//====--------------- lib/Support/BlockFrequency.cpp -----------*- C++ -*-====// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements Block Frequency class. // //===----------------------------------------------------------------------===// #include "llvm/Support/BranchProbability.h" #include "llvm/Support/BlockFrequency.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; /// Multiply FREQ by N and store result in W array. static void mult96bit(uint64_t freq, uint32_t N, uint32_t W[3]) { uint64_t u0 = freq & UINT32_MAX; uint64_t u1 = freq >> 32; // Represent 96-bit value as W[2]:W[1]:W[0]; uint64_t t = u0 * N; uint64_t k = t >> 32; W[0] = t; t = u1 * N + k; W[1] = t; W[2] = t >> 32; } /// Divide 96-bit value stored in W[2]:W[1]:W[0] by D. Since our word size is a /// 32 bit unsigned integer, we can use a short division algorithm. static uint64_t divrem96bit(uint32_t W[3], uint32_t D, uint32_t *Rout) { // We assume that W[2] is non-zero since if W[2] is not then the user should // just use hardware division. assert(W[2] && "This routine assumes that W[2] is non-zero since if W[2] is " "zero, the caller should just use 64/32 hardware."); uint32_t Q[3] = { 0, 0, 0 }; // The generalized short division algorithm sets i to m + n - 1, where n is // the number of words in the divisior and m is the number of words by which // the divident exceeds the divisor (i.e. m + n == the length of the dividend // in words). Due to our assumption that W[2] is non-zero, we know that the // dividend is of length 3 implying since n is 1 that m = 2. Thus we set i to // m + n - 1 = 2 + 1 - 1 = 2. uint32_t R = 0; for (int i = 2; i >= 0; --i) { uint64_t PartialD = uint64_t(R) << 32 | W[i]; if (PartialD == 0) { Q[i] = 0; R = 0; } else if (PartialD < D) { Q[i] = 0; R = uint32_t(PartialD); } else if (PartialD == D) { Q[i] = 1; R = 0; } else { Q[i] = uint32_t(PartialD / D); R = uint32_t(PartialD - (Q[i] * D)); } } // If Q[2] is non-zero, then we overflowed. uint64_t Result; if (Q[2]) { Result = UINT64_MAX; R = D; } else { // Form the final uint64_t result, avoiding endianness issues. Result = uint64_t(Q[0]) | (uint64_t(Q[1]) << 32); } if (Rout) *Rout = R; return Result; } uint32_t BlockFrequency::scale(uint32_t N, uint32_t D) { assert(D != 0 && "Division by zero"); // Calculate Frequency * N. uint64_t MulLo = (Frequency & UINT32_MAX) * N; uint64_t MulHi = (Frequency >> 32) * N; uint64_t MulRes = (MulHi << 32) + MulLo; // If the product fits in 64 bits, just use built-in division. if (MulHi <= UINT32_MAX && MulRes >= MulLo) { Frequency = MulRes / D; return MulRes % D; } // Product overflowed, use 96-bit operations. // 96-bit value represented as W[2]:W[1]:W[0]. uint32_t W[3]; uint32_t R; mult96bit(Frequency, N, W); Frequency = divrem96bit(W, D, &R); return R; } BlockFrequency &BlockFrequency::operator*=(const BranchProbability &Prob) { scale(Prob.getNumerator(), Prob.getDenominator()); return *this; } const BlockFrequency BlockFrequency::operator*(const BranchProbability &Prob) const { BlockFrequency Freq(Frequency); Freq *= Prob; return Freq; } BlockFrequency &BlockFrequency::operator/=(const BranchProbability &Prob) { scale(Prob.getDenominator(), Prob.getNumerator()); return *this; } BlockFrequency BlockFrequency::operator/(const BranchProbability &Prob) const { BlockFrequency Freq(Frequency); Freq /= Prob; return Freq; } BlockFrequency &BlockFrequency::operator+=(const BlockFrequency &Freq) { uint64_t Before = Freq.Frequency; Frequency += Freq.Frequency; // If overflow, set frequency to the maximum value. if (Frequency < Before) Frequency = UINT64_MAX; return *this; } const BlockFrequency BlockFrequency::operator+(const BlockFrequency &Prob) const { BlockFrequency Freq(Frequency); Freq += Prob; return Freq; } uint32_t BlockFrequency::scale(const BranchProbability &Prob) { return scale(Prob.getNumerator(), Prob.getDenominator()); } void BlockFrequency::print(raw_ostream &OS) const { // Convert fixed-point number to decimal. OS << Frequency / getEntryFrequency() << "."; uint64_t Rem = Frequency % getEntryFrequency(); uint64_t Eps = 1; do { Rem *= 10; Eps *= 10; OS << Rem / getEntryFrequency(); Rem = Rem % getEntryFrequency(); } while (Rem >= Eps/2); } namespace llvm { raw_ostream &operator<<(raw_ostream &OS, const BlockFrequency &Freq) { Freq.print(OS); return OS; } }