//===- llvm/Support/Unix/Path.inc - Unix Path Implementation ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Unix specific implementation of the Path API. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// //=== WARNING: Implementation here must contain only generic UNIX code that //=== is guaranteed to work on *all* UNIX variants. //===----------------------------------------------------------------------===// #include "Unix.h" #include #include #if HAVE_SYS_STAT_H #include #endif #if HAVE_FCNTL_H #include #endif #ifdef HAVE_SYS_MMAN_H #include #endif #if HAVE_DIRENT_H # include # define NAMLEN(dirent) strlen((dirent)->d_name) #else # define dirent direct # define NAMLEN(dirent) (dirent)->d_namlen # if HAVE_SYS_NDIR_H # include # endif # if HAVE_SYS_DIR_H # include # endif # if HAVE_NDIR_H # include # endif #endif #ifdef __APPLE__ #include #endif // Both stdio.h and cstdio are included via different pathes and // stdcxx's cstdio doesn't include stdio.h, so it doesn't #undef the macros // either. #undef ferror #undef feof // For GNU Hurd #if defined(__GNU__) && !defined(PATH_MAX) # define PATH_MAX 4096 #endif using namespace llvm; namespace { /// This class automatically closes the given file descriptor when it goes out /// of scope. You can take back explicit ownership of the file descriptor by /// calling take(). The destructor does not verify that close was successful. /// Therefore, never allow this class to call close on a file descriptor that /// has been read from or written to. struct AutoFD { int FileDescriptor; AutoFD(int fd) : FileDescriptor(fd) {} ~AutoFD() { if (FileDescriptor >= 0) ::close(FileDescriptor); } int take() { int ret = FileDescriptor; FileDescriptor = -1; return ret; } operator int() const {return FileDescriptor;} }; } static std::error_code TempDir(SmallVectorImpl &result) { // FIXME: Don't use TMPDIR if program is SUID or SGID enabled. const char *dir = nullptr; (dir = std::getenv("TMPDIR")) || (dir = std::getenv("TMP")) || (dir = std::getenv("TEMP")) || (dir = std::getenv("TEMPDIR")) || #ifdef P_tmpdir (dir = P_tmpdir) || #endif (dir = "/tmp"); result.clear(); StringRef d(dir); result.append(d.begin(), d.end()); return std::error_code(); } namespace llvm { namespace sys { namespace fs { #if defined(__FreeBSD__) || defined (__NetBSD__) || defined(__Bitrig__) || \ defined(__OpenBSD__) || defined(__minix) || defined(__FreeBSD_kernel__) || \ defined(__linux__) || defined(__CYGWIN__) || defined(__DragonFly__) static int test_dir(char ret[PATH_MAX], const char *dir, const char *bin) { struct stat sb; char fullpath[PATH_MAX]; snprintf(fullpath, PATH_MAX, "%s/%s", dir, bin); if (realpath(fullpath, ret) == NULL) return (1); if (stat(fullpath, &sb) != 0) return (1); return (0); } static char * getprogpath(char ret[PATH_MAX], const char *bin) { char *pv, *s, *t; /* First approach: absolute path. */ if (bin[0] == '/') { if (test_dir(ret, "/", bin) == 0) return (ret); return (NULL); } /* Second approach: relative path. */ if (strchr(bin, '/') != NULL) { char cwd[PATH_MAX]; if (getcwd(cwd, PATH_MAX) == NULL) return (NULL); if (test_dir(ret, cwd, bin) == 0) return (ret); return (NULL); } /* Third approach: $PATH */ if ((pv = getenv("PATH")) == NULL) return (NULL); s = pv = strdup(pv); if (pv == NULL) return (NULL); while ((t = strsep(&s, ":")) != NULL) { if (test_dir(ret, t, bin) == 0) { free(pv); return (ret); } } free(pv); return (NULL); } #endif // __FreeBSD__ || __NetBSD__ || __FreeBSD_kernel__ /// GetMainExecutable - Return the path to the main executable, given the /// value of argv[0] from program startup. std::string getMainExecutable(const char *argv0, void *MainAddr) { #if defined(__APPLE__) // On OS X the executable path is saved to the stack by dyld. Reading it // from there is much faster than calling dladdr, especially for large // binaries with symbols. char exe_path[MAXPATHLEN]; uint32_t size = sizeof(exe_path); if (_NSGetExecutablePath(exe_path, &size) == 0) { char link_path[MAXPATHLEN]; if (realpath(exe_path, link_path)) return link_path; } #elif defined(__FreeBSD__) || defined (__NetBSD__) || defined(__Bitrig__) || \ defined(__OpenBSD__) || defined(__minix) || defined(__DragonFly__) || \ defined(__FreeBSD_kernel__) char exe_path[PATH_MAX]; if (getprogpath(exe_path, argv0) != NULL) return exe_path; #elif defined(__linux__) || defined(__CYGWIN__) char exe_path[MAXPATHLEN]; StringRef aPath("/proc/self/exe"); if (sys::fs::exists(aPath)) { // /proc is not always mounted under Linux (chroot for example). ssize_t len = readlink(aPath.str().c_str(), exe_path, sizeof(exe_path)); if (len >= 0) return StringRef(exe_path, len); } else { // Fall back to the classical detection. if (getprogpath(exe_path, argv0) != NULL) return exe_path; } #elif defined(HAVE_DLFCN_H) // Use dladdr to get executable path if available. Dl_info DLInfo; int err = dladdr(MainAddr, &DLInfo); if (err == 0) return ""; // If the filename is a symlink, we need to resolve and return the location of // the actual executable. char link_path[MAXPATHLEN]; if (realpath(DLInfo.dli_fname, link_path)) return link_path; #else #error GetMainExecutable is not implemented on this host yet. #endif return ""; } TimeValue file_status::getLastModificationTime() const { TimeValue Ret; Ret.fromEpochTime(fs_st_mtime); return Ret; } UniqueID file_status::getUniqueID() const { return UniqueID(fs_st_dev, fs_st_ino); } std::error_code current_path(SmallVectorImpl &result) { result.clear(); const char *pwd = ::getenv("PWD"); llvm::sys::fs::file_status PWDStatus, DotStatus; if (pwd && llvm::sys::path::is_absolute(pwd) && !llvm::sys::fs::status(pwd, PWDStatus) && !llvm::sys::fs::status(".", DotStatus) && PWDStatus.getUniqueID() == DotStatus.getUniqueID()) { result.append(pwd, pwd + strlen(pwd)); return std::error_code(); } #ifdef MAXPATHLEN result.reserve(MAXPATHLEN); #else // For GNU Hurd result.reserve(1024); #endif while (true) { if (::getcwd(result.data(), result.capacity()) == nullptr) { // See if there was a real error. if (errno != ENOMEM) return std::error_code(errno, std::generic_category()); // Otherwise there just wasn't enough space. result.reserve(result.capacity() * 2); } else break; } result.set_size(strlen(result.data())); return std::error_code(); } std::error_code create_directory(const Twine &path, bool IgnoreExisting) { SmallString<128> path_storage; StringRef p = path.toNullTerminatedStringRef(path_storage); if (::mkdir(p.begin(), S_IRWXU | S_IRWXG) == -1) { if (errno != EEXIST || !IgnoreExisting) return std::error_code(errno, std::generic_category()); } return std::error_code(); } std::error_code normalize_separators(SmallVectorImpl &Path) { for (auto PI = Path.begin(), PE = Path.end(); PI < PE; ++PI) { if (*PI == '\\') { auto PN = PI + 1; if (PN < PE && *PN == '\\') ++PI; // increment once, the for loop will move over the escaped slash else *PI = '/'; } } return std::error_code(); } // Note that we are using symbolic link because hard links are not supported by // all filesystems (SMB doesn't). std::error_code create_link(const Twine &to, const Twine &from) { // Get arguments. SmallString<128> from_storage; SmallString<128> to_storage; StringRef f = from.toNullTerminatedStringRef(from_storage); StringRef t = to.toNullTerminatedStringRef(to_storage); if (::symlink(t.begin(), f.begin()) == -1) return std::error_code(errno, std::generic_category()); return std::error_code(); } std::error_code remove(const Twine &path, bool IgnoreNonExisting) { SmallString<128> path_storage; StringRef p = path.toNullTerminatedStringRef(path_storage); struct stat buf; if (lstat(p.begin(), &buf) != 0) { if (errno != ENOENT || !IgnoreNonExisting) return std::error_code(errno, std::generic_category()); return std::error_code(); } // Note: this check catches strange situations. In all cases, LLVM should // only be involved in the creation and deletion of regular files. This // check ensures that what we're trying to erase is a regular file. It // effectively prevents LLVM from erasing things like /dev/null, any block // special file, or other things that aren't "regular" files. if (!S_ISREG(buf.st_mode) && !S_ISDIR(buf.st_mode) && !S_ISLNK(buf.st_mode)) return make_error_code(errc::operation_not_permitted); if (::remove(p.begin()) == -1) { if (errno != ENOENT || !IgnoreNonExisting) return std::error_code(errno, std::generic_category()); } return std::error_code(); } std::error_code rename(const Twine &from, const Twine &to) { // Get arguments. SmallString<128> from_storage; SmallString<128> to_storage; StringRef f = from.toNullTerminatedStringRef(from_storage); StringRef t = to.toNullTerminatedStringRef(to_storage); if (::rename(f.begin(), t.begin()) == -1) return std::error_code(errno, std::generic_category()); return std::error_code(); } std::error_code resize_file(const Twine &path, uint64_t size) { SmallString<128> path_storage; StringRef p = path.toNullTerminatedStringRef(path_storage); if (::truncate(p.begin(), size) == -1) return std::error_code(errno, std::generic_category()); return std::error_code(); } std::error_code exists(const Twine &path, bool &result) { SmallString<128> path_storage; StringRef p = path.toNullTerminatedStringRef(path_storage); if (::access(p.begin(), F_OK) == -1) { if (errno != ENOENT) return std::error_code(errno, std::generic_category()); result = false; } else result = true; return std::error_code(); } bool can_write(const Twine &Path) { SmallString<128> PathStorage; StringRef P = Path.toNullTerminatedStringRef(PathStorage); return 0 == access(P.begin(), W_OK); } bool can_execute(const Twine &Path) { SmallString<128> PathStorage; StringRef P = Path.toNullTerminatedStringRef(PathStorage); if (0 != access(P.begin(), R_OK | X_OK)) return false; struct stat buf; if (0 != stat(P.begin(), &buf)) return false; if (!S_ISREG(buf.st_mode)) return false; return true; } bool equivalent(file_status A, file_status B) { assert(status_known(A) && status_known(B)); return A.fs_st_dev == B.fs_st_dev && A.fs_st_ino == B.fs_st_ino; } std::error_code equivalent(const Twine &A, const Twine &B, bool &result) { file_status fsA, fsB; if (std::error_code ec = status(A, fsA)) return ec; if (std::error_code ec = status(B, fsB)) return ec; result = equivalent(fsA, fsB); return std::error_code(); } static std::error_code fillStatus(int StatRet, const struct stat &Status, file_status &Result) { if (StatRet != 0) { std::error_code ec(errno, std::generic_category()); if (ec == errc::no_such_file_or_directory) Result = file_status(file_type::file_not_found); else Result = file_status(file_type::status_error); return ec; } file_type Type = file_type::type_unknown; if (S_ISDIR(Status.st_mode)) Type = file_type::directory_file; else if (S_ISREG(Status.st_mode)) Type = file_type::regular_file; else if (S_ISBLK(Status.st_mode)) Type = file_type::block_file; else if (S_ISCHR(Status.st_mode)) Type = file_type::character_file; else if (S_ISFIFO(Status.st_mode)) Type = file_type::fifo_file; else if (S_ISSOCK(Status.st_mode)) Type = file_type::socket_file; perms Perms = static_cast(Status.st_mode); Result = file_status(Type, Perms, Status.st_dev, Status.st_ino, Status.st_mtime, Status.st_uid, Status.st_gid, Status.st_size); return std::error_code(); } std::error_code status(const Twine &Path, file_status &Result) { SmallString<128> PathStorage; StringRef P = Path.toNullTerminatedStringRef(PathStorage); struct stat Status; int StatRet = ::stat(P.begin(), &Status); return fillStatus(StatRet, Status, Result); } std::error_code status(int FD, file_status &Result) { struct stat Status; int StatRet = ::fstat(FD, &Status); return fillStatus(StatRet, Status, Result); } std::error_code setLastModificationAndAccessTime(int FD, TimeValue Time) { #if defined(HAVE_FUTIMENS) timespec Times[2]; Times[0].tv_sec = Time.toEpochTime(); Times[0].tv_nsec = 0; Times[1] = Times[0]; if (::futimens(FD, Times)) return std::error_code(errno, std::generic_category()); return std::error_code(); #elif defined(HAVE_FUTIMES) timeval Times[2]; Times[0].tv_sec = Time.toEpochTime(); Times[0].tv_usec = 0; Times[1] = Times[0]; if (::futimes(FD, Times)) return std::error_code(errno, std::generic_category()); return std::error_code(); #else #warning Missing futimes() and futimens() return make_error_code(errc::not_supported); #endif } std::error_code mapped_file_region::init(int FD, bool CloseFD, uint64_t Offset) { AutoFD ScopedFD(FD); if (!CloseFD) ScopedFD.take(); // Figure out how large the file is. struct stat FileInfo; if (fstat(FD, &FileInfo) == -1) return std::error_code(errno, std::generic_category()); uint64_t FileSize = FileInfo.st_size; if (Size == 0) Size = FileSize; else if (FileSize < Size) { // We need to grow the file. if (ftruncate(FD, Size) == -1) return std::error_code(errno, std::generic_category()); } int flags = (Mode == readwrite) ? MAP_SHARED : MAP_PRIVATE; int prot = (Mode == readonly) ? PROT_READ : (PROT_READ | PROT_WRITE); #ifdef MAP_FILE flags |= MAP_FILE; #endif Mapping = ::mmap(nullptr, Size, prot, flags, FD, Offset); if (Mapping == MAP_FAILED) return std::error_code(errno, std::generic_category()); return std::error_code(); } mapped_file_region::mapped_file_region(const Twine &path, mapmode mode, uint64_t length, uint64_t offset, std::error_code &ec) : Mode(mode) , Size(length) , Mapping() { // Make sure that the requested size fits within SIZE_T. if (length > std::numeric_limits::max()) { ec = make_error_code(errc::invalid_argument); return; } SmallString<128> path_storage; StringRef name = path.toNullTerminatedStringRef(path_storage); int oflags = (mode == readonly) ? O_RDONLY : O_RDWR; int ofd = ::open(name.begin(), oflags); if (ofd == -1) { ec = std::error_code(errno, std::generic_category()); return; } ec = init(ofd, true, offset); if (ec) Mapping = nullptr; } mapped_file_region::mapped_file_region(int fd, bool closefd, mapmode mode, uint64_t length, uint64_t offset, std::error_code &ec) : Mode(mode) , Size(length) , Mapping() { // Make sure that the requested size fits within SIZE_T. if (length > std::numeric_limits::max()) { ec = make_error_code(errc::invalid_argument); return; } ec = init(fd, closefd, offset); if (ec) Mapping = nullptr; } mapped_file_region::~mapped_file_region() { if (Mapping) ::munmap(Mapping, Size); } mapped_file_region::mapped_file_region(mapped_file_region &&other) : Mode(other.Mode), Size(other.Size), Mapping(other.Mapping) { other.Mapping = nullptr; } mapped_file_region::mapmode mapped_file_region::flags() const { assert(Mapping && "Mapping failed but used anyway!"); return Mode; } uint64_t mapped_file_region::size() const { assert(Mapping && "Mapping failed but used anyway!"); return Size; } char *mapped_file_region::data() const { assert(Mapping && "Mapping failed but used anyway!"); assert(Mode != readonly && "Cannot get non-const data for readonly mapping!"); return reinterpret_cast(Mapping); } const char *mapped_file_region::const_data() const { assert(Mapping && "Mapping failed but used anyway!"); return reinterpret_cast(Mapping); } int mapped_file_region::alignment() { return process::get_self()->page_size(); } std::error_code detail::directory_iterator_construct(detail::DirIterState &it, StringRef path){ SmallString<128> path_null(path); DIR *directory = ::opendir(path_null.c_str()); if (!directory) return std::error_code(errno, std::generic_category()); it.IterationHandle = reinterpret_cast(directory); // Add something for replace_filename to replace. path::append(path_null, "."); it.CurrentEntry = directory_entry(path_null.str()); return directory_iterator_increment(it); } std::error_code detail::directory_iterator_destruct(detail::DirIterState &it) { if (it.IterationHandle) ::closedir(reinterpret_cast(it.IterationHandle)); it.IterationHandle = 0; it.CurrentEntry = directory_entry(); return std::error_code(); } std::error_code detail::directory_iterator_increment(detail::DirIterState &it) { errno = 0; dirent *cur_dir = ::readdir(reinterpret_cast(it.IterationHandle)); if (cur_dir == nullptr && errno != 0) { return std::error_code(errno, std::generic_category()); } else if (cur_dir != nullptr) { StringRef name(cur_dir->d_name, NAMLEN(cur_dir)); if ((name.size() == 1 && name[0] == '.') || (name.size() == 2 && name[0] == '.' && name[1] == '.')) return directory_iterator_increment(it); it.CurrentEntry.replace_filename(name); } else return directory_iterator_destruct(it); return std::error_code(); } std::error_code openFileForRead(const Twine &Name, int &ResultFD) { SmallString<128> Storage; StringRef P = Name.toNullTerminatedStringRef(Storage); while ((ResultFD = open(P.begin(), O_RDONLY)) < 0) { if (errno != EINTR) return std::error_code(errno, std::generic_category()); } return std::error_code(); } std::error_code openFileForWrite(const Twine &Name, int &ResultFD, sys::fs::OpenFlags Flags, unsigned Mode) { // Verify that we don't have both "append" and "excl". assert((!(Flags & sys::fs::F_Excl) || !(Flags & sys::fs::F_Append)) && "Cannot specify both 'excl' and 'append' file creation flags!"); int OpenFlags = O_CREAT; if (Flags & F_RW) OpenFlags |= O_RDWR; else OpenFlags |= O_WRONLY; if (Flags & F_Append) OpenFlags |= O_APPEND; else OpenFlags |= O_TRUNC; if (Flags & F_Excl) OpenFlags |= O_EXCL; SmallString<128> Storage; StringRef P = Name.toNullTerminatedStringRef(Storage); while ((ResultFD = open(P.begin(), OpenFlags, Mode)) < 0) { if (errno != EINTR) return std::error_code(errno, std::generic_category()); } return std::error_code(); } } // end namespace fs namespace path { bool home_directory(SmallVectorImpl &result) { if (char *RequestedDir = getenv("HOME")) { result.clear(); result.append(RequestedDir, RequestedDir + strlen(RequestedDir)); return true; } return false; } } // end namespace path } // end namespace sys } // end namespace llvm