//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Implementation of the MC-JIT runtime dynamic linker. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "dyld" #include "llvm/ExecutionEngine/RuntimeDyld.h" #include "JITRegistrar.h" #include "ObjectImageCommon.h" #include "RuntimeDyldELF.h" #include "RuntimeDyldImpl.h" #include "RuntimeDyldMachO.h" #include "llvm/Object/ELF.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MutexGuard.h" using namespace llvm; using namespace llvm::object; // Empty out-of-line virtual destructor as the key function. RuntimeDyldImpl::~RuntimeDyldImpl() {} // Pin the JITRegistrar's and ObjectImage*'s vtables to this file. void JITRegistrar::anchor() {} void ObjectImage::anchor() {} void ObjectImageCommon::anchor() {} namespace llvm { void RuntimeDyldImpl::registerEHFrames() { } void RuntimeDyldImpl::deregisterEHFrames() { } // Resolve the relocations for all symbols we currently know about. void RuntimeDyldImpl::resolveRelocations() { MutexGuard locked(lock); // First, resolve relocations associated with external symbols. resolveExternalSymbols(); // Just iterate over the sections we have and resolve all the relocations // in them. Gross overkill, but it gets the job done. for (int i = 0, e = Sections.size(); i != e; ++i) { // The Section here (Sections[i]) refers to the section in which the // symbol for the relocation is located. The SectionID in the relocation // entry provides the section to which the relocation will be applied. uint64_t Addr = Sections[i].LoadAddress; DEBUG(dbgs() << "Resolving relocations Section #" << i << "\t" << format("%p", (uint8_t *)Addr) << "\n"); resolveRelocationList(Relocations[i], Addr); Relocations.erase(i); } } void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress) { MutexGuard locked(lock); for (unsigned i = 0, e = Sections.size(); i != e; ++i) { if (Sections[i].Address == LocalAddress) { reassignSectionAddress(i, TargetAddress); return; } } llvm_unreachable("Attempting to remap address of unknown section!"); } // Subclasses can implement this method to create specialized image instances. // The caller owns the pointer that is returned. ObjectImage *RuntimeDyldImpl::createObjectImage(ObjectBuffer *InputBuffer) { return new ObjectImageCommon(InputBuffer); } ObjectImage *RuntimeDyldImpl::createObjectImageFromFile(ObjectFile *InputObject) { return new ObjectImageCommon(InputObject); } ObjectImage *RuntimeDyldImpl::loadObject(ObjectFile *InputObject) { return loadObject(createObjectImageFromFile(InputObject)); } ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) { return loadObject(createObjectImage(InputBuffer)); } ObjectImage *RuntimeDyldImpl::loadObject(ObjectImage *InputObject) { MutexGuard locked(lock); OwningPtr obj(InputObject); if (!obj) return NULL; // Save information about our target Arch = (Triple::ArchType)obj->getArch(); IsTargetLittleEndian = obj->getObjectFile()->isLittleEndian(); // Symbols found in this object StringMap LocalSymbols; // Used sections from the object file ObjSectionToIDMap LocalSections; // Common symbols requiring allocation, with their sizes and alignments CommonSymbolMap CommonSymbols; // Maximum required total memory to allocate all common symbols uint64_t CommonSize = 0; // Parse symbols DEBUG(dbgs() << "Parse symbols:\n"); for (symbol_iterator i = obj->begin_symbols(), e = obj->end_symbols(); i != e; ++i) { object::SymbolRef::Type SymType; StringRef Name; Check(i->getType(SymType)); Check(i->getName(Name)); uint32_t flags = i->getFlags(); bool isCommon = flags & SymbolRef::SF_Common; if (isCommon) { // Add the common symbols to a list. We'll allocate them all below. uint32_t Align; Check(i->getAlignment(Align)); uint64_t Size = 0; Check(i->getSize(Size)); CommonSize += Size + Align; CommonSymbols[*i] = CommonSymbolInfo(Size, Align); } else { if (SymType == object::SymbolRef::ST_Function || SymType == object::SymbolRef::ST_Data || SymType == object::SymbolRef::ST_Unknown) { uint64_t FileOffset; StringRef SectionData; bool IsCode; section_iterator si = obj->end_sections(); Check(i->getFileOffset(FileOffset)); Check(i->getSection(si)); if (si == obj->end_sections()) continue; Check(si->getContents(SectionData)); Check(si->isText(IsCode)); const uint8_t* SymPtr = (const uint8_t*)InputObject->getData().data() + (uintptr_t)FileOffset; uintptr_t SectOffset = (uintptr_t)(SymPtr - (const uint8_t*)SectionData.begin()); unsigned SectionID = findOrEmitSection(*obj, *si, IsCode, LocalSections); LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset); DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset) << " flags: " << flags << " SID: " << SectionID << " Offset: " << format("%p", SectOffset)); GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset); } } DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n"); } // Allocate common symbols if (CommonSize != 0) emitCommonSymbols(*obj, CommonSymbols, CommonSize, LocalSymbols); // Parse and process relocations DEBUG(dbgs() << "Parse relocations:\n"); for (section_iterator si = obj->begin_sections(), se = obj->end_sections(); si != se; ++si) { bool isFirstRelocation = true; unsigned SectionID = 0; StubMap Stubs; section_iterator RelocatedSection = si->getRelocatedSection(); for (relocation_iterator i = si->begin_relocations(), e = si->end_relocations(); i != e; ++i) { // If it's the first relocation in this section, find its SectionID if (isFirstRelocation) { SectionID = findOrEmitSection(*obj, *RelocatedSection, true, LocalSections); DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); isFirstRelocation = false; } processRelocationRef(SectionID, *i, *obj, LocalSections, LocalSymbols, Stubs); } } // Give the subclasses a chance to tie-up any loose ends. finalizeLoad(LocalSections); return obj.take(); } void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj, const CommonSymbolMap &CommonSymbols, uint64_t TotalSize, SymbolTableMap &SymbolTable) { // Allocate memory for the section unsigned SectionID = Sections.size(); uint8_t *Addr = MemMgr->allocateDataSection( TotalSize, sizeof(void*), SectionID, StringRef(), false); if (!Addr) report_fatal_error("Unable to allocate memory for common symbols!"); uint64_t Offset = 0; Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, 0)); memset(Addr, 0, TotalSize); DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: " << format("%p", Addr) << " DataSize: " << TotalSize << "\n"); // Assign the address of each symbol for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(), itEnd = CommonSymbols.end(); it != itEnd; it++) { uint64_t Size = it->second.first; uint64_t Align = it->second.second; StringRef Name; it->first.getName(Name); if (Align) { // This symbol has an alignment requirement. uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align); Addr += AlignOffset; Offset += AlignOffset; DEBUG(dbgs() << "Allocating common symbol " << Name << " address " << format("%p\n", Addr)); } Obj.updateSymbolAddress(it->first, (uint64_t)Addr); SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset); Offset += Size; Addr += Size; } } unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj, const SectionRef &Section, bool IsCode) { unsigned StubBufSize = 0, StubSize = getMaxStubSize(); const ObjectFile *ObjFile = Obj.getObjectFile(); // FIXME: this is an inefficient way to handle this. We should computed the // necessary section allocation size in loadObject by walking all the sections // once. if (StubSize > 0) { for (section_iterator SI = ObjFile->begin_sections(), SE = ObjFile->end_sections(); SI != SE; ++SI) { section_iterator RelSecI = SI->getRelocatedSection(); if (!(RelSecI == Section)) continue; for (relocation_iterator I = SI->begin_relocations(), E = SI->end_relocations(); I != E; ++I) { StubBufSize += StubSize; } } } StringRef data; uint64_t Alignment64; Check(Section.getContents(data)); Check(Section.getAlignment(Alignment64)); unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; bool IsRequired; bool IsVirtual; bool IsZeroInit; bool IsReadOnly; uint64_t DataSize; unsigned PaddingSize = 0; StringRef Name; Check(Section.isRequiredForExecution(IsRequired)); Check(Section.isVirtual(IsVirtual)); Check(Section.isZeroInit(IsZeroInit)); Check(Section.isReadOnlyData(IsReadOnly)); Check(Section.getSize(DataSize)); Check(Section.getName(Name)); if (StubSize > 0) { unsigned StubAlignment = getStubAlignment(); unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); if (StubAlignment > EndAlignment) StubBufSize += StubAlignment - EndAlignment; } // The .eh_frame section (at least on Linux) needs an extra four bytes padded // with zeroes added at the end. For MachO objects, this section has a // slightly different name, so this won't have any effect for MachO objects. if (Name == ".eh_frame") PaddingSize = 4; unsigned Allocate; unsigned SectionID = Sections.size(); uint8_t *Addr; const char *pData = 0; // Some sections, such as debug info, don't need to be loaded for execution. // Leave those where they are. if (IsRequired) { Allocate = DataSize + PaddingSize + StubBufSize; Addr = IsCode ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID, Name) : MemMgr->allocateDataSection(Allocate, Alignment, SectionID, Name, IsReadOnly); if (!Addr) report_fatal_error("Unable to allocate section memory!"); // Virtual sections have no data in the object image, so leave pData = 0 if (!IsVirtual) pData = data.data(); // Zero-initialize or copy the data from the image if (IsZeroInit || IsVirtual) memset(Addr, 0, DataSize); else memcpy(Addr, pData, DataSize); // Fill in any extra bytes we allocated for padding if (PaddingSize != 0) { memset(Addr + DataSize, 0, PaddingSize); // Update the DataSize variable so that the stub offset is set correctly. DataSize += PaddingSize; } DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name << " obj addr: " << format("%p", pData) << " new addr: " << format("%p", Addr) << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize << " Allocate: " << Allocate << "\n"); Obj.updateSectionAddress(Section, (uint64_t)Addr); } else { // Even if we didn't load the section, we need to record an entry for it // to handle later processing (and by 'handle' I mean don't do anything // with these sections). Allocate = 0; Addr = 0; DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name << " obj addr: " << format("%p", data.data()) << " new addr: 0" << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize << " Allocate: " << Allocate << "\n"); } Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData)); return SectionID; } unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj, const SectionRef &Section, bool IsCode, ObjSectionToIDMap &LocalSections) { unsigned SectionID = 0; ObjSectionToIDMap::iterator i = LocalSections.find(Section); if (i != LocalSections.end()) SectionID = i->second; else { SectionID = emitSection(Obj, Section, IsCode); LocalSections[Section] = SectionID; } return SectionID; } void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, unsigned SectionID) { Relocations[SectionID].push_back(RE); } void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, StringRef SymbolName) { // Relocation by symbol. If the symbol is found in the global symbol table, // create an appropriate section relocation. Otherwise, add it to // ExternalSymbolRelocations. SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(SymbolName); if (Loc == GlobalSymbolTable.end()) { ExternalSymbolRelocations[SymbolName].push_back(RE); } else { // Copy the RE since we want to modify its addend. RelocationEntry RECopy = RE; RECopy.Addend += Loc->second.second; Relocations[Loc->second.first].push_back(RECopy); } } uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) { if (Arch == Triple::aarch64) { // This stub has to be able to access the full address space, // since symbol lookup won't necessarily find a handy, in-range, // PLT stub for functions which could be anywhere. uint32_t *StubAddr = (uint32_t*)Addr; // Stub can use ip0 (== x16) to calculate address *StubAddr = 0xd2e00010; // movz ip0, #:abs_g3: StubAddr++; *StubAddr = 0xf2c00010; // movk ip0, #:abs_g2_nc: StubAddr++; *StubAddr = 0xf2a00010; // movk ip0, #:abs_g1_nc: StubAddr++; *StubAddr = 0xf2800010; // movk ip0, #:abs_g0_nc: StubAddr++; *StubAddr = 0xd61f0200; // br ip0 return Addr; } else if (Arch == Triple::arm) { // TODO: There is only ARM far stub now. We should add the Thumb stub, // and stubs for branches Thumb - ARM and ARM - Thumb. uint32_t *StubAddr = (uint32_t*)Addr; *StubAddr = 0xe51ff004; // ldr pc,