//===-- MCJIT.cpp - MC-based Just-in-Time Compiler ------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "MCJIT.h" #include "llvm/ExecutionEngine/GenericValue.h" #include "llvm/ExecutionEngine/JITEventListener.h" #include "llvm/ExecutionEngine/JITMemoryManager.h" #include "llvm/ExecutionEngine/MCJIT.h" #include "llvm/ExecutionEngine/ObjectBuffer.h" #include "llvm/ExecutionEngine/ObjectImage.h" #include "llvm/ExecutionEngine/SectionMemoryManager.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/Module.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/Support/DynamicLibrary.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/MutexGuard.h" using namespace llvm; namespace { static struct RegisterJIT { RegisterJIT() { MCJIT::Register(); } } JITRegistrator; } extern "C" void LLVMLinkInMCJIT() { } ExecutionEngine *MCJIT::createJIT(Module *M, std::string *ErrorStr, RTDyldMemoryManager *MemMgr, bool GVsWithCode, TargetMachine *TM) { // Try to register the program as a source of symbols to resolve against. // // FIXME: Don't do this here. sys::DynamicLibrary::LoadLibraryPermanently(0, NULL); return new MCJIT(M, TM, MemMgr ? MemMgr : new SectionMemoryManager(), GVsWithCode); } MCJIT::MCJIT(Module *m, TargetMachine *tm, RTDyldMemoryManager *MM, bool AllocateGVsWithCode) : ExecutionEngine(m), TM(tm), Ctx(0), MemMgr(this, MM), Dyld(&MemMgr), ObjCache(0) { ModuleStates[m] = ModuleAdded; setDataLayout(TM->getDataLayout()); } MCJIT::~MCJIT() { LoadedObjectMap::iterator it, end = LoadedObjects.end(); for (it = LoadedObjects.begin(); it != end; ++it) { ObjectImage *Obj = it->second; if (Obj) { NotifyFreeingObject(*Obj); delete Obj; } } LoadedObjects.clear(); delete TM; } void MCJIT::addModule(Module *M) { Modules.push_back(M); ModuleStates[M] = MCJITModuleState(); } void MCJIT::setObjectCache(ObjectCache* NewCache) { ObjCache = NewCache; } ObjectBufferStream* MCJIT::emitObject(Module *M) { // This must be a module which has already been added to this MCJIT instance. assert(std::find(Modules.begin(), Modules.end(), M) != Modules.end()); assert(ModuleStates.find(M) != ModuleStates.end()); // Get a thread lock to make sure we aren't trying to compile multiple times MutexGuard locked(lock); // Re-compilation is not supported assert(!ModuleStates[M].hasBeenEmitted()); PassManager PM; PM.add(new DataLayout(*TM->getDataLayout())); // The RuntimeDyld will take ownership of this shortly OwningPtr CompiledObject(new ObjectBufferStream()); // Turn the machine code intermediate representation into bytes in memory // that may be executed. if (TM->addPassesToEmitMC(PM, Ctx, CompiledObject->getOStream(), false)) { report_fatal_error("Target does not support MC emission!"); } // Initialize passes. PM.run(*M); // Flush the output buffer to get the generated code into memory CompiledObject->flush(); // If we have an object cache, tell it about the new object. // Note that we're using the compiled image, not the loaded image (as below). if (ObjCache) { // MemoryBuffer is a thin wrapper around the actual memory, so it's OK // to create a temporary object here and delete it after the call. OwningPtr MB(CompiledObject->getMemBuffer()); ObjCache->notifyObjectCompiled(M, MB.get()); } return CompiledObject.take(); } void MCJIT::generateCodeForModule(Module *M) { // This must be a module which has already been added to this MCJIT instance. assert(std::find(Modules.begin(), Modules.end(), M) != Modules.end()); assert(ModuleStates.find(M) != ModuleStates.end()); // Get a thread lock to make sure we aren't trying to load multiple times MutexGuard locked(lock); // Re-compilation is not supported if (ModuleStates[M].hasBeenLoaded()) return; OwningPtr ObjectToLoad; // Try to load the pre-compiled object from cache if possible if (0 != ObjCache) { OwningPtr PreCompiledObject(ObjCache->getObject(M)); if (0 != PreCompiledObject.get()) ObjectToLoad.reset(new ObjectBuffer(PreCompiledObject.take())); } // If the cache did not contain a suitable object, compile the object if (!ObjectToLoad) { ObjectToLoad.reset(emitObject(M)); assert(ObjectToLoad.get() && "Compilation did not produce an object."); } // Load the object into the dynamic linker. // MCJIT now owns the ObjectImage pointer (via its LoadedObjects map). ObjectImage *LoadedObject = Dyld.loadObject(ObjectToLoad.take()); LoadedObjects[M] = LoadedObject; if (!LoadedObject) report_fatal_error(Dyld.getErrorString()); // FIXME: Make this optional, maybe even move it to a JIT event listener LoadedObject->registerWithDebugger(); NotifyObjectEmitted(*LoadedObject); ModuleStates[M] = ModuleLoaded; } void MCJIT::finalizeLoadedModules() { // Resolve any outstanding relocations. Dyld.resolveRelocations(); // Register EH frame data for any module we own which has been loaded SmallVector::iterator end = Modules.end(); SmallVector::iterator it; for (it = Modules.begin(); it != end; ++it) { Module *M = *it; assert(ModuleStates.find(M) != ModuleStates.end()); if (ModuleStates[M].hasBeenLoaded() && !ModuleStates[M].hasBeenFinalized()) { // FIXME: This should be module specific! StringRef EHData = Dyld.getEHFrameSection(); if (!EHData.empty()) MemMgr.registerEHFrames(EHData); ModuleStates[M] = ModuleFinalized; } } // Set page permissions. MemMgr.finalizeMemory(); } // FIXME: Rename this. void MCJIT::finalizeObject() { // FIXME: This is a temporary hack to get around problems with calling // finalize multiple times. bool finalizeNeeded = false; SmallVector::iterator end = Modules.end(); SmallVector::iterator it; for (it = Modules.begin(); it != end; ++it) { Module *M = *it; assert(ModuleStates.find(M) != ModuleStates.end()); if (!ModuleStates[M].hasBeenFinalized()) finalizeNeeded = true; // I don't really like this, but the C API depends on this behavior. // I suppose it's OK for a deprecated function. if (!ModuleStates[M].hasBeenLoaded()) generateCodeForModule(M); } if (!finalizeNeeded) return; // Resolve any outstanding relocations. Dyld.resolveRelocations(); // Register EH frame data for any module we own which has been loaded for (it = Modules.begin(); it != end; ++it) { Module *M = *it; assert(ModuleStates.find(M) != ModuleStates.end()); if (ModuleStates[M].hasBeenLoaded() && !ModuleStates[M].hasBeenFinalized()) { // FIXME: This should be module specific! StringRef EHData = Dyld.getEHFrameSection(); if (!EHData.empty()) MemMgr.registerEHFrames(EHData); ModuleStates[M] = ModuleFinalized; } } // Set page permissions. MemMgr.finalizeMemory(); } void MCJIT::finalizeModule(Module *M) { // This must be a module which has already been added to this MCJIT instance. assert(std::find(Modules.begin(), Modules.end(), M) != Modules.end()); assert(ModuleStates.find(M) != ModuleStates.end()); if (ModuleStates[M].hasBeenFinalized()) return; // If the module hasn't been compiled, just do that. if (!ModuleStates[M].hasBeenLoaded()) generateCodeForModule(M); // Resolve any outstanding relocations. Dyld.resolveRelocations(); // FIXME: Should this be module specific? StringRef EHData = Dyld.getEHFrameSection(); if (!EHData.empty()) MemMgr.registerEHFrames(EHData); // Set page permissions. MemMgr.finalizeMemory(); ModuleStates[M] = ModuleFinalized; } void *MCJIT::getPointerToBasicBlock(BasicBlock *BB) { report_fatal_error("not yet implemented"); } uint64_t MCJIT::getExistingSymbolAddress(const std::string &Name) { // Check with the RuntimeDyld to see if we already have this symbol. if (Name[0] == '\1') return Dyld.getSymbolLoadAddress(Name.substr(1)); return Dyld.getSymbolLoadAddress((TM->getMCAsmInfo()->getGlobalPrefix() + Name)); } Module *MCJIT::findModuleForSymbol(const std::string &Name, bool CheckFunctionsOnly) { // If it hasn't already been generated, see if it's in one of our modules. SmallVector::iterator end = Modules.end(); SmallVector::iterator it; for (it = Modules.begin(); it != end; ++it) { Module *M = *it; Function *F = M->getFunction(Name); if (F && !F->empty()) return M; if (!CheckFunctionsOnly) { GlobalVariable *G = M->getGlobalVariable(Name); if (G) return M; // FIXME: Do we need to worry about global aliases? } } // We didn't find the symbol in any of our modules. return NULL; } uint64_t MCJIT::getSymbolAddress(const std::string &Name, bool CheckFunctionsOnly) { // First, check to see if we already have this symbol. uint64_t Addr = getExistingSymbolAddress(Name); if (Addr) return Addr; // If it hasn't already been generated, see if it's in one of our modules. Module *M = findModuleForSymbol(Name, CheckFunctionsOnly); if (!M) return 0; // If this is in one of our modules, generate code for that module. assert(ModuleStates.find(M) != ModuleStates.end()); // If the module code has already been generated, we won't find the symbol. if (ModuleStates[M].hasBeenLoaded()) return 0; // FIXME: We probably need to make sure we aren't in the process of // loading or finalizing this module. generateCodeForModule(M); // Check the RuntimeDyld table again, it should be there now. return getExistingSymbolAddress(Name); } uint64_t MCJIT::getGlobalValueAddress(const std::string &Name) { uint64_t Result = getSymbolAddress(Name, false); if (Result != 0) finalizeLoadedModules(); return Result; } uint64_t MCJIT::getFunctionAddress(const std::string &Name) { uint64_t Result = getSymbolAddress(Name, true); if (Result != 0) finalizeLoadedModules(); return Result; } // Deprecated. Use getFunctionAddress instead. void *MCJIT::getPointerToFunction(Function *F) { if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) { bool AbortOnFailure = !F->hasExternalWeakLinkage(); void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure); addGlobalMapping(F, Addr); return Addr; } // If this function doesn't belong to one of our modules, we're done. Module *M = F->getParent(); if (std::find(Modules.begin(), Modules.end(), M) == Modules.end()) return NULL; assert(ModuleStates.find(M) != ModuleStates.end()); // Make sure the relevant module has been compiled and loaded. if (!ModuleStates[M].hasBeenLoaded()) generateCodeForModule(M); // FIXME: Should the Dyld be retaining module information? Probably not. // FIXME: Should we be using the mangler for this? Probably. // // This is the accessor for the target address, so make sure to check the // load address of the symbol, not the local address. StringRef BaseName = F->getName(); if (BaseName[0] == '\1') return (void*)Dyld.getSymbolLoadAddress(BaseName.substr(1)); return (void*)Dyld.getSymbolLoadAddress((TM->getMCAsmInfo()->getGlobalPrefix() + BaseName).str()); } void *MCJIT::recompileAndRelinkFunction(Function *F) { report_fatal_error("not yet implemented"); } void MCJIT::freeMachineCodeForFunction(Function *F) { report_fatal_error("not yet implemented"); } GenericValue MCJIT::runFunction(Function *F, const std::vector &ArgValues) { assert(F && "Function *F was null at entry to run()"); void *FPtr = getPointerToFunction(F); assert(FPtr && "Pointer to fn's code was null after getPointerToFunction"); FunctionType *FTy = F->getFunctionType(); Type *RetTy = FTy->getReturnType(); assert((FTy->getNumParams() == ArgValues.size() || (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) && "Wrong number of arguments passed into function!"); assert(FTy->getNumParams() == ArgValues.size() && "This doesn't support passing arguments through varargs (yet)!"); // Handle some common cases first. These cases correspond to common `main' // prototypes. if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) { switch (ArgValues.size()) { case 3: if (FTy->getParamType(0)->isIntegerTy(32) && FTy->getParamType(1)->isPointerTy() && FTy->getParamType(2)->isPointerTy()) { int (*PF)(int, char **, const char **) = (int(*)(int, char **, const char **))(intptr_t)FPtr; // Call the function. GenericValue rv; rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), (char **)GVTOP(ArgValues[1]), (const char **)GVTOP(ArgValues[2]))); return rv; } break; case 2: if (FTy->getParamType(0)->isIntegerTy(32) && FTy->getParamType(1)->isPointerTy()) { int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr; // Call the function. GenericValue rv; rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(), (char **)GVTOP(ArgValues[1]))); return rv; } break; case 1: if (FTy->getNumParams() == 1 && FTy->getParamType(0)->isIntegerTy(32)) { GenericValue rv; int (*PF)(int) = (int(*)(int))(intptr_t)FPtr; rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue())); return rv; } break; } } // Handle cases where no arguments are passed first. if (ArgValues.empty()) { GenericValue rv; switch (RetTy->getTypeID()) { default: llvm_unreachable("Unknown return type for function call!"); case Type::IntegerTyID: { unsigned BitWidth = cast(RetTy)->getBitWidth(); if (BitWidth == 1) rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)()); else if (BitWidth <= 8) rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)()); else if (BitWidth <= 16) rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)()); else if (BitWidth <= 32) rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)()); else if (BitWidth <= 64) rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)()); else llvm_unreachable("Integer types > 64 bits not supported"); return rv; } case Type::VoidTyID: rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)()); return rv; case Type::FloatTyID: rv.FloatVal = ((float(*)())(intptr_t)FPtr)(); return rv; case Type::DoubleTyID: rv.DoubleVal = ((double(*)())(intptr_t)FPtr)(); return rv; case Type::X86_FP80TyID: case Type::FP128TyID: case Type::PPC_FP128TyID: llvm_unreachable("long double not supported yet"); case Type::PointerTyID: return PTOGV(((void*(*)())(intptr_t)FPtr)()); } } llvm_unreachable("Full-featured argument passing not supported yet!"); } void *MCJIT::getPointerToNamedFunction(const std::string &Name, bool AbortOnFailure) { if (!isSymbolSearchingDisabled()) { void *ptr = MemMgr.getPointerToNamedFunction(Name, false); if (ptr) return ptr; } /// If a LazyFunctionCreator is installed, use it to get/create the function. if (LazyFunctionCreator) if (void *RP = LazyFunctionCreator(Name)) return RP; if (AbortOnFailure) { report_fatal_error("Program used external function '"+Name+ "' which could not be resolved!"); } return 0; } void MCJIT::RegisterJITEventListener(JITEventListener *L) { if (L == NULL) return; MutexGuard locked(lock); EventListeners.push_back(L); } void MCJIT::UnregisterJITEventListener(JITEventListener *L) { if (L == NULL) return; MutexGuard locked(lock); SmallVector::reverse_iterator I= std::find(EventListeners.rbegin(), EventListeners.rend(), L); if (I != EventListeners.rend()) { std::swap(*I, EventListeners.back()); EventListeners.pop_back(); } } void MCJIT::NotifyObjectEmitted(const ObjectImage& Obj) { MutexGuard locked(lock); MemMgr.notifyObjectLoaded(this, &Obj); for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) { EventListeners[I]->NotifyObjectEmitted(Obj); } } void MCJIT::NotifyFreeingObject(const ObjectImage& Obj) { MutexGuard locked(lock); for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) { EventListeners[I]->NotifyFreeingObject(Obj); } } uint64_t LinkingMemoryManager::getSymbolAddress(const std::string &Name) { uint64_t Result = ParentEngine->getSymbolAddress(Name, false); // If the symbols wasn't found and it begins with an underscore, try again // without the underscore. if (!Result && Name[0] == '_') Result = ParentEngine->getSymbolAddress(Name.substr(1), false); if (Result) return Result; return ClientMM->getSymbolAddress(Name); }