//===- SystemUtils.cpp - Utilities for low-level system tasks -------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains functions used to do a variety of low-level, often // system-specific, tasks. // //===----------------------------------------------------------------------===// #define _POSIX_MAPPED_FILES #include "Support/SystemUtils.h" #include "Config/fcntl.h" #include "Config/pagesize.h" #include "Config/unistd.h" #include "Config/windows.h" #include "Config/sys/mman.h" #include "Config/sys/stat.h" #include "Config/sys/types.h" #include "Config/sys/wait.h" #include #include #include #include #include #include using namespace llvm; /// isExecutableFile - This function returns true if the filename specified /// exists and is executable. /// bool llvm::isExecutableFile(const std::string &ExeFileName) { struct stat Buf; if (stat(ExeFileName.c_str(), &Buf)) return false; // Must not be executable! if (!(Buf.st_mode & S_IFREG)) return false; // Not a regular file? if (Buf.st_uid == getuid()) // Owner of file? return Buf.st_mode & S_IXUSR; else if (Buf.st_gid == getgid()) // In group of file? return Buf.st_mode & S_IXGRP; else // Unrelated to file? return Buf.st_mode & S_IXOTH; } /// isStandardOutAConsole - Return true if we can tell that the standard output /// stream goes to a terminal window or console. bool llvm::isStandardOutAConsole() { #if HAVE_ISATTY return isatty(1); #endif // If we don't have isatty, just return false. return false; } /// FindExecutable - Find a named executable, giving the argv[0] of program /// being executed. This allows us to find another LLVM tool if it is built /// into the same directory, but that directory is neither the current /// directory, nor in the PATH. If the executable cannot be found, return an /// empty string. /// #undef FindExecutable // needed on windows :( std::string llvm::FindExecutable(const std::string &ExeName, const std::string &ProgramPath) { // First check the directory that bugpoint is in. We can do this if // BugPointPath contains at least one / character, indicating that it is a // relative path to bugpoint itself. // std::string Result = ProgramPath; while (!Result.empty() && Result[Result.size()-1] != '/') Result.erase(Result.size()-1, 1); if (!Result.empty()) { Result += ExeName; if (isExecutableFile(Result)) return Result; // Found it? } // Okay, if the path to the program didn't tell us anything, try using the // PATH environment variable. const char *PathStr = getenv("PATH"); if (PathStr == 0) return ""; // Now we have a colon separated list of directories to search... try them... unsigned PathLen = strlen(PathStr); while (PathLen) { // Find the first colon... const char *Colon = std::find(PathStr, PathStr+PathLen, ':'); // Check to see if this first directory contains the executable... std::string FilePath = std::string(PathStr, Colon) + '/' + ExeName; if (isExecutableFile(FilePath)) return FilePath; // Found the executable! // Nope it wasn't in this directory, check the next range! PathLen -= Colon-PathStr; PathStr = Colon; while (*PathStr == ':') { // Advance past colons PathStr++; PathLen--; } } // If we fell out, we ran out of directories in PATH to search, return failure return ""; } static void RedirectFD(const std::string &File, int FD) { if (File.empty()) return; // Noop // Open the file int InFD = open(File.c_str(), FD == 0 ? O_RDONLY : O_WRONLY|O_CREAT, 0666); if (InFD == -1) { std::cerr << "Error opening file '" << File << "' for " << (FD == 0 ? "input" : "output") << "!\n"; exit(1); } dup2(InFD, FD); // Install it as the requested FD close(InFD); // Close the original FD } static bool Timeout = false; static void TimeOutHandler(int Sig) { Timeout = true; } /// RunProgramWithTimeout - This function executes the specified program, with /// the specified null-terminated argument array, with the stdin/out/err fd's /// redirected, with a timeout specified by the last argument. This terminates /// the calling program if there is an error executing the specified program. /// It returns the return value of the program, or -1 if a timeout is detected. /// int llvm::RunProgramWithTimeout(const std::string &ProgramPath, const char **Args, const std::string &StdInFile, const std::string &StdOutFile, const std::string &StdErrFile, unsigned NumSeconds) { #ifdef HAVE_SYS_WAIT_H int Child = fork(); switch (Child) { case -1: std::cerr << "ERROR forking!\n"; exit(1); case 0: // Child RedirectFD(StdInFile, 0); // Redirect file descriptors... RedirectFD(StdOutFile, 1); if (StdOutFile != StdErrFile) RedirectFD(StdErrFile, 2); else dup2(1, 2); execv(ProgramPath.c_str(), (char *const *)Args); std::cerr << "Error executing program: '" << ProgramPath; for (; *Args; ++Args) std::cerr << " " << *Args; std::cerr << "'\n"; exit(1); default: break; } // Make sure all output has been written while waiting std::cout << std::flush; // Install a timeout handler. Timeout = false; struct sigaction Act, Old; Act.sa_sigaction = 0; Act.sa_handler = TimeOutHandler; sigemptyset(&Act.sa_mask); Act.sa_flags = 0; sigaction(SIGALRM, &Act, &Old); // Set the timeout if one is set. if (NumSeconds) alarm(NumSeconds); int Status; while (wait(&Status) != Child) if (errno == EINTR) { if (Timeout) { // Kill the child. kill(Child, SIGKILL); if (wait(&Status) != Child) std::cerr << "Something funny happened waiting for the child!\n"; alarm(0); sigaction(SIGALRM, &Old, 0); return -1; // Timeout detected } else { std::cerr << "Error waiting for child process!\n"; exit(1); } } alarm(0); sigaction(SIGALRM, &Old, 0); return Status; #else std::cerr << "RunProgramWithTimeout not implemented on this platform!\n"; return -1; #endif } // ExecWait - executes a program with the specified arguments and environment. // It then waits for the progarm to termiante and then returns to the caller. // // Inputs: // argv - The arguments to the program as an array of C strings. The first // argument should be the name of the program to execute, and the // last argument should be a pointer to NULL. // // envp - The environment passes to the program as an array of C strings in // the form of "name=value" pairs. The last element should be a // pointer to NULL. // // Outputs: // None. // // Return value: // 0 - No errors. // 1 - The program could not be executed. // 1 - The program returned a non-zero exit status. // 1 - The program terminated abnormally. // // Notes: // The program will inherit the stdin, stdout, and stderr file descriptors // as well as other various configuration settings (umask). // // This function should not print anything to stdout/stderr on its own. It is // a generic library function. The caller or executed program should report // errors in the way it sees fit. // // This function does not use $PATH to find programs. // int llvm::ExecWait(const char * const old_argv[], const char * const old_envp[]) { #ifdef HAVE_SYS_WAIT_H // Create local versions of the parameters that can be passed into execve() // without creating const problems. char ** const argv = (char ** const) old_argv; char ** const envp = (char ** const) old_envp; // Create a child process. switch (fork()) { // An error occured: Return to the caller. case -1: return 1; break; // Child process: Execute the program. case 0: execve (argv[0], argv, envp); // If the execve() failed, we should exit and let the parent pick up // our non-zero exit status. exit (1); // Parent process: Break out of the switch to do our processing. default: break; } // Parent process: Wait for the child process to terminate. int status; if ((wait (&status)) == -1) return 1; // If the program exited normally with a zero exit status, return success! if (WIFEXITED (status) && (WEXITSTATUS(status) == 0)) return 0; #else std::cerr << "llvm::ExecWait not implemented on this platform!\n"; #endif // Otherwise, return failure. return 1; } /// AllocateRWXMemory - Allocate a slab of memory with read/write/execute /// permissions. This is typically used for JIT applications where we want /// to emit code to the memory then jump to it. Getting this type of memory /// is very OS specific. /// void *llvm::AllocateRWXMemory(unsigned NumBytes) { if (NumBytes == 0) return 0; #if defined(HAVE_WINDOWS_H) // On windows we use VirtualAlloc. void *P = VirtualAlloc(0, NumBytes, MEM_COMMIT, PAGE_EXECUTE_READWRITE); if (P == 0) { std::cerr << "Error allocating executable memory!\n"; abort(); } return P; #elif defined(HAVE_MMAP) static const long pageSize = GetPageSize(); unsigned NumPages = (NumBytes+pageSize-1)/pageSize; /* FIXME: This should use the proper autoconf flags */ #if defined(i386) || defined(__i386__) || defined(__x86__) /* Linux and *BSD tend to have these flags named differently. */ #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS) # define MAP_ANONYMOUS MAP_ANON #endif /* defined(MAP_ANON) && !defined(MAP_ANONYMOUS) */ #elif defined(sparc) || defined(__sparc__) || defined(__sparcv9) /* nothing */ #else std::cerr << "This architecture has an unknown MMAP implementation!\n"; abort(); return 0; #endif int fd = -1; #if defined(__linux__) fd = 0; #endif unsigned mmapFlags = MAP_PRIVATE|MAP_ANONYMOUS; #ifdef MAP_NORESERVE mmapFlags |= MAP_NORESERVE; #endif void *pa = mmap(0, pageSize*NumPages, PROT_READ|PROT_WRITE|PROT_EXEC, mmapFlags, fd, 0); if (pa == MAP_FAILED) { perror("mmap"); abort(); } return pa; #else std::cerr << "Do not know how to allocate mem for the JIT without mmap!\n"; abort(); return 0; #endif }