//===- lib/MC/MCAsmStreamer.cpp - Text Assembly Output --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCFixupKindInfo.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstPrinter.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MCSymbol.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Format.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Target/TargetAsmBackend.h" #include "llvm/Target/TargetAsmInfo.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include using namespace llvm; namespace { class MCAsmStreamer : public MCStreamer { protected: formatted_raw_ostream &OS; const MCAsmInfo &MAI; private: OwningPtr InstPrinter; OwningPtr Emitter; OwningPtr AsmBackend; SmallString<128> CommentToEmit; raw_svector_ostream CommentStream; unsigned IsVerboseAsm : 1; unsigned ShowInst : 1; unsigned UseLoc : 1; unsigned UseCFI : 1; enum EHSymbolFlags { EHGlobal = 1, EHWeakDefinition = 1 << 1, EHPrivateExtern = 1 << 2 }; DenseMap FlagMap; bool needsSet(const MCExpr *Value); void EmitRegisterName(int64_t Register); public: MCAsmStreamer(MCContext &Context, formatted_raw_ostream &os, bool isVerboseAsm, bool useLoc, bool useCFI, MCInstPrinter *printer, MCCodeEmitter *emitter, TargetAsmBackend *asmbackend, bool showInst) : MCStreamer(Context), OS(os), MAI(Context.getAsmInfo()), InstPrinter(printer), Emitter(emitter), AsmBackend(asmbackend), CommentStream(CommentToEmit), IsVerboseAsm(isVerboseAsm), ShowInst(showInst), UseLoc(useLoc), UseCFI(useCFI) { if (InstPrinter && IsVerboseAsm) InstPrinter->setCommentStream(CommentStream); } ~MCAsmStreamer() {} inline void EmitEOL() { // If we don't have any comments, just emit a \n. if (!IsVerboseAsm) { OS << '\n'; return; } EmitCommentsAndEOL(); } void EmitCommentsAndEOL(); /// isVerboseAsm - Return true if this streamer supports verbose assembly at /// all. virtual bool isVerboseAsm() const { return IsVerboseAsm; } /// hasRawTextSupport - We support EmitRawText. virtual bool hasRawTextSupport() const { return true; } /// AddComment - Add a comment that can be emitted to the generated .s /// file if applicable as a QoI issue to make the output of the compiler /// more readable. This only affects the MCAsmStreamer, and only when /// verbose assembly output is enabled. virtual void AddComment(const Twine &T); /// AddEncodingComment - Add a comment showing the encoding of an instruction. virtual void AddEncodingComment(const MCInst &Inst); /// GetCommentOS - Return a raw_ostream that comments can be written to. /// Unlike AddComment, you are required to terminate comments with \n if you /// use this method. virtual raw_ostream &GetCommentOS() { if (!IsVerboseAsm) return nulls(); // Discard comments unless in verbose asm mode. return CommentStream; } /// AddBlankLine - Emit a blank line to a .s file to pretty it up. virtual void AddBlankLine() { EmitEOL(); } /// @name MCStreamer Interface /// @{ virtual void ChangeSection(const MCSection *Section); virtual void InitSections() { // FIXME, this is MachO specific, but the testsuite // expects this. SwitchSection(getContext().getMachOSection("__TEXT", "__text", MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS, 0, SectionKind::getText())); } virtual void EmitLabel(MCSymbol *Symbol); virtual void EmitEHSymAttributes(const MCSymbol *Symbol, MCSymbol *EHSymbol); virtual void EmitAssemblerFlag(MCAssemblerFlag Flag); virtual void EmitThumbFunc(MCSymbol *Func); virtual void EmitAssignment(MCSymbol *Symbol, const MCExpr *Value); virtual void EmitWeakReference(MCSymbol *Alias, const MCSymbol *Symbol); virtual void EmitDwarfAdvanceLineAddr(int64_t LineDelta, const MCSymbol *LastLabel, const MCSymbol *Label); virtual void EmitDwarfAdvanceFrameAddr(const MCSymbol *LastLabel, const MCSymbol *Label); virtual void EmitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute); virtual void EmitSymbolDesc(MCSymbol *Symbol, unsigned DescValue); virtual void BeginCOFFSymbolDef(const MCSymbol *Symbol); virtual void EmitCOFFSymbolStorageClass(int StorageClass); virtual void EmitCOFFSymbolType(int Type); virtual void EndCOFFSymbolDef(); virtual void EmitELFSize(MCSymbol *Symbol, const MCExpr *Value); virtual void EmitCommonSymbol(MCSymbol *Symbol, uint64_t Size, unsigned ByteAlignment); /// EmitLocalCommonSymbol - Emit a local common (.lcomm) symbol. /// /// @param Symbol - The common symbol to emit. /// @param Size - The size of the common symbol. virtual void EmitLocalCommonSymbol(MCSymbol *Symbol, uint64_t Size); virtual void EmitZerofill(const MCSection *Section, MCSymbol *Symbol = 0, unsigned Size = 0, unsigned ByteAlignment = 0); virtual void EmitTBSSSymbol (const MCSection *Section, MCSymbol *Symbol, uint64_t Size, unsigned ByteAlignment = 0); virtual void EmitBytes(StringRef Data, unsigned AddrSpace); virtual void EmitValueImpl(const MCExpr *Value, unsigned Size, unsigned AddrSpace); virtual void EmitIntValue(uint64_t Value, unsigned Size, unsigned AddrSpace = 0); virtual void EmitULEB128Value(const MCExpr *Value); virtual void EmitSLEB128Value(const MCExpr *Value); virtual void EmitGPRel32Value(const MCExpr *Value); virtual void EmitFill(uint64_t NumBytes, uint8_t FillValue, unsigned AddrSpace); virtual void EmitValueToAlignment(unsigned ByteAlignment, int64_t Value = 0, unsigned ValueSize = 1, unsigned MaxBytesToEmit = 0); virtual void EmitCodeAlignment(unsigned ByteAlignment, unsigned MaxBytesToEmit = 0); virtual void EmitValueToOffset(const MCExpr *Offset, unsigned char Value = 0); virtual void EmitFileDirective(StringRef Filename); virtual bool EmitDwarfFileDirective(unsigned FileNo, StringRef Filename); virtual void EmitDwarfLocDirective(unsigned FileNo, unsigned Line, unsigned Column, unsigned Flags, unsigned Isa, unsigned Discriminator, StringRef FileName); virtual void EmitCFISections(bool EH, bool Debug); virtual void EmitCFIStartProc(); virtual void EmitCFIEndProc(); virtual void EmitCFIDefCfa(int64_t Register, int64_t Offset); virtual void EmitCFIDefCfaOffset(int64_t Offset); virtual void EmitCFIDefCfaRegister(int64_t Register); virtual void EmitCFIOffset(int64_t Register, int64_t Offset); virtual void EmitCFIPersonality(const MCSymbol *Sym, unsigned Encoding); virtual void EmitCFILsda(const MCSymbol *Sym, unsigned Encoding); virtual void EmitCFIRememberState(); virtual void EmitCFIRestoreState(); virtual void EmitCFISameValue(int64_t Register); virtual void EmitCFIRelOffset(int64_t Register, int64_t Offset); virtual void EmitCFIAdjustCfaOffset(int64_t Adjustment); virtual void EmitWin64EHStartProc(const MCSymbol *Symbol); virtual void EmitWin64EHEndProc(); virtual void EmitWin64EHStartChained(); virtual void EmitWin64EHEndChained(); virtual void EmitWin64EHHandler(const MCSymbol *Sym, bool Unwind, bool Except); virtual void EmitWin64EHHandlerData(); virtual void EmitWin64EHPushReg(unsigned Register); virtual void EmitWin64EHSetFrame(unsigned Register, unsigned Offset); virtual void EmitWin64EHAllocStack(unsigned Size); virtual void EmitWin64EHSaveReg(unsigned Register, unsigned Offset); virtual void EmitWin64EHSaveXMM(unsigned Register, unsigned Offset); virtual void EmitWin64EHPushFrame(bool Code); virtual void EmitWin64EHEndProlog(); virtual void EmitFnStart(); virtual void EmitFnEnd(); virtual void EmitCantUnwind(); virtual void EmitPersonality(const MCSymbol *Personality); virtual void EmitHandlerData(); virtual void EmitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset = 0); virtual void EmitPad(int64_t Offset); virtual void EmitRegSave(const SmallVectorImpl &RegList, bool); virtual void EmitInstruction(const MCInst &Inst); /// EmitRawText - If this file is backed by an assembly streamer, this dumps /// the specified string in the output .s file. This capability is /// indicated by the hasRawTextSupport() predicate. virtual void EmitRawText(StringRef String); virtual void Finish(); /// @} }; } // end anonymous namespace. /// AddComment - Add a comment that can be emitted to the generated .s /// file if applicable as a QoI issue to make the output of the compiler /// more readable. This only affects the MCAsmStreamer, and only when /// verbose assembly output is enabled. void MCAsmStreamer::AddComment(const Twine &T) { if (!IsVerboseAsm) return; // Make sure that CommentStream is flushed. CommentStream.flush(); T.toVector(CommentToEmit); // Each comment goes on its own line. CommentToEmit.push_back('\n'); // Tell the comment stream that the vector changed underneath it. CommentStream.resync(); } void MCAsmStreamer::EmitCommentsAndEOL() { if (CommentToEmit.empty() && CommentStream.GetNumBytesInBuffer() == 0) { OS << '\n'; return; } CommentStream.flush(); StringRef Comments = CommentToEmit.str(); assert(Comments.back() == '\n' && "Comment array not newline terminated"); do { // Emit a line of comments. OS.PadToColumn(MAI.getCommentColumn()); size_t Position = Comments.find('\n'); OS << MAI.getCommentString() << ' ' << Comments.substr(0, Position) << '\n'; Comments = Comments.substr(Position+1); } while (!Comments.empty()); CommentToEmit.clear(); // Tell the comment stream that the vector changed underneath it. CommentStream.resync(); } static inline int64_t truncateToSize(int64_t Value, unsigned Bytes) { assert(Bytes && "Invalid size!"); return Value & ((uint64_t) (int64_t) -1 >> (64 - Bytes * 8)); } void MCAsmStreamer::ChangeSection(const MCSection *Section) { assert(Section && "Cannot switch to a null section!"); Section->PrintSwitchToSection(MAI, OS); } void MCAsmStreamer::EmitEHSymAttributes(const MCSymbol *Symbol, MCSymbol *EHSymbol) { if (UseCFI) return; unsigned Flags = FlagMap.lookup(Symbol); if (Flags & EHGlobal) EmitSymbolAttribute(EHSymbol, MCSA_Global); if (Flags & EHWeakDefinition) EmitSymbolAttribute(EHSymbol, MCSA_WeakDefinition); if (Flags & EHPrivateExtern) EmitSymbolAttribute(EHSymbol, MCSA_PrivateExtern); } void MCAsmStreamer::EmitLabel(MCSymbol *Symbol) { assert(Symbol->isUndefined() && "Cannot define a symbol twice!"); MCStreamer::EmitLabel(Symbol); OS << *Symbol << MAI.getLabelSuffix(); EmitEOL(); } void MCAsmStreamer::EmitAssemblerFlag(MCAssemblerFlag Flag) { switch (Flag) { default: assert(0 && "Invalid flag!"); case MCAF_SyntaxUnified: OS << "\t.syntax unified"; break; case MCAF_SubsectionsViaSymbols: OS << ".subsections_via_symbols"; break; case MCAF_Code16: OS << "\t.code\t16"; break; case MCAF_Code32: OS << "\t.code\t32"; break; } EmitEOL(); } void MCAsmStreamer::EmitThumbFunc(MCSymbol *Func) { // This needs to emit to a temporary string to get properly quoted // MCSymbols when they have spaces in them. OS << "\t.thumb_func"; // Only Mach-O hasSubsectionsViaSymbols() if (MAI.hasSubsectionsViaSymbols()) OS << '\t' << *Func; EmitEOL(); } void MCAsmStreamer::EmitAssignment(MCSymbol *Symbol, const MCExpr *Value) { OS << *Symbol << " = " << *Value; EmitEOL(); // FIXME: Lift context changes into super class. Symbol->setVariableValue(Value); } void MCAsmStreamer::EmitWeakReference(MCSymbol *Alias, const MCSymbol *Symbol) { OS << ".weakref " << *Alias << ", " << *Symbol; EmitEOL(); } void MCAsmStreamer::EmitDwarfAdvanceLineAddr(int64_t LineDelta, const MCSymbol *LastLabel, const MCSymbol *Label) { EmitDwarfSetLineAddr(LineDelta, Label, getContext().getTargetAsmInfo().getPointerSize()); } void MCAsmStreamer::EmitDwarfAdvanceFrameAddr(const MCSymbol *LastLabel, const MCSymbol *Label) { EmitIntValue(dwarf::DW_CFA_advance_loc4, 1); const MCExpr *AddrDelta = BuildSymbolDiff(getContext(), Label, LastLabel); AddrDelta = ForceExpAbs(AddrDelta); EmitValue(AddrDelta, 4); } void MCAsmStreamer::EmitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute) { switch (Attribute) { case MCSA_Invalid: assert(0 && "Invalid symbol attribute"); case MCSA_ELF_TypeFunction: /// .type _foo, STT_FUNC # aka @function case MCSA_ELF_TypeIndFunction: /// .type _foo, STT_GNU_IFUNC case MCSA_ELF_TypeObject: /// .type _foo, STT_OBJECT # aka @object case MCSA_ELF_TypeTLS: /// .type _foo, STT_TLS # aka @tls_object case MCSA_ELF_TypeCommon: /// .type _foo, STT_COMMON # aka @common case MCSA_ELF_TypeNoType: /// .type _foo, STT_NOTYPE # aka @notype case MCSA_ELF_TypeGnuUniqueObject: /// .type _foo, @gnu_unique_object assert(MAI.hasDotTypeDotSizeDirective() && "Symbol Attr not supported"); OS << "\t.type\t" << *Symbol << ',' << ((MAI.getCommentString()[0] != '@') ? '@' : '%'); switch (Attribute) { default: assert(0 && "Unknown ELF .type"); case MCSA_ELF_TypeFunction: OS << "function"; break; case MCSA_ELF_TypeIndFunction: OS << "gnu_indirect_function"; break; case MCSA_ELF_TypeObject: OS << "object"; break; case MCSA_ELF_TypeTLS: OS << "tls_object"; break; case MCSA_ELF_TypeCommon: OS << "common"; break; case MCSA_ELF_TypeNoType: OS << "no_type"; break; case MCSA_ELF_TypeGnuUniqueObject: OS << "gnu_unique_object"; break; } EmitEOL(); return; case MCSA_Global: // .globl/.global OS << MAI.getGlobalDirective(); FlagMap[Symbol] |= EHGlobal; break; case MCSA_Hidden: OS << "\t.hidden\t"; break; case MCSA_IndirectSymbol: OS << "\t.indirect_symbol\t"; break; case MCSA_Internal: OS << "\t.internal\t"; break; case MCSA_LazyReference: OS << "\t.lazy_reference\t"; break; case MCSA_Local: OS << "\t.local\t"; break; case MCSA_NoDeadStrip: OS << "\t.no_dead_strip\t"; break; case MCSA_SymbolResolver: OS << "\t.symbol_resolver\t"; break; case MCSA_PrivateExtern: OS << "\t.private_extern\t"; FlagMap[Symbol] |= EHPrivateExtern; break; case MCSA_Protected: OS << "\t.protected\t"; break; case MCSA_Reference: OS << "\t.reference\t"; break; case MCSA_Weak: OS << "\t.weak\t"; break; case MCSA_WeakDefinition: OS << "\t.weak_definition\t"; FlagMap[Symbol] |= EHWeakDefinition; break; // .weak_reference case MCSA_WeakReference: OS << MAI.getWeakRefDirective(); break; case MCSA_WeakDefAutoPrivate: OS << "\t.weak_def_can_be_hidden\t"; break; } OS << *Symbol; EmitEOL(); } void MCAsmStreamer::EmitSymbolDesc(MCSymbol *Symbol, unsigned DescValue) { OS << ".desc" << ' ' << *Symbol << ',' << DescValue; EmitEOL(); } void MCAsmStreamer::BeginCOFFSymbolDef(const MCSymbol *Symbol) { OS << "\t.def\t " << *Symbol << ';'; EmitEOL(); } void MCAsmStreamer::EmitCOFFSymbolStorageClass (int StorageClass) { OS << "\t.scl\t" << StorageClass << ';'; EmitEOL(); } void MCAsmStreamer::EmitCOFFSymbolType (int Type) { OS << "\t.type\t" << Type << ';'; EmitEOL(); } void MCAsmStreamer::EndCOFFSymbolDef() { OS << "\t.endef"; EmitEOL(); } void MCAsmStreamer::EmitELFSize(MCSymbol *Symbol, const MCExpr *Value) { assert(MAI.hasDotTypeDotSizeDirective()); OS << "\t.size\t" << *Symbol << ", " << *Value << '\n'; } void MCAsmStreamer::EmitCommonSymbol(MCSymbol *Symbol, uint64_t Size, unsigned ByteAlignment) { OS << "\t.comm\t" << *Symbol << ',' << Size; if (ByteAlignment != 0) { if (MAI.getCOMMDirectiveAlignmentIsInBytes()) OS << ',' << ByteAlignment; else OS << ',' << Log2_32(ByteAlignment); } EmitEOL(); } /// EmitLocalCommonSymbol - Emit a local common (.lcomm) symbol. /// /// @param Symbol - The common symbol to emit. /// @param Size - The size of the common symbol. void MCAsmStreamer::EmitLocalCommonSymbol(MCSymbol *Symbol, uint64_t Size) { assert(MAI.hasLCOMMDirective() && "Doesn't have .lcomm, can't emit it!"); OS << "\t.lcomm\t" << *Symbol << ',' << Size; EmitEOL(); } void MCAsmStreamer::EmitZerofill(const MCSection *Section, MCSymbol *Symbol, unsigned Size, unsigned ByteAlignment) { // Note: a .zerofill directive does not switch sections. OS << ".zerofill "; // This is a mach-o specific directive. const MCSectionMachO *MOSection = ((const MCSectionMachO*)Section); OS << MOSection->getSegmentName() << "," << MOSection->getSectionName(); if (Symbol != NULL) { OS << ',' << *Symbol << ',' << Size; if (ByteAlignment != 0) OS << ',' << Log2_32(ByteAlignment); } EmitEOL(); } // .tbss sym, size, align // This depends that the symbol has already been mangled from the original, // e.g. _a. void MCAsmStreamer::EmitTBSSSymbol(const MCSection *Section, MCSymbol *Symbol, uint64_t Size, unsigned ByteAlignment) { assert(Symbol != NULL && "Symbol shouldn't be NULL!"); // Instead of using the Section we'll just use the shortcut. // This is a mach-o specific directive and section. OS << ".tbss " << *Symbol << ", " << Size; // Output align if we have it. We default to 1 so don't bother printing // that. if (ByteAlignment > 1) OS << ", " << Log2_32(ByteAlignment); EmitEOL(); } static inline char toOctal(int X) { return (X&7)+'0'; } static void PrintQuotedString(StringRef Data, raw_ostream &OS) { OS << '"'; for (unsigned i = 0, e = Data.size(); i != e; ++i) { unsigned char C = Data[i]; if (C == '"' || C == '\\') { OS << '\\' << (char)C; continue; } if (isprint((unsigned char)C)) { OS << (char)C; continue; } switch (C) { case '\b': OS << "\\b"; break; case '\f': OS << "\\f"; break; case '\n': OS << "\\n"; break; case '\r': OS << "\\r"; break; case '\t': OS << "\\t"; break; default: OS << '\\'; OS << toOctal(C >> 6); OS << toOctal(C >> 3); OS << toOctal(C >> 0); break; } } OS << '"'; } void MCAsmStreamer::EmitBytes(StringRef Data, unsigned AddrSpace) { assert(getCurrentSection() && "Cannot emit contents before setting section!"); if (Data.empty()) return; if (Data.size() == 1) { OS << MAI.getData8bitsDirective(AddrSpace); OS << (unsigned)(unsigned char)Data[0]; EmitEOL(); return; } // If the data ends with 0 and the target supports .asciz, use it, otherwise // use .ascii if (MAI.getAscizDirective() && Data.back() == 0) { OS << MAI.getAscizDirective(); Data = Data.substr(0, Data.size()-1); } else { OS << MAI.getAsciiDirective(); } OS << ' '; PrintQuotedString(Data, OS); EmitEOL(); } void MCAsmStreamer::EmitIntValue(uint64_t Value, unsigned Size, unsigned AddrSpace) { EmitValue(MCConstantExpr::Create(Value, getContext()), Size, AddrSpace); } void MCAsmStreamer::EmitValueImpl(const MCExpr *Value, unsigned Size, unsigned AddrSpace) { assert(getCurrentSection() && "Cannot emit contents before setting section!"); const char *Directive = 0; switch (Size) { default: break; case 1: Directive = MAI.getData8bitsDirective(AddrSpace); break; case 2: Directive = MAI.getData16bitsDirective(AddrSpace); break; case 4: Directive = MAI.getData32bitsDirective(AddrSpace); break; case 8: Directive = MAI.getData64bitsDirective(AddrSpace); // If the target doesn't support 64-bit data, emit as two 32-bit halves. if (Directive) break; int64_t IntValue; if (!Value->EvaluateAsAbsolute(IntValue)) report_fatal_error("Don't know how to emit this value."); if (getContext().getTargetAsmInfo().isLittleEndian()) { EmitIntValue((uint32_t)(IntValue >> 0 ), 4, AddrSpace); EmitIntValue((uint32_t)(IntValue >> 32), 4, AddrSpace); } else { EmitIntValue((uint32_t)(IntValue >> 32), 4, AddrSpace); EmitIntValue((uint32_t)(IntValue >> 0 ), 4, AddrSpace); } return; } assert(Directive && "Invalid size for machine code value!"); OS << Directive << *Value; EmitEOL(); } void MCAsmStreamer::EmitULEB128Value(const MCExpr *Value) { int64_t IntValue; if (Value->EvaluateAsAbsolute(IntValue)) { EmitULEB128IntValue(IntValue); return; } assert(MAI.hasLEB128() && "Cannot print a .uleb"); OS << ".uleb128 " << *Value; EmitEOL(); } void MCAsmStreamer::EmitSLEB128Value(const MCExpr *Value) { int64_t IntValue; if (Value->EvaluateAsAbsolute(IntValue)) { EmitSLEB128IntValue(IntValue); return; } assert(MAI.hasLEB128() && "Cannot print a .sleb"); OS << ".sleb128 " << *Value; EmitEOL(); } void MCAsmStreamer::EmitGPRel32Value(const MCExpr *Value) { assert(MAI.getGPRel32Directive() != 0); OS << MAI.getGPRel32Directive() << *Value; EmitEOL(); } /// EmitFill - Emit NumBytes bytes worth of the value specified by /// FillValue. This implements directives such as '.space'. void MCAsmStreamer::EmitFill(uint64_t NumBytes, uint8_t FillValue, unsigned AddrSpace) { if (NumBytes == 0) return; if (AddrSpace == 0) if (const char *ZeroDirective = MAI.getZeroDirective()) { OS << ZeroDirective << NumBytes; if (FillValue != 0) OS << ',' << (int)FillValue; EmitEOL(); return; } // Emit a byte at a time. MCStreamer::EmitFill(NumBytes, FillValue, AddrSpace); } void MCAsmStreamer::EmitValueToAlignment(unsigned ByteAlignment, int64_t Value, unsigned ValueSize, unsigned MaxBytesToEmit) { // Some assemblers don't support non-power of two alignments, so we always // emit alignments as a power of two if possible. if (isPowerOf2_32(ByteAlignment)) { switch (ValueSize) { default: llvm_unreachable("Invalid size for machine code value!"); case 1: OS << MAI.getAlignDirective(); break; // FIXME: use MAI for this! case 2: OS << ".p2alignw "; break; case 4: OS << ".p2alignl "; break; case 8: llvm_unreachable("Unsupported alignment size!"); } if (MAI.getAlignmentIsInBytes()) OS << ByteAlignment; else OS << Log2_32(ByteAlignment); if (Value || MaxBytesToEmit) { OS << ", 0x"; OS.write_hex(truncateToSize(Value, ValueSize)); if (MaxBytesToEmit) OS << ", " << MaxBytesToEmit; } EmitEOL(); return; } // Non-power of two alignment. This is not widely supported by assemblers. // FIXME: Parameterize this based on MAI. switch (ValueSize) { default: llvm_unreachable("Invalid size for machine code value!"); case 1: OS << ".balign"; break; case 2: OS << ".balignw"; break; case 4: OS << ".balignl"; break; case 8: llvm_unreachable("Unsupported alignment size!"); } OS << ' ' << ByteAlignment; OS << ", " << truncateToSize(Value, ValueSize); if (MaxBytesToEmit) OS << ", " << MaxBytesToEmit; EmitEOL(); } void MCAsmStreamer::EmitCodeAlignment(unsigned ByteAlignment, unsigned MaxBytesToEmit) { // Emit with a text fill value. EmitValueToAlignment(ByteAlignment, MAI.getTextAlignFillValue(), 1, MaxBytesToEmit); } void MCAsmStreamer::EmitValueToOffset(const MCExpr *Offset, unsigned char Value) { // FIXME: Verify that Offset is associated with the current section. OS << ".org " << *Offset << ", " << (unsigned) Value; EmitEOL(); } void MCAsmStreamer::EmitFileDirective(StringRef Filename) { assert(MAI.hasSingleParameterDotFile()); OS << "\t.file\t"; PrintQuotedString(Filename, OS); EmitEOL(); } bool MCAsmStreamer::EmitDwarfFileDirective(unsigned FileNo, StringRef Filename){ if (UseLoc) { OS << "\t.file\t" << FileNo << ' '; PrintQuotedString(Filename, OS); EmitEOL(); } return this->MCStreamer::EmitDwarfFileDirective(FileNo, Filename); } void MCAsmStreamer::EmitDwarfLocDirective(unsigned FileNo, unsigned Line, unsigned Column, unsigned Flags, unsigned Isa, unsigned Discriminator, StringRef FileName) { this->MCStreamer::EmitDwarfLocDirective(FileNo, Line, Column, Flags, Isa, Discriminator, FileName); if (!UseLoc) return; OS << "\t.loc\t" << FileNo << " " << Line << " " << Column; if (Flags & DWARF2_FLAG_BASIC_BLOCK) OS << " basic_block"; if (Flags & DWARF2_FLAG_PROLOGUE_END) OS << " prologue_end"; if (Flags & DWARF2_FLAG_EPILOGUE_BEGIN) OS << " epilogue_begin"; unsigned OldFlags = getContext().getCurrentDwarfLoc().getFlags(); if ((Flags & DWARF2_FLAG_IS_STMT) != (OldFlags & DWARF2_FLAG_IS_STMT)) { OS << " is_stmt "; if (Flags & DWARF2_FLAG_IS_STMT) OS << "1"; else OS << "0"; } if (Isa) OS << "isa " << Isa; if (Discriminator) OS << "discriminator " << Discriminator; if (IsVerboseAsm) { OS.PadToColumn(MAI.getCommentColumn()); OS << MAI.getCommentString() << ' ' << FileName << ':' << Line << ':' << Column; } EmitEOL(); } void MCAsmStreamer::EmitCFISections(bool EH, bool Debug) { MCStreamer::EmitCFISections(EH, Debug); if (!UseCFI) return; OS << "\t.cfi_sections "; if (EH) { OS << ".eh_frame"; if (Debug) OS << ", .debug_frame"; } else if (Debug) { OS << ".debug_frame"; } EmitEOL(); } void MCAsmStreamer::EmitCFIStartProc() { MCStreamer::EmitCFIStartProc(); if (!UseCFI) return; OS << "\t.cfi_startproc"; EmitEOL(); } void MCAsmStreamer::EmitCFIEndProc() { MCStreamer::EmitCFIEndProc(); if (!UseCFI) return; OS << "\t.cfi_endproc"; EmitEOL(); } void MCAsmStreamer::EmitRegisterName(int64_t Register) { if (InstPrinter) { const TargetAsmInfo &asmInfo = getContext().getTargetAsmInfo(); unsigned LLVMRegister = asmInfo.getLLVMRegNum(Register, true); InstPrinter->printRegName(OS, LLVMRegister); } else { OS << Register; } } void MCAsmStreamer::EmitCFIDefCfa(int64_t Register, int64_t Offset) { MCStreamer::EmitCFIDefCfa(Register, Offset); if (!UseCFI) return; OS << "\t.cfi_def_cfa "; EmitRegisterName(Register); OS << ", " << Offset; EmitEOL(); } void MCAsmStreamer::EmitCFIDefCfaOffset(int64_t Offset) { MCStreamer::EmitCFIDefCfaOffset(Offset); if (!UseCFI) return; OS << "\t.cfi_def_cfa_offset " << Offset; EmitEOL(); } void MCAsmStreamer::EmitCFIDefCfaRegister(int64_t Register) { MCStreamer::EmitCFIDefCfaRegister(Register); if (!UseCFI) return; OS << "\t.cfi_def_cfa_register "; EmitRegisterName(Register); EmitEOL(); } void MCAsmStreamer::EmitCFIOffset(int64_t Register, int64_t Offset) { this->MCStreamer::EmitCFIOffset(Register, Offset); if (!UseCFI) return; OS << "\t.cfi_offset "; EmitRegisterName(Register); OS << ", " << Offset; EmitEOL(); } void MCAsmStreamer::EmitCFIPersonality(const MCSymbol *Sym, unsigned Encoding) { MCStreamer::EmitCFIPersonality(Sym, Encoding); if (!UseCFI) return; OS << "\t.cfi_personality " << Encoding << ", " << *Sym; EmitEOL(); } void MCAsmStreamer::EmitCFILsda(const MCSymbol *Sym, unsigned Encoding) { MCStreamer::EmitCFILsda(Sym, Encoding); if (!UseCFI) return; OS << "\t.cfi_lsda " << Encoding << ", " << *Sym; EmitEOL(); } void MCAsmStreamer::EmitCFIRememberState() { MCStreamer::EmitCFIRememberState(); if (!UseCFI) return; OS << "\t.cfi_remember_state"; EmitEOL(); } void MCAsmStreamer::EmitCFIRestoreState() { MCStreamer::EmitCFIRestoreState(); if (!UseCFI) return; OS << "\t.cfi_restore_state"; EmitEOL(); } void MCAsmStreamer::EmitCFISameValue(int64_t Register) { MCStreamer::EmitCFISameValue(Register); if (!UseCFI) return; OS << "\t.cfi_same_value "; EmitRegisterName(Register); EmitEOL(); } void MCAsmStreamer::EmitCFIRelOffset(int64_t Register, int64_t Offset) { MCStreamer::EmitCFIRelOffset(Register, Offset); if (!UseCFI) return; OS << "\t.cfi_rel_offset "; EmitRegisterName(Register); OS << ", " << Offset; EmitEOL(); } void MCAsmStreamer::EmitCFIAdjustCfaOffset(int64_t Adjustment) { MCStreamer::EmitCFIAdjustCfaOffset(Adjustment); if (!UseCFI) return; OS << "\t.cfi_adjust_cfa_offset " << Adjustment; EmitEOL(); } void MCAsmStreamer::EmitWin64EHStartProc(const MCSymbol *Symbol) { MCStreamer::EmitWin64EHStartProc(Symbol); OS << ".seh_proc " << *Symbol; EmitEOL(); } void MCAsmStreamer::EmitWin64EHEndProc() { MCStreamer::EmitWin64EHEndProc(); OS << "\t.seh_endproc"; EmitEOL(); } void MCAsmStreamer::EmitWin64EHStartChained() { MCStreamer::EmitWin64EHStartChained(); OS << "\t.seh_startchained"; EmitEOL(); } void MCAsmStreamer::EmitWin64EHEndChained() { MCStreamer::EmitWin64EHEndChained(); OS << "\t.seh_endchained"; EmitEOL(); } void MCAsmStreamer::EmitWin64EHHandler(const MCSymbol *Sym, bool Unwind, bool Except) { MCStreamer::EmitWin64EHHandler(Sym, Unwind, Except); OS << "\t.seh_handler " << *Sym; if (Unwind) OS << ", @unwind"; if (Except) OS << ", @except"; EmitEOL(); } void MCAsmStreamer::EmitWin64EHHandlerData() { MCStreamer::EmitWin64EHHandlerData(); // Switch sections. Don't call SwitchSection directly, because that will // cause the section switch to be visible in the emitted assembly. // We only do this so the section switch that terminates the handler // data block is visible. MCWin64EHUnwindInfo *CurFrame = getCurrentW64UnwindInfo(); StringRef suffix=MCWin64EHUnwindEmitter::GetSectionSuffix(CurFrame->Function); const MCSection *xdataSect = getContext().getTargetAsmInfo().getWin64EHTableSection(suffix); if (xdataSect) SwitchSectionNoChange(xdataSect); OS << "\t.seh_handlerdata"; EmitEOL(); } void MCAsmStreamer::EmitWin64EHPushReg(unsigned Register) { MCStreamer::EmitWin64EHPushReg(Register); OS << "\t.seh_pushreg " << Register; EmitEOL(); } void MCAsmStreamer::EmitWin64EHSetFrame(unsigned Register, unsigned Offset) { MCStreamer::EmitWin64EHSetFrame(Register, Offset); OS << "\t.seh_setframe " << Register << ", " << Offset; EmitEOL(); } void MCAsmStreamer::EmitWin64EHAllocStack(unsigned Size) { MCStreamer::EmitWin64EHAllocStack(Size); OS << "\t.seh_stackalloc " << Size; EmitEOL(); } void MCAsmStreamer::EmitWin64EHSaveReg(unsigned Register, unsigned Offset) { MCStreamer::EmitWin64EHSaveReg(Register, Offset); OS << "\t.seh_savereg " << Register << ", " << Offset; EmitEOL(); } void MCAsmStreamer::EmitWin64EHSaveXMM(unsigned Register, unsigned Offset) { MCStreamer::EmitWin64EHSaveXMM(Register, Offset); OS << "\t.seh_savexmm " << Register << ", " << Offset; EmitEOL(); } void MCAsmStreamer::EmitWin64EHPushFrame(bool Code) { MCStreamer::EmitWin64EHPushFrame(Code); OS << "\t.seh_pushframe"; if (Code) OS << " @code"; EmitEOL(); } void MCAsmStreamer::EmitWin64EHEndProlog(void) { MCStreamer::EmitWin64EHEndProlog(); OS << "\t.seh_endprologue"; EmitEOL(); } void MCAsmStreamer::AddEncodingComment(const MCInst &Inst) { raw_ostream &OS = GetCommentOS(); SmallString<256> Code; SmallVector Fixups; raw_svector_ostream VecOS(Code); Emitter->EncodeInstruction(Inst, VecOS, Fixups); VecOS.flush(); // If we are showing fixups, create symbolic markers in the encoded // representation. We do this by making a per-bit map to the fixup item index, // then trying to display it as nicely as possible. SmallVector FixupMap; FixupMap.resize(Code.size() * 8); for (unsigned i = 0, e = Code.size() * 8; i != e; ++i) FixupMap[i] = 0; for (unsigned i = 0, e = Fixups.size(); i != e; ++i) { MCFixup &F = Fixups[i]; const MCFixupKindInfo &Info = AsmBackend->getFixupKindInfo(F.getKind()); for (unsigned j = 0; j != Info.TargetSize; ++j) { unsigned Index = F.getOffset() * 8 + Info.TargetOffset + j; assert(Index < Code.size() * 8 && "Invalid offset in fixup!"); FixupMap[Index] = 1 + i; } } // FIXME: Node the fixup comments for Thumb2 are completely bogus since the // high order halfword of a 32-bit Thumb2 instruction is emitted first. OS << "encoding: ["; for (unsigned i = 0, e = Code.size(); i != e; ++i) { if (i) OS << ','; // See if all bits are the same map entry. uint8_t MapEntry = FixupMap[i * 8 + 0]; for (unsigned j = 1; j != 8; ++j) { if (FixupMap[i * 8 + j] == MapEntry) continue; MapEntry = uint8_t(~0U); break; } if (MapEntry != uint8_t(~0U)) { if (MapEntry == 0) { OS << format("0x%02x", uint8_t(Code[i])); } else { if (Code[i]) { // FIXME: Some of the 8 bits require fix up. OS << format("0x%02x", uint8_t(Code[i])) << '\'' << char('A' + MapEntry - 1) << '\''; } else OS << char('A' + MapEntry - 1); } } else { // Otherwise, write out in binary. OS << "0b"; for (unsigned j = 8; j--;) { unsigned Bit = (Code[i] >> j) & 1; unsigned FixupBit; if (getContext().getTargetAsmInfo().isLittleEndian()) FixupBit = i * 8 + j; else FixupBit = i * 8 + (7-j); if (uint8_t MapEntry = FixupMap[FixupBit]) { assert(Bit == 0 && "Encoder wrote into fixed up bit!"); OS << char('A' + MapEntry - 1); } else OS << Bit; } } } OS << "]\n"; for (unsigned i = 0, e = Fixups.size(); i != e; ++i) { MCFixup &F = Fixups[i]; const MCFixupKindInfo &Info = AsmBackend->getFixupKindInfo(F.getKind()); OS << " fixup " << char('A' + i) << " - " << "offset: " << F.getOffset() << ", value: " << *F.getValue() << ", kind: " << Info.Name << "\n"; } } void MCAsmStreamer::EmitFnStart() { OS << "\t.fnstart"; EmitEOL(); } void MCAsmStreamer::EmitFnEnd() { OS << "\t.fnend"; EmitEOL(); } void MCAsmStreamer::EmitCantUnwind() { OS << "\t.cantunwind"; EmitEOL(); } void MCAsmStreamer::EmitHandlerData() { OS << "\t.handlerdata"; EmitEOL(); } void MCAsmStreamer::EmitPersonality(const MCSymbol *Personality) { OS << "\t.personality " << Personality->getName(); EmitEOL(); } void MCAsmStreamer::EmitSetFP(unsigned FpReg, unsigned SpReg, int64_t Offset) { OS << "\t.setfp\t"; InstPrinter->printRegName(OS, FpReg); OS << ", "; InstPrinter->printRegName(OS, SpReg); if (Offset) OS << ", #" << Offset; EmitEOL(); } void MCAsmStreamer::EmitPad(int64_t Offset) { OS << "\t.pad\t#" << Offset; EmitEOL(); } void MCAsmStreamer::EmitRegSave(const SmallVectorImpl &RegList, bool isVector) { assert(RegList.size() && "RegList should not be empty"); if (isVector) OS << "\t.vsave\t{"; else OS << "\t.save\t{"; InstPrinter->printRegName(OS, RegList[0]); for (unsigned i = 1, e = RegList.size(); i != e; ++i) { OS << ", "; InstPrinter->printRegName(OS, RegList[i]); } OS << "}"; EmitEOL(); } void MCAsmStreamer::EmitInstruction(const MCInst &Inst) { assert(getCurrentSection() && "Cannot emit contents before setting section!"); // Show the encoding in a comment if we have a code emitter. if (Emitter) AddEncodingComment(Inst); // Show the MCInst if enabled. if (ShowInst) { Inst.dump_pretty(GetCommentOS(), &MAI, InstPrinter.get(), "\n "); GetCommentOS() << "\n"; } // If we have an AsmPrinter, use that to print, otherwise print the MCInst. if (InstPrinter) InstPrinter->printInst(&Inst, OS); else Inst.print(OS, &MAI); EmitEOL(); } /// EmitRawText - If this file is backed by an assembly streamer, this dumps /// the specified string in the output .s file. This capability is /// indicated by the hasRawTextSupport() predicate. void MCAsmStreamer::EmitRawText(StringRef String) { if (!String.empty() && String.back() == '\n') String = String.substr(0, String.size()-1); OS << String; EmitEOL(); } void MCAsmStreamer::Finish() { // Dump out the dwarf file & directory tables and line tables. if (getContext().hasDwarfFiles() && !UseLoc) MCDwarfFileTable::Emit(this); if (!UseCFI) EmitFrames(false); } //===----------------------------------------------------------------------===// /// MCLSDADecoderAsmStreamer - This is identical to the MCAsmStreamer, but /// outputs a description of the LSDA in a human readable format. /// namespace { class MCLSDADecoderAsmStreamer : public MCAsmStreamer { const MCSymbol *PersonalitySymbol; const MCSymbol *LSDASymbol; bool InLSDA; bool ReadingULEB128; uint64_t BytesRead; uint64_t ActionTableBytes; uint64_t LSDASize; SmallVector ULEB128Value; std::vector LSDAEncoding; std::vector Assignments; /// GetULEB128Value - A helper function to convert the value in the /// ULEB128Value vector into a uint64_t. uint64_t GetULEB128Value(SmallVectorImpl &ULEB128Value) { uint64_t Val = 0; for (unsigned i = 0, e = ULEB128Value.size(); i != e; ++i) Val |= (ULEB128Value[i] & 0x7F) << (7 * i); return Val; } /// ResetState - Reset the state variables. void ResetState() { PersonalitySymbol = 0; LSDASymbol = 0; LSDASize = 0; BytesRead = 0; ActionTableBytes = 0; InLSDA = false; ReadingULEB128 = false; ULEB128Value.clear(); LSDAEncoding.clear(); Assignments.clear(); } void EmitEHTableDescription(); const char *DecodeDWARFEncoding(unsigned Encoding) { switch (Encoding) { case dwarf::DW_EH_PE_absptr: return "absptr"; case dwarf::DW_EH_PE_omit: return "omit"; case dwarf::DW_EH_PE_pcrel: return "pcrel"; case dwarf::DW_EH_PE_udata4: return "udata4"; case dwarf::DW_EH_PE_udata8: return "udata8"; case dwarf::DW_EH_PE_sdata4: return "sdata4"; case dwarf::DW_EH_PE_sdata8: return "sdata8"; case dwarf::DW_EH_PE_pcrel|dwarf::DW_EH_PE_udata4: return "pcrel udata4"; case dwarf::DW_EH_PE_pcrel|dwarf::DW_EH_PE_sdata4: return "pcrel sdata4"; case dwarf::DW_EH_PE_pcrel|dwarf::DW_EH_PE_udata8: return "pcrel udata8"; case dwarf::DW_EH_PE_pcrel|dwarf::DW_EH_PE_sdata8: return "pcrel sdata8"; case dwarf::DW_EH_PE_indirect|dwarf::DW_EH_PE_pcrel|dwarf::DW_EH_PE_udata4: return "indirect pcrel udata4"; case dwarf::DW_EH_PE_indirect|dwarf::DW_EH_PE_pcrel|dwarf::DW_EH_PE_sdata4: return "indirect pcrel sdata4"; case dwarf::DW_EH_PE_indirect|dwarf::DW_EH_PE_pcrel|dwarf::DW_EH_PE_udata8: return "indirect pcrel udata8"; case dwarf::DW_EH_PE_indirect|dwarf::DW_EH_PE_pcrel|dwarf::DW_EH_PE_sdata8: return "indirect pcrel sdata8"; } return ""; } public: MCLSDADecoderAsmStreamer(MCContext &Context, formatted_raw_ostream &os, bool isVerboseAsm, bool useLoc, bool useCFI, MCInstPrinter *printer, MCCodeEmitter *emitter, TargetAsmBackend *asmbackend, bool showInst) : MCAsmStreamer(Context, os, isVerboseAsm, useLoc, useCFI, printer, emitter, asmbackend, showInst) { ResetState(); } ~MCLSDADecoderAsmStreamer() {} virtual void Finish() { ResetState(); MCAsmStreamer::Finish(); } virtual void EmitLabel(MCSymbol *Symbol) { if (Symbol == LSDASymbol) InLSDA = true; MCAsmStreamer::EmitLabel(Symbol); } virtual void EmitAssignment(MCSymbol *Symbol, const MCExpr *Value) { if (InLSDA) Assignments.push_back(Value); MCAsmStreamer::EmitAssignment(Symbol, Value); } virtual void EmitBytes(StringRef Data, unsigned AddrSpace); virtual void EmitIntValue(uint64_t Value, unsigned Size, unsigned AddrSpace = 0); virtual void EmitValueImpl(const MCExpr *Value, unsigned Size, unsigned AddrSpace); virtual void EmitFill(uint64_t NumBytes, uint8_t FillValue, unsigned AddrSpace); virtual void EmitCFIPersonality(const MCSymbol *Sym, unsigned Encoding) { PersonalitySymbol = Sym; MCAsmStreamer::EmitCFIPersonality(Sym, Encoding); } virtual void EmitCFILsda(const MCSymbol *Sym, unsigned Encoding) { LSDASymbol = Sym; MCAsmStreamer::EmitCFILsda(Sym, Encoding); } }; } // end anonymous namespace void MCLSDADecoderAsmStreamer::EmitBytes(StringRef Data, unsigned AddrSpace) { if (InLSDA && Data.size() == 1) { LSDAEncoding.push_back((unsigned)(unsigned char)Data[0]); ++BytesRead; if (LSDAEncoding.size() == 4) // The fourth value tells us where the bottom of the type table is. LSDASize = BytesRead + LSDAEncoding[3]; else if (LSDAEncoding.size() == 6) // The sixth value tells us where the start of the action table is. ActionTableBytes = BytesRead; } MCAsmStreamer::EmitBytes(Data, AddrSpace); } void MCLSDADecoderAsmStreamer::EmitIntValue(uint64_t Value, unsigned Size, unsigned AddrSpace) { if (!InLSDA) return MCAsmStreamer::EmitIntValue(Value, Size, AddrSpace); BytesRead += Size; // We place the LSDA into the LSDAEncoding vector for later analysis. If we // have a ULEB128, we read that in separate iterations through here and then // get its value. if (!ReadingULEB128) { LSDAEncoding.push_back(Value); int EncodingSize = LSDAEncoding.size(); if (EncodingSize == 1 || EncodingSize == 3) { // The LPStart and TType encodings. if (Value != dwarf::DW_EH_PE_omit) { // The encoding is next and is a ULEB128 value. ReadingULEB128 = true; ULEB128Value.clear(); } else { // The encoding was omitted. Put a 0 here as a placeholder. LSDAEncoding.push_back(0); } } else if (EncodingSize == 5) { // The next value is a ULEB128 value that tells us how long the call site // table is -- where the start of the action tab ReadingULEB128 = true; ULEB128Value.clear(); } InLSDA = (LSDASize == 0 || BytesRead < LSDASize); } else { // We're reading a ULEB128. Make it so! ULEB128Value.push_back(Value); if ((Value & 0x80) == 0) { uint64_t Val = GetULEB128Value(ULEB128Value); LSDAEncoding.push_back(Val); ULEB128Value.clear(); ReadingULEB128 = false; if (LSDAEncoding.size() == 4) // The fourth value tells us where the bottom of the type table is. LSDASize = BytesRead + LSDAEncoding[3]; else if (LSDAEncoding.size() == 6) // The sixth value tells us where the start of the action table is. ActionTableBytes = BytesRead; } } MCAsmStreamer::EmitValueImpl(MCConstantExpr::Create(Value, getContext()), Size, AddrSpace); if (LSDASize != 0 && !InLSDA) EmitEHTableDescription(); } void MCLSDADecoderAsmStreamer::EmitValueImpl(const MCExpr *Value, unsigned Size, unsigned AddrSpace) { if (InLSDA && LSDASize != 0) { assert(BytesRead + Size <= LSDASize && "EH table too small!"); if (BytesRead > uint64_t(LSDAEncoding[5]) + ActionTableBytes) // Insert the type values. Assignments.push_back(Value); LSDAEncoding.push_back(Assignments.size()); BytesRead += Size; InLSDA = (LSDASize == 0 || BytesRead < LSDASize); } MCAsmStreamer::EmitValueImpl(Value, Size, AddrSpace); if (LSDASize != 0 && !InLSDA) EmitEHTableDescription(); } void MCLSDADecoderAsmStreamer::EmitFill(uint64_t NumBytes, uint8_t FillValue, unsigned AddrSpace) { if (InLSDA && ReadingULEB128) { for (uint64_t I = NumBytes; I != 0; --I) ULEB128Value.push_back(FillValue); BytesRead += NumBytes; if ((FillValue & 0x80) == 0) { uint64_t Val = GetULEB128Value(ULEB128Value); LSDAEncoding.push_back(Val); ULEB128Value.clear(); ReadingULEB128 = false; if (LSDAEncoding.size() == 4) // The fourth value tells us where the bottom of the type table is. LSDASize = BytesRead + LSDAEncoding[3]; else if (LSDAEncoding.size() == 6) // The sixth value tells us where the start of the action table is. ActionTableBytes = BytesRead; } } MCAsmStreamer::EmitFill(NumBytes, FillValue, AddrSpace); } /// EmitEHTableDescription - Emit a human readable version of the LSDA. void MCLSDADecoderAsmStreamer::EmitEHTableDescription() { assert(LSDAEncoding.size() > 6 && "Invalid LSDA!"); // Emit header information. StringRef C = MAI.getCommentString(); #define CMT OS << C << ' ' CMT << "Exception Handling Table: " << LSDASymbol->getName() << "\n"; CMT << " @LPStart Encoding: " << DecodeDWARFEncoding(LSDAEncoding[0]) << "\n"; if (LSDAEncoding[1]) CMT << "@LPStart: 0x" << LSDAEncoding[1] << "\n"; CMT << " @TType Encoding: " << DecodeDWARFEncoding(LSDAEncoding[2]) << "\n"; CMT << " @TType Base: " << LSDAEncoding[3] << " bytes\n"; CMT << "@CallSite Encoding: " << DecodeDWARFEncoding(LSDAEncoding[4]) << "\n"; CMT << "@Action Table Size: " << LSDAEncoding[5] << " bytes\n\n"; bool isSjLjEH = (MAI.getExceptionHandlingType() == ExceptionHandling::SjLj); int64_t CallSiteTableSize = LSDAEncoding[5]; unsigned CallSiteEntrySize; if (!isSjLjEH) CallSiteEntrySize = 4 + // Region start. 4 + // Region end. 4 + // Landing pad. 1; // TType index. else CallSiteEntrySize = 1 + // Call index. 1; // TType index. unsigned NumEntries = CallSiteTableSize / CallSiteEntrySize; assert(CallSiteTableSize % CallSiteEntrySize == 0 && "The action table size is not a multiple of what it should be!"); unsigned TTypeIdx = 5 + // Action table size index. (isSjLjEH ? 2 : 4) * NumEntries + // Action table entries. 1; // Just because. // Emit the action table. unsigned Action = 1; for (unsigned I = 6; I < TTypeIdx; ) { CMT << "Action " << Action++ << ":\n"; // The beginning of the throwing region. uint64_t Idx = LSDAEncoding[I++]; if (!isSjLjEH) { CMT << " A throw between " << *cast(Assignments[Idx - 1])->getLHS() << " and "; // The end of the throwing region. Idx = LSDAEncoding[I++]; OS << *cast(Assignments[Idx - 1])->getLHS(); // The landing pad. Idx = LSDAEncoding[I++]; if (Idx) { OS << " jumps to " << *cast(Assignments[Idx - 1])->getLHS() << " on an exception.\n"; } else { OS << " does not have a landing pad.\n"; ++I; continue; } } else { CMT << " A throw from call " << Idx << "\n"; } // The index into the action table. Idx = LSDAEncoding[I++]; if (!Idx) { CMT << " :cleanup:\n"; continue; } // A semi-graphical representation of what the different indexes are in the // loop below. // // Idx - Index into the action table. // Action - Index into the type table from the type table base. // Next - Offset from Idx to the next action type. // // Idx---. // | // v // [call site table] _1 _2 _3 // TTypeIdx--> ......................... // [action 1] _1 _2 // [action 2] _1 _2 // ... // [action n] _1 _2 // [type m] ^ // ... | // [type 1] `---Next // int Action = LSDAEncoding[TTypeIdx + Idx - 1]; if ((Action & 0x40) != 0) // Ignore exception specifications. continue; // Emit the types that are caught by this exception. CMT << " For type(s): "; for (;;) { if ((Action & 0x40) != 0) // Ignore exception specifications. break; if (uint64_t Ty = LSDAEncoding[LSDAEncoding.size() - Action]) { OS << " " << *Assignments[Ty - 1]; // Types can be chained together. Typically, it's a negative offset from // the current type to a different one in the type table. int Next = LSDAEncoding[TTypeIdx + Idx]; if (Next == 0) break; if ((Next & 0x40) != 0) Next = (int)(signed char)(Next | 0x80); Idx += Next + 1; Action = LSDAEncoding[TTypeIdx + Idx - 1]; continue; } else { OS << " :catchall:"; } break; } OS << "\n"; } OS << "\n"; ResetState(); } MCStreamer *llvm::createAsmStreamer(MCContext &Context, formatted_raw_ostream &OS, bool isVerboseAsm, bool useLoc, bool useCFI, MCInstPrinter *IP, MCCodeEmitter *CE, TargetAsmBackend *TAB, bool ShowInst) { ExceptionHandling::ExceptionsType ET = Context.getAsmInfo().getExceptionHandlingType(); if (useCFI && isVerboseAsm && (ET == ExceptionHandling::SjLj || ET == ExceptionHandling::DwarfCFI)) return new MCLSDADecoderAsmStreamer(Context, OS, isVerboseAsm, useLoc, useCFI, IP, CE, TAB, ShowInst); return new MCAsmStreamer(Context, OS, isVerboseAsm, useLoc, useCFI, IP, CE, TAB, ShowInst); }