//===- MCExpr.cpp - Assembly Level Expression Implementation --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "mcexpr" #include "llvm/MC/MCExpr.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/MC/MCAsmLayout.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCObjectFormat.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCValue.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetAsmBackend.h" using namespace llvm; namespace { namespace stats { STATISTIC(MCExprEvaluate, "Number of MCExpr evaluations"); } } void MCExpr::print(raw_ostream &OS) const { switch (getKind()) { case MCExpr::Target: return cast(this)->PrintImpl(OS); case MCExpr::Constant: OS << cast(*this).getValue(); return; case MCExpr::SymbolRef: { const MCSymbolRefExpr &SRE = cast(*this); const MCSymbol &Sym = SRE.getSymbol(); // Parenthesize names that start with $ so that they don't look like // absolute names. bool UseParens = Sym.getName()[0] == '$'; if (SRE.getKind() == MCSymbolRefExpr::VK_ARM_HI16 || SRE.getKind() == MCSymbolRefExpr::VK_ARM_LO16) OS << MCSymbolRefExpr::getVariantKindName(SRE.getKind()); if (SRE.getKind() == MCSymbolRefExpr::VK_PPC_HA16 || SRE.getKind() == MCSymbolRefExpr::VK_PPC_LO16) { OS << MCSymbolRefExpr::getVariantKindName(SRE.getKind()); UseParens = true; } if (UseParens) OS << '(' << Sym << ')'; else OS << Sym; if (SRE.getKind() == MCSymbolRefExpr::VK_ARM_PLT || SRE.getKind() == MCSymbolRefExpr::VK_ARM_TLSGD || SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOT || SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOTOFF || SRE.getKind() == MCSymbolRefExpr::VK_ARM_TPOFF || SRE.getKind() == MCSymbolRefExpr::VK_ARM_GOTTPOFF) OS << MCSymbolRefExpr::getVariantKindName(SRE.getKind()); else if (SRE.getKind() != MCSymbolRefExpr::VK_None && SRE.getKind() != MCSymbolRefExpr::VK_ARM_HI16 && SRE.getKind() != MCSymbolRefExpr::VK_ARM_LO16 && SRE.getKind() != MCSymbolRefExpr::VK_PPC_HA16 && SRE.getKind() != MCSymbolRefExpr::VK_PPC_LO16) OS << '@' << MCSymbolRefExpr::getVariantKindName(SRE.getKind()); return; } case MCExpr::Unary: { const MCUnaryExpr &UE = cast(*this); switch (UE.getOpcode()) { default: assert(0 && "Invalid opcode!"); case MCUnaryExpr::LNot: OS << '!'; break; case MCUnaryExpr::Minus: OS << '-'; break; case MCUnaryExpr::Not: OS << '~'; break; case MCUnaryExpr::Plus: OS << '+'; break; } OS << *UE.getSubExpr(); return; } case MCExpr::Binary: { const MCBinaryExpr &BE = cast(*this); // Only print parens around the LHS if it is non-trivial. if (isa(BE.getLHS()) || isa(BE.getLHS())) { OS << *BE.getLHS(); } else { OS << '(' << *BE.getLHS() << ')'; } switch (BE.getOpcode()) { default: assert(0 && "Invalid opcode!"); case MCBinaryExpr::Add: // Print "X-42" instead of "X+-42". if (const MCConstantExpr *RHSC = dyn_cast(BE.getRHS())) { if (RHSC->getValue() < 0) { OS << RHSC->getValue(); return; } } OS << '+'; break; case MCBinaryExpr::And: OS << '&'; break; case MCBinaryExpr::Div: OS << '/'; break; case MCBinaryExpr::EQ: OS << "=="; break; case MCBinaryExpr::GT: OS << '>'; break; case MCBinaryExpr::GTE: OS << ">="; break; case MCBinaryExpr::LAnd: OS << "&&"; break; case MCBinaryExpr::LOr: OS << "||"; break; case MCBinaryExpr::LT: OS << '<'; break; case MCBinaryExpr::LTE: OS << "<="; break; case MCBinaryExpr::Mod: OS << '%'; break; case MCBinaryExpr::Mul: OS << '*'; break; case MCBinaryExpr::NE: OS << "!="; break; case MCBinaryExpr::Or: OS << '|'; break; case MCBinaryExpr::Shl: OS << "<<"; break; case MCBinaryExpr::Shr: OS << ">>"; break; case MCBinaryExpr::Sub: OS << '-'; break; case MCBinaryExpr::Xor: OS << '^'; break; } // Only print parens around the LHS if it is non-trivial. if (isa(BE.getRHS()) || isa(BE.getRHS())) { OS << *BE.getRHS(); } else { OS << '(' << *BE.getRHS() << ')'; } return; } } assert(0 && "Invalid expression kind!"); } void MCExpr::dump() const { print(dbgs()); dbgs() << '\n'; } /* *** */ const MCBinaryExpr *MCBinaryExpr::Create(Opcode Opc, const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx) { return new (Ctx) MCBinaryExpr(Opc, LHS, RHS); } const MCUnaryExpr *MCUnaryExpr::Create(Opcode Opc, const MCExpr *Expr, MCContext &Ctx) { return new (Ctx) MCUnaryExpr(Opc, Expr); } const MCConstantExpr *MCConstantExpr::Create(int64_t Value, MCContext &Ctx) { return new (Ctx) MCConstantExpr(Value); } /* *** */ const MCSymbolRefExpr *MCSymbolRefExpr::Create(const MCSymbol *Sym, VariantKind Kind, MCContext &Ctx) { return new (Ctx) MCSymbolRefExpr(Sym, Kind); } const MCSymbolRefExpr *MCSymbolRefExpr::Create(StringRef Name, VariantKind Kind, MCContext &Ctx) { return Create(Ctx.GetOrCreateSymbol(Name), Kind, Ctx); } StringRef MCSymbolRefExpr::getVariantKindName(VariantKind Kind) { switch (Kind) { default: case VK_Invalid: return "<>"; case VK_None: return "<>"; case VK_GOT: return "GOT"; case VK_GOTOFF: return "GOTOFF"; case VK_GOTPCREL: return "GOTPCREL"; case VK_GOTTPOFF: return "GOTTPOFF"; case VK_INDNTPOFF: return "INDNTPOFF"; case VK_NTPOFF: return "NTPOFF"; case VK_GOTNTPOFF: return "GOTNTPOFF"; case VK_PLT: return "PLT"; case VK_TLSGD: return "TLSGD"; case VK_TLSLD: return "TLSLD"; case VK_TLSLDM: return "TLSLDM"; case VK_TPOFF: return "TPOFF"; case VK_DTPOFF: return "DTPOFF"; case VK_TLVP: return "TLVP"; case VK_ARM_HI16: return ":upper16:"; case VK_ARM_LO16: return ":lower16:"; case VK_ARM_PLT: return "(PLT)"; case VK_ARM_GOT: return "(GOT)"; case VK_ARM_GOTOFF: return "(GOTOFF)"; case VK_ARM_TPOFF: return "(tpoff)"; case VK_ARM_GOTTPOFF: return "(gottpoff)"; case VK_ARM_TLSGD: return "(tlsgd)"; case VK_PPC_TOC: return "toc"; case VK_PPC_HA16: return "ha16"; case VK_PPC_LO16: return "lo16"; } } MCSymbolRefExpr::VariantKind MCSymbolRefExpr::getVariantKindForName(StringRef Name) { return StringSwitch(Name) .Case("GOT", VK_GOT) .Case("GOTOFF", VK_GOTOFF) .Case("GOTPCREL", VK_GOTPCREL) .Case("GOTTPOFF", VK_GOTTPOFF) .Case("INDNTPOFF", VK_INDNTPOFF) .Case("NTPOFF", VK_NTPOFF) .Case("GOTNTPOFF", VK_GOTNTPOFF) .Case("PLT", VK_PLT) .Case("TLSGD", VK_TLSGD) .Case("TLSLD", VK_TLSLD) .Case("TLSLDM", VK_TLSLDM) .Case("TPOFF", VK_TPOFF) .Case("DTPOFF", VK_DTPOFF) .Case("TLVP", VK_TLVP) .Default(VK_Invalid); } /* *** */ void MCTargetExpr::Anchor() {} /* *** */ bool MCExpr::EvaluateAsAbsolute(int64_t &Res) const { return EvaluateAsAbsolute(Res, 0, 0, 0); } bool MCExpr::EvaluateAsAbsolute(int64_t &Res, const MCAsmLayout &Layout) const { return EvaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, 0); } bool MCExpr::EvaluateAsAbsolute(int64_t &Res, const MCAsmLayout &Layout, const SectionAddrMap &Addrs) const { return EvaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, &Addrs); } bool MCExpr::EvaluateAsAbsolute(int64_t &Res, const MCAssembler &Asm) const { return EvaluateAsAbsolute(Res, &Asm, 0, 0); } bool MCExpr::EvaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm, const MCAsmLayout *Layout, const SectionAddrMap *Addrs) const { MCValue Value; // Fast path constants. if (const MCConstantExpr *CE = dyn_cast(this)) { Res = CE->getValue(); return true; } if (!EvaluateAsRelocatableImpl(Value, Asm, Layout, Addrs, Addrs) || !Value.isAbsolute()) { // EvaluateAsAbsolute is defined to return the "current value" of // the expression if we are given a Layout object, even in cases // when the value is not fixed. if (Layout) { Res = Value.getConstant(); if (Value.getSymA()) { Res += Layout->getSymbolOffset( &Layout->getAssembler().getSymbolData(Value.getSymA()->getSymbol())); } if (Value.getSymB()) { Res -= Layout->getSymbolOffset( &Layout->getAssembler().getSymbolData(Value.getSymB()->getSymbol())); } } return false; } Res = Value.getConstant(); return true; } static bool EvaluateSymbolicAdd(const MCAssembler *Asm, const MCAsmLayout *Layout, const SectionAddrMap *Addrs, bool InSet, const MCValue &LHS,const MCSymbolRefExpr *RHS_A, const MCSymbolRefExpr *RHS_B, int64_t RHS_Cst, MCValue &Res) { // We can't add or subtract two symbols. if ((LHS.getSymA() && RHS_A) || (LHS.getSymB() && RHS_B)) return false; const MCSymbolRefExpr *A = LHS.getSymA() ? LHS.getSymA() : RHS_A; const MCSymbolRefExpr *B = LHS.getSymB() ? LHS.getSymB() : RHS_B; if (B) { // If we have a negated symbol, then we must have also have a non-negated // symbol in order to encode the expression. We can do this check later to // permit expressions which eventually fold to a representable form -- such // as (a + (0 - b)) -- if necessary. if (!A) return false; } // Absolutize symbol differences between defined symbols when we have a // layout object and the target requests it. assert(!(Layout && !Asm)); if (Asm && A && B) { const MCSymbol &SA = A->getSymbol(); const MCSymbol &SB = B->getSymbol(); const MCObjectFormat &F = Asm->getBackend().getObjectFormat(); if (SA.isDefined() && SB.isDefined() && F.isAbsolute(InSet, SA, SB)) { MCSymbolData &AD = Asm->getSymbolData(A->getSymbol()); MCSymbolData &BD = Asm->getSymbolData(B->getSymbol()); if (AD.getFragment() == BD.getFragment()) { Res = MCValue::get(+ AD.getOffset() - BD.getOffset() + LHS.getConstant() + RHS_Cst); return true; } if (Layout) { const MCSectionData &SecA = *AD.getFragment()->getParent(); const MCSectionData &SecB = *BD.getFragment()->getParent(); int64_t Val = + Layout->getSymbolOffset(&AD) - Layout->getSymbolOffset(&BD) + LHS.getConstant() + RHS_Cst; if (&SecA != &SecB) { if (!Addrs) return false; Val += Addrs->lookup(&SecA); Val -= Addrs->lookup(&SecB); } Res = MCValue::get(Val); return true; } } } Res = MCValue::get(A, B, LHS.getConstant() + RHS_Cst); return true; } bool MCExpr::EvaluateAsRelocatable(MCValue &Res, const MCAsmLayout *Layout) const { if (Layout) return EvaluateAsRelocatableImpl(Res, &Layout->getAssembler(), Layout, 0, false); else return EvaluateAsRelocatableImpl(Res, 0, 0, 0, false); } bool MCExpr::EvaluateAsRelocatableImpl(MCValue &Res, const MCAssembler *Asm, const MCAsmLayout *Layout, const SectionAddrMap *Addrs, bool InSet) const { ++stats::MCExprEvaluate; switch (getKind()) { case Target: return cast(this)->EvaluateAsRelocatableImpl(Res, Layout); case Constant: Res = MCValue::get(cast(this)->getValue()); return true; case SymbolRef: { const MCSymbolRefExpr *SRE = cast(this); const MCSymbol &Sym = SRE->getSymbol(); // Evaluate recursively if this is a variable. if (Sym.isVariable() && SRE->getKind() == MCSymbolRefExpr::VK_None) { bool Ret = Sym.getVariableValue()->EvaluateAsRelocatableImpl(Res, Asm, Layout, Addrs, true); // If we failed to simplify this to a constant, let the target // handle it. if (Ret && !Res.getSymA() && !Res.getSymB()) return true; } Res = MCValue::get(SRE, 0, 0); return true; } case Unary: { const MCUnaryExpr *AUE = cast(this); MCValue Value; if (!AUE->getSubExpr()->EvaluateAsRelocatableImpl(Value, Asm, Layout, Addrs, InSet)) return false; switch (AUE->getOpcode()) { case MCUnaryExpr::LNot: if (!Value.isAbsolute()) return false; Res = MCValue::get(!Value.getConstant()); break; case MCUnaryExpr::Minus: /// -(a - b + const) ==> (b - a - const) if (Value.getSymA() && !Value.getSymB()) return false; Res = MCValue::get(Value.getSymB(), Value.getSymA(), -Value.getConstant()); break; case MCUnaryExpr::Not: if (!Value.isAbsolute()) return false; Res = MCValue::get(~Value.getConstant()); break; case MCUnaryExpr::Plus: Res = Value; break; } return true; } case Binary: { const MCBinaryExpr *ABE = cast(this); MCValue LHSValue, RHSValue; if (!ABE->getLHS()->EvaluateAsRelocatableImpl(LHSValue, Asm, Layout, Addrs, InSet) || !ABE->getRHS()->EvaluateAsRelocatableImpl(RHSValue, Asm, Layout, Addrs, InSet)) return false; // We only support a few operations on non-constant expressions, handle // those first. if (!LHSValue.isAbsolute() || !RHSValue.isAbsolute()) { switch (ABE->getOpcode()) { default: return false; case MCBinaryExpr::Sub: // Negate RHS and add. return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue, RHSValue.getSymB(), RHSValue.getSymA(), -RHSValue.getConstant(), Res); case MCBinaryExpr::Add: return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue, RHSValue.getSymA(), RHSValue.getSymB(), RHSValue.getConstant(), Res); } } // FIXME: We need target hooks for the evaluation. It may be limited in // width, and gas defines the result of comparisons and right shifts // differently from Apple as. int64_t LHS = LHSValue.getConstant(), RHS = RHSValue.getConstant(); int64_t Result = 0; switch (ABE->getOpcode()) { case MCBinaryExpr::Add: Result = LHS + RHS; break; case MCBinaryExpr::And: Result = LHS & RHS; break; case MCBinaryExpr::Div: Result = LHS / RHS; break; case MCBinaryExpr::EQ: Result = LHS == RHS; break; case MCBinaryExpr::GT: Result = LHS > RHS; break; case MCBinaryExpr::GTE: Result = LHS >= RHS; break; case MCBinaryExpr::LAnd: Result = LHS && RHS; break; case MCBinaryExpr::LOr: Result = LHS || RHS; break; case MCBinaryExpr::LT: Result = LHS < RHS; break; case MCBinaryExpr::LTE: Result = LHS <= RHS; break; case MCBinaryExpr::Mod: Result = LHS % RHS; break; case MCBinaryExpr::Mul: Result = LHS * RHS; break; case MCBinaryExpr::NE: Result = LHS != RHS; break; case MCBinaryExpr::Or: Result = LHS | RHS; break; case MCBinaryExpr::Shl: Result = LHS << RHS; break; case MCBinaryExpr::Shr: Result = LHS >> RHS; break; case MCBinaryExpr::Sub: Result = LHS - RHS; break; case MCBinaryExpr::Xor: Result = LHS ^ RHS; break; } Res = MCValue::get(Result); return true; } } assert(0 && "Invalid assembly expression kind!"); return false; }