/* * This code is derived from (original license follows): * * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc. * MD5 Message-Digest Algorithm (RFC 1321). * * Homepage: * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5 * * Author: * Alexander Peslyak, better known as Solar Designer * * This software was written by Alexander Peslyak in 2001. No copyright is * claimed, and the software is hereby placed in the public domain. * In case this attempt to disclaim copyright and place the software in the * public domain is deemed null and void, then the software is * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the * general public under the following terms: * * Redistribution and use in source and binary forms, with or without * modification, are permitted. * * There's ABSOLUTELY NO WARRANTY, express or implied. * * (This is a heavily cut-down "BSD license".) * * This differs from Colin Plumb's older public domain implementation in that * no exactly 32-bit integer data type is required (any 32-bit or wider * unsigned integer data type will do), there's no compile-time endianness * configuration, and the function prototypes match OpenSSL's. No code from * Colin Plumb's implementation has been reused; this comment merely compares * the properties of the two independent implementations. * * The primary goals of this implementation are portability and ease of use. * It is meant to be fast, but not as fast as possible. Some known * optimizations are not included to reduce source code size and avoid * compile-time configuration. */ #include "llvm/ADT/ArrayRef.h" #include "llvm/Support/Format.h" #include "llvm/Support/MD5.h" #include "llvm/Support/raw_ostream.h" #include // The basic MD5 functions. // F and G are optimized compared to their RFC 1321 definitions for // architectures that lack an AND-NOT instruction, just like in Colin Plumb's // implementation. #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) #define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y)))) #define H(x, y, z) ((x) ^ (y) ^ (z)) #define I(x, y, z) ((y) ^ ((x) | ~(z))) // The MD5 transformation for all four rounds. #define STEP(f, a, b, c, d, x, t, s) \ (a) += f((b), (c), (d)) + (x) + (t); \ (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \ (a) += (b); // SET reads 4 input bytes in little-endian byte order and stores them // in a properly aligned word in host byte order. #define SET(n) \ (block[(n)] = \ (MD5_u32plus) ptr[(n) * 4] | ((MD5_u32plus) ptr[(n) * 4 + 1] << 8) | \ ((MD5_u32plus) ptr[(n) * 4 + 2] << 16) | \ ((MD5_u32plus) ptr[(n) * 4 + 3] << 24)) #define GET(n) (block[(n)]) namespace llvm { /// \brief This processes one or more 64-byte data blocks, but does NOT update ///the bit counters. There are no alignment requirements. const uint8_t *MD5::body(ArrayRef Data) { const uint8_t *ptr; MD5_u32plus a, b, c, d; MD5_u32plus saved_a, saved_b, saved_c, saved_d; unsigned long Size = Data.size(); ptr = Data.data(); a = this->a; b = this->b; c = this->c; d = this->d; do { saved_a = a; saved_b = b; saved_c = c; saved_d = d; // Round 1 STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7) STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12) STEP(F, c, d, a, b, SET(2), 0x242070db, 17) STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22) STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7) STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12) STEP(F, c, d, a, b, SET(6), 0xa8304613, 17) STEP(F, b, c, d, a, SET(7), 0xfd469501, 22) STEP(F, a, b, c, d, SET(8), 0x698098d8, 7) STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12) STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17) STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22) STEP(F, a, b, c, d, SET(12), 0x6b901122, 7) STEP(F, d, a, b, c, SET(13), 0xfd987193, 12) STEP(F, c, d, a, b, SET(14), 0xa679438e, 17) STEP(F, b, c, d, a, SET(15), 0x49b40821, 22) // Round 2 STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5) STEP(G, d, a, b, c, GET(6), 0xc040b340, 9) STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14) STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20) STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5) STEP(G, d, a, b, c, GET(10), 0x02441453, 9) STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14) STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20) STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5) STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9) STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14) STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20) STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5) STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9) STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14) STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20) // Round 3 STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4) STEP(H, d, a, b, c, GET(8), 0x8771f681, 11) STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16) STEP(H, b, c, d, a, GET(14), 0xfde5380c, 23) STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4) STEP(H, d, a, b, c, GET(4), 0x4bdecfa9, 11) STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16) STEP(H, b, c, d, a, GET(10), 0xbebfbc70, 23) STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4) STEP(H, d, a, b, c, GET(0), 0xeaa127fa, 11) STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16) STEP(H, b, c, d, a, GET(6), 0x04881d05, 23) STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4) STEP(H, d, a, b, c, GET(12), 0xe6db99e5, 11) STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16) STEP(H, b, c, d, a, GET(2), 0xc4ac5665, 23) // Round 4 STEP(I, a, b, c, d, GET(0), 0xf4292244, 6) STEP(I, d, a, b, c, GET(7), 0x432aff97, 10) STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15) STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21) STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6) STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10) STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15) STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21) STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6) STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10) STEP(I, c, d, a, b, GET(6), 0xa3014314, 15) STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21) STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6) STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10) STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15) STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21) a += saved_a; b += saved_b; c += saved_c; d += saved_d; ptr += 64; } while (Size -= 64); this->a = a; this->b = b; this->c = c; this->d = d; return ptr; } MD5::MD5() : a(0x67452301), b(0xefcdab89), c(0x98badcfe), d(0x10325476), hi(0), lo(0) { } /// Incrementally add the bytes in \p Data to the hash. void MD5::update(ArrayRef Data) { MD5_u32plus saved_lo; unsigned long used, free; const uint8_t *Ptr = Data.data(); unsigned long Size = Data.size(); saved_lo = lo; if ((lo = (saved_lo + Size) & 0x1fffffff) < saved_lo) hi++; hi += Size >> 29; used = saved_lo & 0x3f; if (used) { free = 64 - used; if (Size < free) { memcpy(&buffer[used], Ptr, Size); return; } memcpy(&buffer[used], Ptr, free); Ptr = Ptr + free; Size -= free; body(ArrayRef(buffer, 64)); } if (Size >= 64) { Ptr = body(ArrayRef(Ptr, Size & ~(unsigned long) 0x3f)); Size &= 0x3f; } memcpy(buffer, Ptr, Size); } /// Add the bytes in the StringRef \p Str to the hash. // Note that this isn't a string and so this won't include any trailing NULL // bytes. void MD5::update(StringRef Str) { ArrayRef SVal((const uint8_t *)Str.data(), Str.size()); update(SVal); } /// \brief Finish the hash and place the resulting hash into \p result. /// \param result is assumed to be a minimum of 16-bytes in size. void MD5::final(MD5Result &result) { unsigned long used, free; used = lo & 0x3f; buffer[used++] = 0x80; free = 64 - used; if (free < 8) { memset(&buffer[used], 0, free); body(ArrayRef(buffer, 64)); used = 0; free = 64; } memset(&buffer[used], 0, free - 8); lo <<= 3; buffer[56] = lo; buffer[57] = lo >> 8; buffer[58] = lo >> 16; buffer[59] = lo >> 24; buffer[60] = hi; buffer[61] = hi >> 8; buffer[62] = hi >> 16; buffer[63] = hi >> 24; body(ArrayRef(buffer, 64)); result[0] = a; result[1] = a >> 8; result[2] = a >> 16; result[3] = a >> 24; result[4] = b; result[5] = b >> 8; result[6] = b >> 16; result[7] = b >> 24; result[8] = c; result[9] = c >> 8; result[10] = c >> 16; result[11] = c >> 24; result[12] = d; result[13] = d >> 8; result[14] = d >> 16; result[15] = d >> 24; } void MD5::stringifyResult(MD5Result &result, SmallString<32> &Str) { raw_svector_ostream Res(Str); for (int i = 0; i < 16; ++i) Res << format("%.2x", result[i]); } }