ptr->Untyped[0] = Val.UIntVal & 255; Ptr->Untyped[1] = (Val.UIntVal >> 8) & 255; Ptr->Untyped[2] = (Val.UIntVal >> 16) & 255; Ptr->Untyped[3] = (Val.UIntVal >> 24) & 255; break; case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) goto Store4BytesLittleEndian; case Type::DoubleTyID: case Type::ULongTyID: case Type::LongTyID: Ptr->Untyped[0] = Val.ULongVal & 255; Ptr->Untyped[1] = (Val.ULongVal >> 8) & 255; Ptr->Untyped[2] = (Val.ULongVal >> 16) & 255; Ptr->Untyped[3] = (Val.ULongVal >> 24) & 255; Ptr->Untyped[4] = (Val.ULongVal >> 32) & 255; Ptr->Untyped[5] = (Val.ULongVal >> 40) & 255; Ptr->Untyped[6] = (Val.ULongVal >> 48) & 255; Ptr->Untyped[7] = (Val.ULongVal >> 56) & 255; break; default: std::cout << "Cannot store value of type " << Ty << "!\n"; } } else { switch (Ty->getPrimitiveID()) { case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: Ptr->Untyped[0] = Val.UByteVal; break; case Type::UShortTyID: case Type::ShortTyID: Ptr->Untyped[1] = Val.UShortVal & 255; Ptr->Untyped[0] = (Val.UShortVal >> 8) & 255; break; Store4BytesBigEndian: case Type::FloatTyID: case Type::UIntTyID: case Type::IntTyID: Ptr->Untyped[3] = Val.UIntVal & 255; Ptr->Untyped[2] = (Val.UIntVal >> 8) & 255; Ptr->Untyped[1] = (Val.UIntVal >> 16) & 255; Ptr->Untyped[0] = (Val.UIntVal >> 24) & 255; break; case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) goto Store4BytesBigEndian; case Type::DoubleTyID: case Type::ULongTyID: case Type::LongTyID: Ptr->Untyped[7] = Val.ULongVal & 255; Ptr->Untyped[6] = (Val.ULongVal >> 8) & 255; Ptr->Untyped[5] = (Val.ULongVal >> 16) & 255; Ptr->Untyped[4] = (Val.ULongVal >> 24) & 255; Ptr->Untyped[3] = (Val.ULongVal >> 32) & 255; Ptr->Untyped[2] = (Val.ULongVal >> 40) & 255; Ptr->Untyped[1] = (Val.ULongVal >> 48) & 255; Ptr->Untyped[0] = (Val.ULongVal >> 56) & 255; break; default: std::cout << "Cannot store value of type " << Ty << "!\n"; } } } /// FIXME: document /// GenericValue ExecutionEngine::LoadValueFromMemory(GenericValue *Ptr, const Type *Ty) { GenericValue Result; if (getTargetData().isLittleEndian()) { switch (Ty->getPrimitiveID()) { case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; case Type::UShortTyID: case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[0] | ((unsigned)Ptr->Untyped[1] << 8); break; Load4BytesLittleEndian: case Type::FloatTyID: case Type::UIntTyID: case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[0] | ((unsigned)Ptr->Untyped[1] << 8) | ((unsigned)Ptr->Untyped[2] << 16) | ((unsigned)Ptr->Untyped[3] << 24); break; case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) goto Load4BytesLittleEndian; case Type::DoubleTyID: case Type::ULongTyID: case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[0] | ((uint64_t)Ptr->Untyped[1] << 8) | ((uint64_t)Ptr->Untyped[2] << 16) | ((uint64_t)Ptr->Untyped[3] << 24) | ((uint64_t)Ptr->Untyped[4] << 32) | ((uint64_t)Ptr->Untyped[5] << 40) | ((uint64_t)Ptr->Untyped[6] << 48) | ((uint64_t)Ptr->Untyped[7] << 56); break; default: std::cout << "Cannot load value of type " << *Ty << "!\n"; abort(); } } else { switch (Ty->getPrimitiveID()) { case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID: Result.UByteVal = Ptr->Untyped[0]; break; case Type::UShortTyID: case Type::ShortTyID: Result.UShortVal = (unsigned)Ptr->Untyped[1] | ((unsigned)Ptr->Untyped[0] << 8); break; Load4BytesBigEndian: case Type::FloatTyID: case Type::UIntTyID: case Type::IntTyID: Result.UIntVal = (unsigned)Ptr->Untyped[3] | ((unsigned)Ptr->Untyped[2] << 8) | ((unsigned)Ptr->Untyped[1] << 16) | ((unsigned)Ptr->Untyped[0] << 24); break; case Type::PointerTyID: if (getTargetData().getPointerSize() == 4) goto Load4BytesBigEndian; case Type::DoubleTyID: case Type::ULongTyID: case Type::LongTyID: Result.ULongVal = (uint64_t)Ptr->Untyped[7] | ((uint64_t)Ptr->Untyped[6] << 8) | ((uint64_t)Ptr->Untyped[5] << 16) | ((uint64_t)Ptr->Untyped[4] << 24) | ((uint64_t)Ptr->Untyped[3] << 32) | ((uint64_t)Ptr->Untyped[2] << 40) | ((uint64_t)Ptr->Untyped[1] << 48) | ((uint64_t)Ptr->Untyped[0] << 56); break; default: std::cout << "Cannot load value of type " << *Ty << "!\n"; abort(); } } return Result; } // InitializeMemory - Recursive function to apply a Constant value into the // specified memory location... // void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { if (Init->getType()->isFirstClassType()) { GenericValue Val = getConstantValue(Init); StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); return; } switch (Init->getType()->getPrimitiveID()) { case Type::ArrayTyID: { const ConstantArray *CPA = cast(Init); const std::vector &Val = CPA->getValues(); unsigned ElementSize = getTargetData().getTypeSize(cast(CPA->getType())->getElementType()); for (unsigned i = 0; i < Val.size(); ++i) InitializeMemory(cast(Val[i].get()), (char*)Addr+i*ElementSize); return; } case Type::StructTyID: { const ConstantStruct *CPS = cast(Init); const StructLayout *SL = getTargetData().getStructLayout(cast(CPS->getType())); const std::vector &Val = CPS->getValues(); for (unsigned i = 0; i < Val.size(); ++i) InitializeMemory(cast(Val[i].get()), (char*)Addr+SL->MemberOffsets[i]); return; } default: std::cerr << "Bad Type: " << Init->getType() << "\n"; assert(0 && "Unknown constant type to initialize memory with!"); } } /// EmitGlobals - Emit all of the global variables to memory, storing their /// addresses into GlobalAddress. This must make sure to copy the contents of /// their initializers into the memory. /// void ExecutionEngine::emitGlobals() { const TargetData &TD = getTargetData(); // Loop over all of the global variables in the program, allocating the memory // to hold them. for (Module::giterator I = getModule().gbegin(), E = getModule().gend(); I != E; ++I) if (!I->isExternal()) { // Get the type of the global... const Type *Ty = I->getType()->getElementType(); // Allocate some memory for it! unsigned Size = TD.getTypeSize(Ty); GlobalAddress[I] = new char[Size]; NumInitBytes += Size; DEBUG(std::cerr << "Global '" << I->getName() << "' -> " << (void*)GlobalAddress[I] << "\n"); } else { // External variable reference. Try to use the dynamic loader to // get a pointer to it. if (void *SymAddr = GetAddressOfSymbol(I->getName().c_str())) GlobalAddress[I] = SymAddr; else { std::cerr << "Could not resolve external global address: " << I->getName() << "\n"; abort(); } } // Now that all of the globals are set up in memory, loop through them all and // initialize their contents. for (Module::giterator I = getModule().gbegin(), E = getModule().gend(); I != E; ++I) if (!I->isExternal()) InitializeMemory(I->getInitializer(), GlobalAddress[I]); }