//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/MC/MCAssembler.h" #include "llvm/ADT/Twine.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachOWriterInfo.h" using namespace llvm; namespace { class MachObjectWriter { // See . enum { Header_Magic32 = 0xFEEDFACE, Header_Magic64 = 0xFEEDFACF }; static const unsigned Header32Size = 28; static const unsigned Header64Size = 32; static const unsigned SegmentLoadCommand32Size = 56; static const unsigned Section32Size = 68; enum HeaderFileType { HFT_Object = 0x1 }; enum LoadCommandType { LCT_Segment = 0x1 }; raw_ostream &OS; bool IsLSB; public: MachObjectWriter(raw_ostream &_OS, bool _IsLSB = true) : OS(_OS), IsLSB(_IsLSB) { } /// @name Helper Methods /// @{ void Write8(uint8_t Value) { OS << char(Value); } void Write16(uint16_t Value) { if (IsLSB) { Write8(uint8_t(Value >> 0)); Write8(uint8_t(Value >> 8)); } else { Write8(uint8_t(Value >> 8)); Write8(uint8_t(Value >> 0)); } } void Write32(uint32_t Value) { if (IsLSB) { Write16(uint16_t(Value >> 0)); Write16(uint16_t(Value >> 16)); } else { Write16(uint16_t(Value >> 16)); Write16(uint16_t(Value >> 0)); } } void Write64(uint64_t Value) { if (IsLSB) { Write32(uint32_t(Value >> 0)); Write32(uint32_t(Value >> 32)); } else { Write32(uint32_t(Value >> 32)); Write32(uint32_t(Value >> 0)); } } void WriteZeros(unsigned N) { const char Zeros[16] = { 0 }; for (unsigned i = 0, e = N / 16; i != e; ++i) OS << StringRef(Zeros, 16); OS << StringRef(Zeros, N % 16); } void WriteString(const StringRef &Str, unsigned ZeroFillSize = 0) { OS << Str; if (ZeroFillSize) WriteZeros(ZeroFillSize - Str.size()); } /// @} static unsigned getPrologSize32(unsigned NumSections) { return Header32Size + SegmentLoadCommand32Size + NumSections * Section32Size; } void WriteHeader32(unsigned NumSections) { // struct mach_header (28 bytes) uint64_t Start = OS.tell(); (void) Start; Write32(Header_Magic32); // FIXME: Support cputype. Write32(TargetMachOWriterInfo::HDR_CPU_TYPE_I386); // FIXME: Support cpusubtype. Write32(TargetMachOWriterInfo::HDR_CPU_SUBTYPE_I386_ALL); Write32(HFT_Object); // Object files have a single load command, the segment. Write32(1); Write32(SegmentLoadCommand32Size + NumSections * Section32Size); Write32(0); // Flags assert(OS.tell() - Start == Header32Size); } void WriteLoadCommandHeader(uint32_t Cmd, uint32_t CmdSize) { assert((CmdSize & 0x3) == 0 && "Invalid size!"); Write32(Cmd); Write32(CmdSize); } /// WriteSegmentLoadCommand32 - Write a 32-bit segment load command. /// /// \arg NumSections - The number of sections in this segment. /// \arg SectionDataSize - The total size of the sections. void WriteSegmentLoadCommand32(unsigned NumSections, uint64_t SectionDataSize) { // struct segment_command (56 bytes) uint64_t Start = OS.tell(); (void) Start; Write32(LCT_Segment); Write32(SegmentLoadCommand32Size + NumSections * Section32Size); WriteString("", 16); Write32(0); // vmaddr Write32(SectionDataSize); // vmsize Write32(Header32Size + SegmentLoadCommand32Size + NumSections * Section32Size); // file offset Write32(SectionDataSize); // file size Write32(0x7); // maxprot Write32(0x7); // initprot Write32(NumSections); Write32(0); // flags assert(OS.tell() - Start == SegmentLoadCommand32Size); } void WriteSection32(const MCSectionData &SD) { // struct section (68 bytes) uint64_t Start = OS.tell(); (void) Start; // FIXME: cast<> support! const MCSectionMachO &Section = static_cast(SD.getSection()); WriteString(Section.getSectionName(), 16); WriteString(Section.getSegmentName(), 16); Write32(0); // address Write32(SD.getFileSize()); // size Write32(SD.getFileOffset()); assert(isPowerOf2_32(SD.getAlignment()) && "Invalid alignment!"); Write32(Log2_32(SD.getAlignment())); Write32(0); // file offset of relocation entries Write32(0); // number of relocation entrions Write32(Section.getTypeAndAttributes()); Write32(0); // reserved1 Write32(Section.getStubSize()); // reserved2 assert(OS.tell() - Start == Section32Size); } }; } /* *** */ MCFragment::MCFragment() : Kind(FragmentType(~0)) { } MCFragment::MCFragment(FragmentType _Kind, MCSectionData *SD) : Kind(_Kind), FileOffset(~UINT64_C(0)), FileSize(~UINT64_C(0)) { if (SD) SD->getFragmentList().push_back(this); } MCFragment::~MCFragment() { } /* *** */ MCSectionData::MCSectionData() : Section(*(MCSection*)0) {} MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A) : Section(_Section), Alignment(1), FileOffset(~UINT64_C(0)), FileSize(~UINT64_C(0)) { if (A) A->getSectionList().push_back(this); } /* *** */ MCAssembler::MCAssembler(raw_ostream &_OS) : OS(_OS) {} MCAssembler::~MCAssembler() { } void MCAssembler::LayoutSection(MCSectionData &SD) { uint64_t FileOffset = SD.getFileOffset(); uint64_t SectionOffset = 0; for (MCSectionData::iterator it = SD.begin(), ie = SD.end(); it != ie; ++it) { MCFragment &F = *it; F.setFileOffset(FileOffset); // Evaluate fragment size. switch (F.getKind()) { case MCFragment::FT_Align: { MCAlignFragment &AF = cast(F); uint64_t AlignedOffset = RoundUpToAlignment(SectionOffset, AF.getAlignment()); uint64_t PaddingBytes = AlignedOffset - SectionOffset; if (PaddingBytes > AF.getMaxBytesToEmit()) AF.setFileSize(0); else AF.setFileSize(PaddingBytes); break; } case MCFragment::FT_Data: case MCFragment::FT_Fill: F.setFileSize(F.getMaxFileSize()); break; case MCFragment::FT_Org: { MCOrgFragment &OF = cast(F); if (!OF.getOffset().isAbsolute()) llvm_unreachable("FIXME: Not yet implemented!"); uint64_t OrgOffset = OF.getOffset().getConstant(); // FIXME: We need a way to communicate this error. if (OrgOffset < SectionOffset) llvm_report_error("invalid .org offset '" + Twine(OrgOffset) + "' (section offset '" + Twine(SectionOffset) + "'"); F.setFileSize(OrgOffset - SectionOffset); break; } } FileOffset += F.getFileSize(); SectionOffset += F.getFileSize(); } // FIXME: Pad section? SD.setFileSize(FileOffset - SD.getFileOffset()); } /// WriteFileData - Write the \arg F data to the output file. static void WriteFileData(raw_ostream &OS, const MCFragment &F, MachObjectWriter &MOW) { uint64_t Start = OS.tell(); (void) Start; assert(F.getFileOffset() == Start && "Invalid file offset!"); // FIXME: Embed in fragments instead? switch (F.getKind()) { case MCFragment::FT_Align: { MCAlignFragment &AF = cast(F); uint64_t Count = AF.getFileSize() / AF.getValueSize(); // FIXME: This error shouldn't actually occur (the front end should emit // multiple .align directives to enforce the semantics it wants), but is // severe enough that we want to report it. How to handle this? if (Count * AF.getValueSize() != AF.getFileSize()) llvm_report_error("undefined .align directive, value size '" + Twine(AF.getValueSize()) + "' is not a divisor of padding size '" + Twine(AF.getFileSize()) + "'"); for (uint64_t i = 0; i != Count; ++i) { switch (AF.getValueSize()) { default: assert(0 && "Invalid size!"); case 1: MOW.Write8 (uint8_t (AF.getValue())); break; case 2: MOW.Write16(uint16_t(AF.getValue())); break; case 4: MOW.Write32(uint32_t(AF.getValue())); break; case 8: MOW.Write64(uint64_t(AF.getValue())); break; } } break; } case MCFragment::FT_Data: OS << cast(F).getContents().str(); break; case MCFragment::FT_Fill: { MCFillFragment &FF = cast(F); if (!FF.getValue().isAbsolute()) llvm_unreachable("FIXME: Not yet implemented!"); int64_t Value = FF.getValue().getConstant(); for (uint64_t i = 0, e = FF.getCount(); i != e; ++i) { switch (FF.getValueSize()) { default: assert(0 && "Invalid size!"); case 1: MOW.Write8 (uint8_t (Value)); break; case 2: MOW.Write16(uint16_t(Value)); break; case 4: MOW.Write32(uint32_t(Value)); break; case 8: MOW.Write64(uint64_t(Value)); break; } } break; } case MCFragment::FT_Org: { MCOrgFragment &OF = cast(F); for (uint64_t i = 0, e = OF.getFileSize(); i != e; ++i) MOW.Write8(uint8_t(OF.getValue())); break; } } assert(OS.tell() - Start == F.getFileSize()); } /// WriteFileData - Write the \arg SD data to the output file. static void WriteFileData(raw_ostream &OS, const MCSectionData &SD, MachObjectWriter &MOW) { uint64_t Start = OS.tell(); (void) Start; for (MCSectionData::const_iterator it = SD.begin(), ie = SD.end(); it != ie; ++it) WriteFileData(OS, *it, MOW); assert(OS.tell() - Start == SD.getFileSize()); } void MCAssembler::Finish() { unsigned NumSections = Sections.size(); // Layout the sections and fragments. uint64_t Offset = MachObjectWriter::getPrologSize32(NumSections); uint64_t SectionDataSize = 0; for (iterator it = begin(), ie = end(); it != ie; ++it) { it->setFileOffset(Offset); LayoutSection(*it); Offset += it->getFileSize(); SectionDataSize += it->getFileSize(); } MachObjectWriter MOW(OS); // Write the prolog, starting with the header and load command... MOW.WriteHeader32(NumSections); MOW.WriteSegmentLoadCommand32(NumSections, SectionDataSize); // ... and then the section headers. for (iterator it = begin(), ie = end(); it != ie; ++it) MOW.WriteSection32(*it); // Finally, write the section data. for (iterator it = begin(), ie = end(); it != ie; ++it) WriteFileData(OS, *it, MOW); OS.flush(); }