//===- SectionMemoryManager.cpp - Memory manager for MCJIT/RtDyld *- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the section-based memory manager used by the MCJIT // execution engine and RuntimeDyld // //===----------------------------------------------------------------------===// #include "llvm/Config/config.h" #include "llvm/ExecutionEngine/SectionMemoryManager.h" #include "llvm/Support/MathExtras.h" namespace llvm { uint8_t *SectionMemoryManager::allocateDataSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName, bool IsReadOnly) { if (IsReadOnly) return allocateSection(RODataMem, Size, Alignment); return allocateSection(RWDataMem, Size, Alignment); } uint8_t *SectionMemoryManager::allocateCodeSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName) { return allocateSection(CodeMem, Size, Alignment); } uint8_t *SectionMemoryManager::allocateSection(MemoryGroup &MemGroup, uintptr_t Size, unsigned Alignment) { if (!Alignment) Alignment = 16; assert(!(Alignment & (Alignment - 1)) && "Alignment must be a power of two."); uintptr_t RequiredSize = Alignment * ((Size + Alignment - 1)/Alignment + 1); uintptr_t Addr = 0; // Look in the list of free memory regions and use a block there if one // is available. for (int i = 0, e = MemGroup.FreeMem.size(); i != e; ++i) { sys::MemoryBlock &MB = MemGroup.FreeMem[i]; if (MB.size() >= RequiredSize) { Addr = (uintptr_t)MB.base(); uintptr_t EndOfBlock = Addr + MB.size(); // Align the address. Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1); // Store cutted free memory block. MemGroup.FreeMem[i] = sys::MemoryBlock((void*)(Addr + Size), EndOfBlock - Addr - Size); return (uint8_t*)Addr; } } // No pre-allocated free block was large enough. Allocate a new memory region. // Note that all sections get allocated as read-write. The permissions will // be updated later based on memory group. // // FIXME: It would be useful to define a default allocation size (or add // it as a constructor parameter) to minimize the number of allocations. // // FIXME: Initialize the Near member for each memory group to avoid // interleaving. std::error_code ec; sys::MemoryBlock MB = sys::Memory::allocateMappedMemory(RequiredSize, &MemGroup.Near, sys::Memory::MF_READ | sys::Memory::MF_WRITE, ec); if (ec) { // FIXME: Add error propagation to the interface. return nullptr; } // Save this address as the basis for our next request MemGroup.Near = MB; MemGroup.AllocatedMem.push_back(MB); Addr = (uintptr_t)MB.base(); uintptr_t EndOfBlock = Addr + MB.size(); // Align the address. Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1); // The allocateMappedMemory may allocate much more memory than we need. In // this case, we store the unused memory as a free memory block. unsigned FreeSize = EndOfBlock-Addr-Size; if (FreeSize > 16) MemGroup.FreeMem.push_back(sys::MemoryBlock((void*)(Addr + Size), FreeSize)); // Return aligned address return (uint8_t*)Addr; } bool SectionMemoryManager::finalizeMemory(std::string *ErrMsg) { // FIXME: Should in-progress permissions be reverted if an error occurs? std::error_code ec; // Don't allow free memory blocks to be used after setting protection flags. CodeMem.FreeMem.clear(); // Make code memory executable. ec = applyMemoryGroupPermissions(CodeMem, sys::Memory::MF_READ | sys::Memory::MF_EXEC); if (ec) { if (ErrMsg) { *ErrMsg = ec.message(); } return true; } // Don't allow free memory blocks to be used after setting protection flags. RODataMem.FreeMem.clear(); // Make read-only data memory read-only. ec = applyMemoryGroupPermissions(RODataMem, sys::Memory::MF_READ | sys::Memory::MF_EXEC); if (ec) { if (ErrMsg) { *ErrMsg = ec.message(); } return true; } // Read-write data memory already has the correct permissions // Some platforms with separate data cache and instruction cache require // explicit cache flush, otherwise JIT code manipulations (like resolved // relocations) will get to the data cache but not to the instruction cache. invalidateInstructionCache(); return false; } std::error_code SectionMemoryManager::applyMemoryGroupPermissions(MemoryGroup &MemGroup, unsigned Permissions) { for (int i = 0, e = MemGroup.AllocatedMem.size(); i != e; ++i) { std::error_code ec; ec = sys::Memory::protectMappedMemory(MemGroup.AllocatedMem[i], Permissions); if (ec) { return ec; } } return std::error_code(); } void SectionMemoryManager::invalidateInstructionCache() { for (int i = 0, e = CodeMem.AllocatedMem.size(); i != e; ++i) sys::Memory::InvalidateInstructionCache(CodeMem.AllocatedMem[i].base(), CodeMem.AllocatedMem[i].size()); } SectionMemoryManager::~SectionMemoryManager() { for (unsigned i = 0, e = CodeMem.AllocatedMem.size(); i != e; ++i) sys::Memory::releaseMappedMemory(CodeMem.AllocatedMem[i]); for (unsigned i = 0, e = RWDataMem.AllocatedMem.size(); i != e; ++i) sys::Memory::releaseMappedMemory(RWDataMem.AllocatedMem[i]); for (unsigned i = 0, e = RODataMem.AllocatedMem.size(); i != e; ++i) sys::Memory::releaseMappedMemory(RODataMem.AllocatedMem[i]); } } // namespace llvm