//===-- Timer.cpp - Interval Timing Support -------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Interval Timing implementation. // //===----------------------------------------------------------------------===// #include "llvm/Support/Timer.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/Format.h" #include "llvm/System/Process.h" #include #include #include using namespace llvm; // GetLibSupportInfoOutputFile - Return a file stream to print our output on. namespace llvm { extern raw_ostream *GetLibSupportInfoOutputFile(); } // getLibSupportInfoOutputFilename - This ugly hack is brought to you courtesy // of constructor/destructor ordering being unspecified by C++. Basically the // problem is that a Statistic object gets destroyed, which ends up calling // 'GetLibSupportInfoOutputFile()' (below), which calls this function. // LibSupportInfoOutputFilename used to be a global variable, but sometimes it // would get destroyed before the Statistic, causing havoc to ensue. We "fix" // this by creating the string the first time it is needed and never destroying // it. static ManagedStatic LibSupportInfoOutputFilename; static std::string &getLibSupportInfoOutputFilename() { return *LibSupportInfoOutputFilename; } static ManagedStatic > TimerLock; namespace { static cl::opt TrackSpace("track-memory", cl::desc("Enable -time-passes memory " "tracking (this may be slow)"), cl::Hidden); static cl::opt InfoOutputFilename("info-output-file", cl::value_desc("filename"), cl::desc("File to append -stats and -timer output to"), cl::Hidden, cl::location(getLibSupportInfoOutputFilename())); } static TimerGroup *DefaultTimerGroup = 0; static TimerGroup *getDefaultTimerGroup() { TimerGroup* tmp = DefaultTimerGroup; sys::MemoryFence(); if (!tmp) { llvm_acquire_global_lock(); tmp = DefaultTimerGroup; if (!tmp) { tmp = new TimerGroup("Miscellaneous Ungrouped Timers"); sys::MemoryFence(); DefaultTimerGroup = tmp; } llvm_release_global_lock(); } return tmp; } Timer::Timer(const std::string &N) : Elapsed(0), UserTime(0), SystemTime(0), MemUsed(0), PeakMem(0), Name(N), Started(false), TG(getDefaultTimerGroup()) { TG->addTimer(); } Timer::Timer(const std::string &N, TimerGroup &tg) : Elapsed(0), UserTime(0), SystemTime(0), MemUsed(0), PeakMem(0), Name(N), Started(false), TG(&tg) { TG->addTimer(); } Timer::Timer(const Timer &T) { TG = T.TG; if (TG) TG->addTimer(); operator=(T); } // Copy ctor, initialize with no TG member. Timer::Timer(bool, const Timer &T) { TG = T.TG; // Avoid assertion in operator= operator=(T); // Copy contents TG = 0; } Timer::~Timer() { if (TG) { if (Started) { Started = false; TG->addTimerToPrint(*this); } TG->removeTimer(); } } static inline size_t getMemUsage() { if (TrackSpace) return sys::Process::GetMallocUsage(); return 0; } struct TimeRecord { double Elapsed, UserTime, SystemTime; ssize_t MemUsed; }; static TimeRecord getTimeRecord(bool Start) { TimeRecord Result; sys::TimeValue now(0,0); sys::TimeValue user(0,0); sys::TimeValue sys(0,0); ssize_t MemUsed = 0; if (Start) { MemUsed = getMemUsage(); sys::Process::GetTimeUsage(now,user,sys); } else { sys::Process::GetTimeUsage(now,user,sys); MemUsed = getMemUsage(); } Result.Elapsed = now.seconds() + now.microseconds() / 1000000.0; Result.UserTime = user.seconds() + user.microseconds() / 1000000.0; Result.SystemTime = sys.seconds() + sys.microseconds() / 1000000.0; Result.MemUsed = MemUsed; return Result; } static ManagedStatic > ActiveTimers; void Timer::startTimer() { sys::SmartScopedLock L(Lock); Started = true; ActiveTimers->push_back(this); TimeRecord TR = getTimeRecord(true); Elapsed -= TR.Elapsed; UserTime -= TR.UserTime; SystemTime -= TR.SystemTime; MemUsed -= TR.MemUsed; PeakMemBase = TR.MemUsed; } void Timer::stopTimer() { sys::SmartScopedLock L(Lock); TimeRecord TR = getTimeRecord(false); Elapsed += TR.Elapsed; UserTime += TR.UserTime; SystemTime += TR.SystemTime; MemUsed += TR.MemUsed; if (ActiveTimers->back() == this) { ActiveTimers->pop_back(); } else { std::vector::iterator I = std::find(ActiveTimers->begin(), ActiveTimers->end(), this); assert(I != ActiveTimers->end() && "stop but no startTimer?"); ActiveTimers->erase(I); } } void Timer::sum(const Timer &T) { if (&T < this) { T.Lock.acquire(); Lock.acquire(); } else { Lock.acquire(); T.Lock.acquire(); } Elapsed += T.Elapsed; UserTime += T.UserTime; SystemTime += T.SystemTime; MemUsed += T.MemUsed; PeakMem += T.PeakMem; if (&T < this) { T.Lock.release(); Lock.release(); } else { Lock.release(); T.Lock.release(); } } /// addPeakMemoryMeasurement - This method should be called whenever memory /// usage needs to be checked. It adds a peak memory measurement to the /// currently active timers, which will be printed when the timer group prints /// void Timer::addPeakMemoryMeasurement() { size_t MemUsed = getMemUsage(); for (std::vector::iterator I = ActiveTimers->begin(), E = ActiveTimers->end(); I != E; ++I) { (*I)->Lock.acquire(); (*I)->PeakMem = std::max((*I)->PeakMem, MemUsed-(*I)->PeakMemBase); (*I)->Lock.release(); } } //===----------------------------------------------------------------------===// // NamedRegionTimer Implementation //===----------------------------------------------------------------------===// namespace { typedef std::map Name2Timer; typedef std::map > Name2Pair; } static ManagedStatic NamedTimers; static ManagedStatic NamedGroupedTimers; static Timer &getNamedRegionTimer(const std::string &Name) { sys::SmartScopedLock L(*TimerLock); Name2Timer::iterator I = NamedTimers->find(Name); if (I != NamedTimers->end()) return I->second; return NamedTimers->insert(I, std::make_pair(Name, Timer(Name)))->second; } static Timer &getNamedRegionTimer(const std::string &Name, const std::string &GroupName) { sys::SmartScopedLock L(*TimerLock); Name2Pair::iterator I = NamedGroupedTimers->find(GroupName); if (I == NamedGroupedTimers->end()) { TimerGroup TG(GroupName); std::pair Pair(TG, Name2Timer()); I = NamedGroupedTimers->insert(I, std::make_pair(GroupName, Pair)); } Name2Timer::iterator J = I->second.second.find(Name); if (J == I->second.second.end()) J = I->second.second.insert(J, std::make_pair(Name, Timer(Name, I->second.first))); return J->second; } NamedRegionTimer::NamedRegionTimer(const std::string &Name) : TimeRegion(getNamedRegionTimer(Name)) {} NamedRegionTimer::NamedRegionTimer(const std::string &Name, const std::string &GroupName) : TimeRegion(getNamedRegionTimer(Name, GroupName)) {} //===----------------------------------------------------------------------===// // TimerGroup Implementation //===----------------------------------------------------------------------===// static void printVal(double Val, double Total, raw_ostream &OS) { if (Total < 1e-7) // Avoid dividing by zero... OS << " ----- "; else { OS << " " << format("%7.4f", Val) << " ("; OS << format("%5.1f", Val*100/Total) << "%)"; } } void Timer::print(const Timer &Total, raw_ostream &OS) { if (&Total < this) { Total.Lock.acquire(); Lock.acquire(); } else { Lock.acquire(); Total.Lock.acquire(); } if (Total.UserTime) printVal(UserTime, Total.UserTime, OS); if (Total.SystemTime) printVal(SystemTime, Total.SystemTime, OS); if (Total.getProcessTime()) printVal(getProcessTime(), Total.getProcessTime(), OS); printVal(Elapsed, Total.Elapsed, OS); OS << " "; if (Total.MemUsed) { OS << format("%9lld", (long long)MemUsed) << " "; } if (Total.PeakMem) { if (PeakMem) { OS << format("%9lld", (long long)PeakMem) << " "; } else OS << " "; } OS << Name << "\n"; Started = false; // Once printed, don't print again if (&Total < this) { Total.Lock.release(); Lock.release(); } else { Lock.release(); Total.Lock.release(); } } // GetLibSupportInfoOutputFile - Return a file stream to print our output on... raw_ostream * llvm::GetLibSupportInfoOutputFile() { std::string &LibSupportInfoOutputFilename = getLibSupportInfoOutputFilename(); if (LibSupportInfoOutputFilename.empty()) return &errs(); if (LibSupportInfoOutputFilename == "-") return &outs(); std::string Error; raw_ostream *Result = new raw_fd_ostream(LibSupportInfoOutputFilename.c_str(), Error, raw_fd_ostream::F_Append); if (Error.empty()) return Result; errs() << "Error opening info-output-file '" << LibSupportInfoOutputFilename << " for appending!\n"; delete Result; return &errs(); } void TimerGroup::removeTimer() { sys::SmartScopedLock L(*TimerLock); if (--NumTimers == 0 && !TimersToPrint.empty()) { // Print timing report... // Sort the timers in descending order by amount of time taken... std::sort(TimersToPrint.begin(), TimersToPrint.end(), std::greater()); // Figure out how many spaces to indent TimerGroup name... unsigned Padding = (80-Name.length())/2; if (Padding > 80) Padding = 0; // Don't allow "negative" numbers raw_ostream *OutStream = GetLibSupportInfoOutputFile(); ++NumTimers; { // Scope to contain Total timer... don't allow total timer to drop us to // zero timers... Timer Total("TOTAL"); for (unsigned i = 0, e = TimersToPrint.size(); i != e; ++i) Total.sum(TimersToPrint[i]); // Print out timing header... *OutStream << "===" << std::string(73, '-') << "===\n" << std::string(Padding, ' ') << Name << "\n" << "===" << std::string(73, '-') << "===\n"; // If this is not an collection of ungrouped times, print the total time. // Ungrouped timers don't really make sense to add up. We still print the // TOTAL line to make the percentages make sense. if (this != DefaultTimerGroup) { *OutStream << " Total Execution Time: "; *OutStream << format("%5.4f", Total.getProcessTime()) << " seconds ("; *OutStream << format("%5.4f", Total.getWallTime()) << " wall clock)\n"; } *OutStream << "\n"; if (Total.UserTime) *OutStream << " ---User Time---"; if (Total.SystemTime) *OutStream << " --System Time--"; if (Total.getProcessTime()) *OutStream << " --User+System--"; *OutStream << " ---Wall Time---"; if (Total.getMemUsed()) *OutStream << " ---Mem---"; if (Total.getPeakMem()) *OutStream << " -PeakMem-"; *OutStream << " --- Name ---\n"; // Loop through all of the timing data, printing it out... for (unsigned i = 0, e = TimersToPrint.size(); i != e; ++i) TimersToPrint[i].print(Total, *OutStream); Total.print(Total, *OutStream); *OutStream << '\n'; OutStream->flush(); } --NumTimers; TimersToPrint.clear(); if (OutStream != &errs() && OutStream != &outs()) delete OutStream; // Close the file... } } void TimerGroup::addTimer() { sys::SmartScopedLock L(*TimerLock); ++NumTimers; } void TimerGroup::addTimerToPrint(const Timer &T) { sys::SmartScopedLock L(*TimerLock); TimersToPrint.push_back(Timer(true, T)); }