//===- lib/MC/MCMachOStreamer.cpp - Mach-O Object Output ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCObjectStreamer.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCMachOSymbolFlags.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MCDwarf.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetAsmBackend.h" using namespace llvm; namespace { class MCMachOStreamer : public MCObjectStreamer { private: void EmitInstToFragment(const MCInst &Inst); void EmitInstToData(const MCInst &Inst); // FIXME: These will likely moved to a better place. void MakeLineEntryForSection(const MCSection *Section); const MCExpr * MakeStartMinusEndExpr(MCSymbol *Start, MCSymbol *End, int IntVal); void EmitDwarfFileTable(void); public: MCMachOStreamer(MCContext &Context, TargetAsmBackend &TAB, raw_ostream &OS, MCCodeEmitter *Emitter) : MCObjectStreamer(Context, TAB, OS, Emitter) {} /// @name MCStreamer Interface /// @{ virtual void InitSections(); virtual void EmitLabel(MCSymbol *Symbol); virtual void EmitAssemblerFlag(MCAssemblerFlag Flag); virtual void EmitAssignment(MCSymbol *Symbol, const MCExpr *Value); virtual void EmitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute); virtual void EmitSymbolDesc(MCSymbol *Symbol, unsigned DescValue); virtual void EmitCommonSymbol(MCSymbol *Symbol, uint64_t Size, unsigned ByteAlignment); virtual void BeginCOFFSymbolDef(const MCSymbol *Symbol) { assert(0 && "macho doesn't support this directive"); } virtual void EmitCOFFSymbolStorageClass(int StorageClass) { assert(0 && "macho doesn't support this directive"); } virtual void EmitCOFFSymbolType(int Type) { assert(0 && "macho doesn't support this directive"); } virtual void EndCOFFSymbolDef() { assert(0 && "macho doesn't support this directive"); } virtual void EmitELFSize(MCSymbol *Symbol, const MCExpr *Value) { assert(0 && "macho doesn't support this directive"); } virtual void EmitLocalCommonSymbol(MCSymbol *Symbol, uint64_t Size) { assert(0 && "macho doesn't support this directive"); } virtual void EmitZerofill(const MCSection *Section, MCSymbol *Symbol = 0, unsigned Size = 0, unsigned ByteAlignment = 0); virtual void EmitTBSSSymbol(const MCSection *Section, MCSymbol *Symbol, uint64_t Size, unsigned ByteAlignment = 0); virtual void EmitBytes(StringRef Data, unsigned AddrSpace); virtual void EmitValue(const MCExpr *Value, unsigned Size,unsigned AddrSpace); virtual void EmitGPRel32Value(const MCExpr *Value) { assert(0 && "macho doesn't support this directive"); } virtual void EmitValueToAlignment(unsigned ByteAlignment, int64_t Value = 0, unsigned ValueSize = 1, unsigned MaxBytesToEmit = 0); virtual void EmitCodeAlignment(unsigned ByteAlignment, unsigned MaxBytesToEmit = 0); virtual void EmitValueToOffset(const MCExpr *Offset, unsigned char Value = 0); virtual void EmitFileDirective(StringRef Filename) { // FIXME: Just ignore the .file; it isn't important enough to fail the // entire assembly. //report_fatal_error("unsupported directive: '.file'"); } virtual void EmitDwarfFileDirective(unsigned FileNo, StringRef Filename) { // FIXME: Just ignore the .file; it isn't important enough to fail the // entire assembly. //report_fatal_error("unsupported directive: '.file'"); } virtual void EmitInstruction(const MCInst &Inst); virtual void Finish(); /// @} }; } // end anonymous namespace. void MCMachOStreamer::InitSections() { SwitchSection(getContext().getMachOSection("__TEXT", "__text", MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS, 0, SectionKind::getText())); } void MCMachOStreamer::EmitLabel(MCSymbol *Symbol) { // TODO: This is almost exactly the same as WinCOFFStreamer. Consider merging // into MCObjectStreamer. assert(Symbol->isUndefined() && "Cannot define a symbol twice!"); assert(!Symbol->isVariable() && "Cannot emit a variable symbol!"); assert(CurSection && "Cannot emit before setting section!"); Symbol->setSection(*CurSection); MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol); // We have to create a new fragment if this is an atom defining symbol, // fragments cannot span atoms. if (getAssembler().isSymbolLinkerVisible(SD.getSymbol())) new MCDataFragment(getCurrentSectionData()); // FIXME: This is wasteful, we don't necessarily need to create a data // fragment. Instead, we should mark the symbol as pointing into the data // fragment if it exists, otherwise we should just queue the label and set its // fragment pointer when we emit the next fragment. MCDataFragment *F = getOrCreateDataFragment(); assert(!SD.getFragment() && "Unexpected fragment on symbol data!"); SD.setFragment(F); SD.setOffset(F->getContents().size()); // This causes the reference type flag to be cleared. Darwin 'as' was "trying" // to clear the weak reference and weak definition bits too, but the // implementation was buggy. For now we just try to match 'as', for // diffability. // // FIXME: Cleanup this code, these bits should be emitted based on semantic // properties, not on the order of definition, etc. SD.setFlags(SD.getFlags() & ~SF_ReferenceTypeMask); } void MCMachOStreamer::EmitAssemblerFlag(MCAssemblerFlag Flag) { switch (Flag) { case MCAF_SubsectionsViaSymbols: getAssembler().setSubsectionsViaSymbols(true); return; } assert(0 && "invalid assembler flag!"); } void MCMachOStreamer::EmitAssignment(MCSymbol *Symbol, const MCExpr *Value) { // TODO: This is exactly the same as WinCOFFStreamer. Consider merging into // MCObjectStreamer. // FIXME: Lift context changes into super class. getAssembler().getOrCreateSymbolData(*Symbol); Symbol->setVariableValue(AddValueSymbols(Value)); } void MCMachOStreamer::EmitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute) { // Indirect symbols are handled differently, to match how 'as' handles // them. This makes writing matching .o files easier. if (Attribute == MCSA_IndirectSymbol) { // Note that we intentionally cannot use the symbol data here; this is // important for matching the string table that 'as' generates. IndirectSymbolData ISD; ISD.Symbol = Symbol; ISD.SectionData = getCurrentSectionData(); getAssembler().getIndirectSymbols().push_back(ISD); return; } // Adding a symbol attribute always introduces the symbol, note that an // important side effect of calling getOrCreateSymbolData here is to register // the symbol with the assembler. MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol); // The implementation of symbol attributes is designed to match 'as', but it // leaves much to desired. It doesn't really make sense to arbitrarily add and // remove flags, but 'as' allows this (in particular, see .desc). // // In the future it might be worth trying to make these operations more well // defined. switch (Attribute) { case MCSA_Invalid: case MCSA_ELF_TypeFunction: case MCSA_ELF_TypeIndFunction: case MCSA_ELF_TypeObject: case MCSA_ELF_TypeTLS: case MCSA_ELF_TypeCommon: case MCSA_ELF_TypeNoType: case MCSA_IndirectSymbol: case MCSA_Hidden: case MCSA_Internal: case MCSA_Protected: case MCSA_Weak: case MCSA_Local: assert(0 && "Invalid symbol attribute for Mach-O!"); break; case MCSA_Global: SD.setExternal(true); // This effectively clears the undefined lazy bit, in Darwin 'as', although // it isn't very consistent because it implements this as part of symbol // lookup. // // FIXME: Cleanup this code, these bits should be emitted based on semantic // properties, not on the order of definition, etc. SD.setFlags(SD.getFlags() & ~SF_ReferenceTypeUndefinedLazy); break; case MCSA_LazyReference: // FIXME: This requires -dynamic. SD.setFlags(SD.getFlags() | SF_NoDeadStrip); if (Symbol->isUndefined()) SD.setFlags(SD.getFlags() | SF_ReferenceTypeUndefinedLazy); break; // Since .reference sets the no dead strip bit, it is equivalent to // .no_dead_strip in practice. case MCSA_Reference: case MCSA_NoDeadStrip: SD.setFlags(SD.getFlags() | SF_NoDeadStrip); break; case MCSA_PrivateExtern: SD.setExternal(true); SD.setPrivateExtern(true); break; case MCSA_WeakReference: // FIXME: This requires -dynamic. if (Symbol->isUndefined()) SD.setFlags(SD.getFlags() | SF_WeakReference); break; case MCSA_WeakDefinition: // FIXME: 'as' enforces that this is defined and global. The manual claims // it has to be in a coalesced section, but this isn't enforced. SD.setFlags(SD.getFlags() | SF_WeakDefinition); break; case MCSA_WeakDefAutoPrivate: SD.setFlags(SD.getFlags() | SF_WeakDefinition | SF_WeakReference); break; } } void MCMachOStreamer::EmitSymbolDesc(MCSymbol *Symbol, unsigned DescValue) { // Encode the 'desc' value into the lowest implementation defined bits. assert(DescValue == (DescValue & SF_DescFlagsMask) && "Invalid .desc value!"); getAssembler().getOrCreateSymbolData(*Symbol).setFlags( DescValue & SF_DescFlagsMask); } void MCMachOStreamer::EmitCommonSymbol(MCSymbol *Symbol, uint64_t Size, unsigned ByteAlignment) { // FIXME: Darwin 'as' does appear to allow redef of a .comm by itself. assert(Symbol->isUndefined() && "Cannot define a symbol twice!"); MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol); SD.setExternal(true); SD.setCommon(Size, ByteAlignment); } void MCMachOStreamer::EmitZerofill(const MCSection *Section, MCSymbol *Symbol, unsigned Size, unsigned ByteAlignment) { MCSectionData &SectData = getAssembler().getOrCreateSectionData(*Section); // The symbol may not be present, which only creates the section. if (!Symbol) return; // FIXME: Assert that this section has the zerofill type. assert(Symbol->isUndefined() && "Cannot define a symbol twice!"); MCSymbolData &SD = getAssembler().getOrCreateSymbolData(*Symbol); // Emit an align fragment if necessary. if (ByteAlignment != 1) new MCAlignFragment(ByteAlignment, 0, 0, ByteAlignment, &SectData); MCFragment *F = new MCFillFragment(0, 0, Size, &SectData); SD.setFragment(F); Symbol->setSection(*Section); // Update the maximum alignment on the zero fill section if necessary. if (ByteAlignment > SectData.getAlignment()) SectData.setAlignment(ByteAlignment); } // This should always be called with the thread local bss section. Like the // .zerofill directive this doesn't actually switch sections on us. void MCMachOStreamer::EmitTBSSSymbol(const MCSection *Section, MCSymbol *Symbol, uint64_t Size, unsigned ByteAlignment) { EmitZerofill(Section, Symbol, Size, ByteAlignment); return; } void MCMachOStreamer::EmitBytes(StringRef Data, unsigned AddrSpace) { // TODO: This is exactly the same as WinCOFFStreamer. Consider merging into // MCObjectStreamer. getOrCreateDataFragment()->getContents().append(Data.begin(), Data.end()); } void MCMachOStreamer::EmitValue(const MCExpr *Value, unsigned Size, unsigned AddrSpace) { // TODO: This is exactly the same as WinCOFFStreamer. Consider merging into // MCObjectStreamer. MCDataFragment *DF = getOrCreateDataFragment(); // Avoid fixups when possible. int64_t AbsValue; if (AddValueSymbols(Value)->EvaluateAsAbsolute(AbsValue)) { // FIXME: Endianness assumption. for (unsigned i = 0; i != Size; ++i) DF->getContents().push_back(uint8_t(AbsValue >> (i * 8))); } else { DF->addFixup(MCFixup::Create(DF->getContents().size(), AddValueSymbols(Value), MCFixup::getKindForSize(Size))); DF->getContents().resize(DF->getContents().size() + Size, 0); } } void MCMachOStreamer::EmitValueToAlignment(unsigned ByteAlignment, int64_t Value, unsigned ValueSize, unsigned MaxBytesToEmit) { // TODO: This is exactly the same as WinCOFFStreamer. Consider merging into // MCObjectStreamer. if (MaxBytesToEmit == 0) MaxBytesToEmit = ByteAlignment; new MCAlignFragment(ByteAlignment, Value, ValueSize, MaxBytesToEmit, getCurrentSectionData()); // Update the maximum alignment on the current section if necessary. if (ByteAlignment > getCurrentSectionData()->getAlignment()) getCurrentSectionData()->setAlignment(ByteAlignment); } void MCMachOStreamer::EmitCodeAlignment(unsigned ByteAlignment, unsigned MaxBytesToEmit) { // TODO: This is exactly the same as WinCOFFStreamer. Consider merging into // MCObjectStreamer. if (MaxBytesToEmit == 0) MaxBytesToEmit = ByteAlignment; MCAlignFragment *F = new MCAlignFragment(ByteAlignment, 0, 1, MaxBytesToEmit, getCurrentSectionData()); F->setEmitNops(true); // Update the maximum alignment on the current section if necessary. if (ByteAlignment > getCurrentSectionData()->getAlignment()) getCurrentSectionData()->setAlignment(ByteAlignment); } void MCMachOStreamer::EmitValueToOffset(const MCExpr *Offset, unsigned char Value) { new MCOrgFragment(*Offset, Value, getCurrentSectionData()); } void MCMachOStreamer::EmitInstToFragment(const MCInst &Inst) { MCInstFragment *IF = new MCInstFragment(Inst, getCurrentSectionData()); // Add the fixups and data. // // FIXME: Revisit this design decision when relaxation is done, we may be // able to get away with not storing any extra data in the MCInst. SmallVector Fixups; SmallString<256> Code; raw_svector_ostream VecOS(Code); getAssembler().getEmitter().EncodeInstruction(Inst, VecOS, Fixups); VecOS.flush(); IF->getCode() = Code; IF->getFixups() = Fixups; } void MCMachOStreamer::EmitInstToData(const MCInst &Inst) { MCDataFragment *DF = getOrCreateDataFragment(); SmallVector Fixups; SmallString<256> Code; raw_svector_ostream VecOS(Code); getAssembler().getEmitter().EncodeInstruction(Inst, VecOS, Fixups); VecOS.flush(); // Add the fixups and data. for (unsigned i = 0, e = Fixups.size(); i != e; ++i) { Fixups[i].setOffset(Fixups[i].getOffset() + DF->getContents().size()); DF->addFixup(Fixups[i]); } DF->getContents().append(Code.begin(), Code.end()); } void MCMachOStreamer::EmitInstruction(const MCInst &Inst) { // Scan for values. for (unsigned i = Inst.getNumOperands(); i--; ) if (Inst.getOperand(i).isExpr()) AddValueSymbols(Inst.getOperand(i).getExpr()); getCurrentSectionData()->setHasInstructions(true); // Now that a machine instruction has been assembled into this section, make // a line entry for any .loc directive that has been seen. MakeLineEntryForSection(getCurrentSection()); // If this instruction doesn't need relaxation, just emit it as data. if (!getAssembler().getBackend().MayNeedRelaxation(Inst)) { EmitInstToData(Inst); return; } // Otherwise, if we are relaxing everything, relax the instruction as much as // possible and emit it as data. if (getAssembler().getRelaxAll()) { MCInst Relaxed; getAssembler().getBackend().RelaxInstruction(Inst, Relaxed); while (getAssembler().getBackend().MayNeedRelaxation(Relaxed)) getAssembler().getBackend().RelaxInstruction(Relaxed, Relaxed); EmitInstToData(Relaxed); return; } // Otherwise emit to a separate fragment. EmitInstToFragment(Inst); } // // This is called when an instruction is assembled into the specified section // and if there is information from the last .loc directive that has yet to have // a line entry made for it is made. // void MCMachOStreamer::MakeLineEntryForSection(const MCSection *Section) { if (!getContext().getDwarfLocSeen()) return; // Create a symbol at in the current section for use in the line entry. MCSymbol *LineSym = getContext().CreateTempSymbol(); // Set the value of the symbol to use for the MCLineEntry. EmitLabel(LineSym); // Get the current .loc info saved in the context. const MCDwarfLoc &DwarfLoc = getContext().getCurrentDwarfLoc(); // Create a (local) line entry with the symbol and the current .loc info. MCLineEntry LineEntry(LineSym, DwarfLoc); // clear DwarfLocSeen saying the current .loc info is now used. getContext().clearDwarfLocSeen(); // Get the MCLineSection for this section, if one does not exist for this // section create it. DenseMap &MCLineSections = getContext().getMCLineSections(); MCLineSection *LineSection = MCLineSections[Section]; if (!LineSection) { // Create a new MCLineSection. This will be deleted after the dwarf line // table is created using it by iterating through the MCLineSections // DenseMap. LineSection = new MCLineSection; // Save a pointer to the new LineSection into the MCLineSections DenseMap. MCLineSections[Section] = LineSection; } // Add the line entry to this section's entries. LineSection->addLineEntry(LineEntry); } // // This helper routine returns an expression of End - Start + IntVal for use // by EmitDwarfFileTable() below. // const MCExpr * MCMachOStreamer::MakeStartMinusEndExpr(MCSymbol *Start, MCSymbol *End, int IntVal) { MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; const MCExpr *Res = MCSymbolRefExpr::Create(End, Variant, getContext()); const MCExpr *RHS = MCSymbolRefExpr::Create(Start, Variant, getContext()); const MCExpr *Res1 = MCBinaryExpr::Create(MCBinaryExpr::Sub, Res, RHS,getContext()); const MCExpr *Res2 = MCConstantExpr::Create(IntVal, getContext()); const MCExpr *Res3 = MCBinaryExpr::Create(MCBinaryExpr::Sub, Res1, Res2, getContext()); return Res3; } // // This emits the Dwarf file (and eventually the line) table. // void MCMachOStreamer::EmitDwarfFileTable(void) { // For now make sure we don't put out the Dwarf file table if no .file // directives were seen. const std::vector &MCDwarfFiles = getContext().getMCDwarfFiles(); if (MCDwarfFiles.size() == 0) return; // This is the Mach-O section, for ELF it is the .debug_line section. SwitchSection(getContext().getMachOSection("__DWARF", "__debug_line", MCSectionMachO::S_ATTR_DEBUG, 0, SectionKind::getDataRelLocal())); // Create a symbol at the beginning of this section. MCSymbol *LineStartSym = getContext().CreateTempSymbol(); // Set the value of the symbol, as we are at the start of the section. EmitLabel(LineStartSym); // Create a symbol for the end of the section (to be set when we get there). MCSymbol *LineEndSym = getContext().CreateTempSymbol(); // The first 4 bytes is the total length of the information for this // compilation unit (not including these 4 bytes for the length). EmitValue(MakeStartMinusEndExpr(LineStartSym, LineEndSym, 4), 4, 0); // Next 2 bytes is the Version, which is Dwarf 2. EmitIntValue(2, 2); // Create a symbol for the end of the prologue (to be set when we get there). MCSymbol *ProEndSym = getContext().CreateTempSymbol(); // Lprologue_end // Length of the prologue, is the next 4 bytes. Which is the start of the // section to the end of the prologue. Not including the 4 bytes for the // total length, the 2 bytes for the version, and these 4 bytes for the // length of the prologue. EmitValue(MakeStartMinusEndExpr(LineStartSym, ProEndSym, (4 + 2 + 4)), 4, 0); // Parameters of the state machine, are next. // Define the architecture-dependent minimum instruction length (in // bytes). This value should be rather too small than too big. */ // DWARF2_LINE_MIN_INSN_LENGTH EmitIntValue(1, 1); // Flag that indicates the initial value of the is_stmt_start flag. // DWARF2_LINE_DEFAULT_IS_STMT EmitIntValue(1, 1); // Minimum line offset in a special line info. opcode. This value // was chosen to give a reasonable range of values. */ // DWARF2_LINE_BASE EmitIntValue(uint64_t(-5), 1); // Range of line offsets in a special line info. opcode. // DWARF2_LINE_RANGE EmitIntValue(14, 1); // First special line opcode - leave room for the standard opcodes. // DWARF2_LINE_OPCODE_BASE EmitIntValue(13, 1); // Standard opcode lengths EmitIntValue(0, 1); // length of DW_LNS_copy EmitIntValue(1, 1); // length of DW_LNS_advance_pc EmitIntValue(1, 1); // length of DW_LNS_advance_line EmitIntValue(1, 1); // length of DW_LNS_set_file EmitIntValue(1, 1); // length of DW_LNS_set_column EmitIntValue(0, 1); // length of DW_LNS_negate_stmt EmitIntValue(0, 1); // length of DW_LNS_set_basic_block EmitIntValue(0, 1); // length of DW_LNS_const_add_pc EmitIntValue(1, 1); // length of DW_LNS_fixed_advance_pc EmitIntValue(0, 1); // length of DW_LNS_set_prologue_end EmitIntValue(0, 1); // length of DW_LNS_set_epilogue_begin EmitIntValue(1, 1); // DW_LNS_set_isa // Put out the directory and file tables. // First the directory table. const std::vector &MCDwarfDirs = getContext().getMCDwarfDirs(); for (unsigned i = 0; i < MCDwarfDirs.size(); i++) { EmitBytes(MCDwarfDirs[i], 0); // the DirectoryName EmitBytes(StringRef("\0", 1), 0); // the null termination of the string } EmitIntValue(0, 1); // Terminate the directory list // Second the file table. for (unsigned i = 1; i < MCDwarfFiles.size(); i++) { EmitBytes(MCDwarfFiles[i]->getName(), 0); // FileName EmitBytes(StringRef("\0", 1), 0); // the null termination of the string // FIXME the Directory number should be a .uleb128 not a .byte EmitIntValue(MCDwarfFiles[i]->getDirIndex(), 1); EmitIntValue(0, 1); // last modification timestamp (always 0) EmitIntValue(0, 1); // filesize (always 0) } EmitIntValue(0, 1); // Terminate the file list // This is the end of the prologue, so set the value of the symbol at the // end of the prologue (that was used in a previous expression). EmitLabel(ProEndSym); // TODO: This is the point where the line tables would be emitted. // Delete the MCLineSections that were created in // MCMachOStreamer::MakeLineEntryForSection() and used to emit the line // tables. DenseMap &MCLineSections = getContext().getMCLineSections(); for (DenseMap::iterator it = MCLineSections.begin(), ie = MCLineSections.end(); it != ie; ++it) { delete it->second; } // If there are no line tables emited then we emit: // The following DW_LNE_set_address sequence to set the address to zero // TODO test for 32-bit or 64-bit output // This is the sequence for 32-bit code EmitIntValue(0, 1); EmitIntValue(5, 1); EmitIntValue(2, 1); EmitIntValue(0, 1); EmitIntValue(0, 1); EmitIntValue(0, 1); EmitIntValue(0, 1); // Lastly emit the DW_LNE_end_sequence which consists of 3 bytes '00 01 01' // (00 is the code for extended opcodes, followed by a ULEB128 length of the // extended opcode (01), and the DW_LNE_end_sequence (01). EmitIntValue(0, 1); // DW_LNS_extended_op EmitIntValue(1, 1); // ULEB128 length of the extended opcode EmitIntValue(1, 1); // DW_LNE_end_sequence // This is the end of the section, so set the value of the symbol at the end // of this section (that was used in a previous expression). EmitLabel(LineEndSym); } void MCMachOStreamer::Finish() { // Dump out the dwarf file and directory tables (soon to include line table) EmitDwarfFileTable(); // We have to set the fragment atom associations so we can relax properly for // Mach-O. // First, scan the symbol table to build a lookup table from fragments to // defining symbols. DenseMap DefiningSymbolMap; for (MCAssembler::symbol_iterator it = getAssembler().symbol_begin(), ie = getAssembler().symbol_end(); it != ie; ++it) { if (getAssembler().isSymbolLinkerVisible(it->getSymbol()) && it->getFragment()) { // An atom defining symbol should never be internal to a fragment. assert(it->getOffset() == 0 && "Invalid offset in atom defining symbol!"); DefiningSymbolMap[it->getFragment()] = it; } } // Set the fragment atom associations by tracking the last seen atom defining // symbol. for (MCAssembler::iterator it = getAssembler().begin(), ie = getAssembler().end(); it != ie; ++it) { MCSymbolData *CurrentAtom = 0; for (MCSectionData::iterator it2 = it->begin(), ie2 = it->end(); it2 != ie2; ++it2) { if (MCSymbolData *SD = DefiningSymbolMap.lookup(it2)) CurrentAtom = SD; it2->setAtom(CurrentAtom); } } this->MCObjectStreamer::Finish(); } MCStreamer *llvm::createMachOStreamer(MCContext &Context, TargetAsmBackend &TAB, raw_ostream &OS, MCCodeEmitter *CE, bool RelaxAll) { MCMachOStreamer *S = new MCMachOStreamer(Context, TAB, OS, CE); if (RelaxAll) S->getAssembler().setRelaxAll(true); return S; }