//===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines an instruction selector for the AArch64 target. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "aarch64-isel" #include "AArch64.h" #include "AArch64InstrInfo.h" #include "AArch64Subtarget.h" #include "AArch64TargetMachine.h" #include "Utils/AArch64BaseInfo.h" #include "llvm/ADT/APSInt.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/IR/GlobalValue.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; //===--------------------------------------------------------------------===// /// AArch64 specific code to select AArch64 machine instructions for /// SelectionDAG operations. /// namespace { class AArch64DAGToDAGISel : public SelectionDAGISel { AArch64TargetMachine &TM; /// Keep a pointer to the AArch64Subtarget around so that we can /// make the right decision when generating code for different targets. const AArch64Subtarget *Subtarget; public: explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm, CodeGenOpt::Level OptLevel) : SelectionDAGISel(tm, OptLevel), TM(tm), Subtarget(&TM.getSubtarget()) { } virtual const char *getPassName() const { return "AArch64 Instruction Selection"; } // Include the pieces autogenerated from the target description. #include "AArch64GenDAGISel.inc" template bool SelectOffsetUImm12(SDValue N, SDValue &UImm12) { const ConstantSDNode *CN = dyn_cast(N); if (!CN || CN->getZExtValue() % MemSize != 0 || CN->getZExtValue() / MemSize > 0xfff) return false; UImm12 = CurDAG->getTargetConstant(CN->getZExtValue() / MemSize, MVT::i64); return true; } template bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) { return SelectCVTFixedPosOperand(N, FixedPos, RegWidth); } /// Used for pre-lowered address-reference nodes, so we already know /// the fields match. This operand's job is simply to add an /// appropriate shift operand to the MOVZ/MOVK instruction. template bool SelectMOVWAddressRef(SDValue N, SDValue &Imm, SDValue &Shift) { Imm = N; Shift = CurDAG->getTargetConstant(LogShift, MVT::i32); return true; } bool SelectFPZeroOperand(SDValue N, SDValue &Dummy); bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, unsigned RegWidth); bool SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, std::vector &OutOps); bool SelectLogicalImm(SDValue N, SDValue &Imm); template bool SelectTSTBOperand(SDValue N, SDValue &FixedPos) { return SelectTSTBOperand(N, FixedPos, RegWidth); } bool SelectTSTBOperand(SDValue N, SDValue &FixedPos, unsigned RegWidth); SDNode *SelectAtomic(SDNode *N, unsigned Op8, unsigned Op16, unsigned Op32, unsigned Op64); /// Put the given constant into a pool and return a DAG which will give its /// address. SDValue getConstantPoolItemAddress(SDLoc DL, const Constant *CV); SDNode *TrySelectToMoveImm(SDNode *N); SDNode *LowerToFPLitPool(SDNode *Node); SDNode *SelectToLitPool(SDNode *N); SDNode* Select(SDNode*); private: /// Select NEON load intrinsics. NumVecs should be 1, 2, 3 or 4. SDNode *SelectVLD(SDNode *N, unsigned NumVecs, const uint16_t *Opcode); /// Select NEON store intrinsics. NumVecs should be 1, 2, 3 or 4. SDNode *SelectVST(SDNode *N, unsigned NumVecs, const uint16_t *Opcodes); // Form pairs of consecutive 64-bit/128-bit registers. SDNode *createDPairNode(SDValue V0, SDValue V1); SDNode *createQPairNode(SDValue V0, SDValue V1); // Form sequences of 3 consecutive 64-bit/128-bit registers. SDNode *createDTripleNode(SDValue V0, SDValue V1, SDValue V2); SDNode *createQTripleNode(SDValue V0, SDValue V1, SDValue V2); // Form sequences of 4 consecutive 64-bit/128-bit registers. SDNode *createDQuadNode(SDValue V0, SDValue V1, SDValue V2, SDValue V3); SDNode *createQQuadNode(SDValue V0, SDValue V1, SDValue V2, SDValue V3); }; } bool AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, unsigned RegWidth) { const ConstantFPSDNode *CN = dyn_cast(N); if (!CN) return false; // An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits // is between 1 and 32 for a destination w-register, or 1 and 64 for an // x-register. // // By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we // want THIS_NODE to be 2^fbits. This is much easier to deal with using // integers. bool IsExact; // fbits is between 1 and 64 in the worst-case, which means the fmul // could have 2^64 as an actual operand. Need 65 bits of precision. APSInt IntVal(65, true); CN->getValueAPF().convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact); // N.b. isPowerOf2 also checks for > 0. if (!IsExact || !IntVal.isPowerOf2()) return false; unsigned FBits = IntVal.logBase2(); // Checks above should have guaranteed that we haven't lost information in // finding FBits, but it must still be in range. if (FBits == 0 || FBits > RegWidth) return false; FixedPos = CurDAG->getTargetConstant(64 - FBits, MVT::i32); return true; } bool AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, std::vector &OutOps) { switch (ConstraintCode) { default: llvm_unreachable("Unrecognised AArch64 memory constraint"); case 'm': // FIXME: more freedom is actually permitted for 'm'. We can go // hunting for a base and an offset if we want. Of course, since // we don't really know how the operand is going to be used we're // probably restricted to the load/store pair's simm7 as an offset // range anyway. case 'Q': OutOps.push_back(Op); } return false; } bool AArch64DAGToDAGISel::SelectFPZeroOperand(SDValue N, SDValue &Dummy) { ConstantFPSDNode *Imm = dyn_cast(N); if (!Imm || !Imm->getValueAPF().isPosZero()) return false; // Doesn't actually carry any information, but keeps TableGen quiet. Dummy = CurDAG->getTargetConstant(0, MVT::i32); return true; } bool AArch64DAGToDAGISel::SelectLogicalImm(SDValue N, SDValue &Imm) { uint32_t Bits; uint32_t RegWidth = N.getValueType().getSizeInBits(); ConstantSDNode *CN = dyn_cast(N); if (!CN) return false; if (!A64Imms::isLogicalImm(RegWidth, CN->getZExtValue(), Bits)) return false; Imm = CurDAG->getTargetConstant(Bits, MVT::i32); return true; } SDNode *AArch64DAGToDAGISel::TrySelectToMoveImm(SDNode *Node) { SDNode *ResNode; SDLoc dl(Node); EVT DestType = Node->getValueType(0); unsigned DestWidth = DestType.getSizeInBits(); unsigned MOVOpcode; EVT MOVType; int UImm16, Shift; uint32_t LogicalBits; uint64_t BitPat = cast(Node)->getZExtValue(); if (A64Imms::isMOVZImm(DestWidth, BitPat, UImm16, Shift)) { MOVType = DestType; MOVOpcode = DestWidth == 64 ? AArch64::MOVZxii : AArch64::MOVZwii; } else if (A64Imms::isMOVNImm(DestWidth, BitPat, UImm16, Shift)) { MOVType = DestType; MOVOpcode = DestWidth == 64 ? AArch64::MOVNxii : AArch64::MOVNwii; } else if (DestWidth == 64 && A64Imms::isMOVNImm(32, BitPat, UImm16, Shift)) { // To get something like 0x0000_0000_ffff_1234 into a 64-bit register we can // use a 32-bit instruction: "movn w0, 0xedbc". MOVType = MVT::i32; MOVOpcode = AArch64::MOVNwii; } else if (A64Imms::isLogicalImm(DestWidth, BitPat, LogicalBits)) { MOVOpcode = DestWidth == 64 ? AArch64::ORRxxi : AArch64::ORRwwi; uint16_t ZR = DestWidth == 64 ? AArch64::XZR : AArch64::WZR; return CurDAG->getMachineNode(MOVOpcode, dl, DestType, CurDAG->getRegister(ZR, DestType), CurDAG->getTargetConstant(LogicalBits, MVT::i32)); } else { // Can't handle it in one instruction. There's scope for permitting two (or // more) instructions, but that'll need more thought. return NULL; } ResNode = CurDAG->getMachineNode(MOVOpcode, dl, MOVType, CurDAG->getTargetConstant(UImm16, MVT::i32), CurDAG->getTargetConstant(Shift, MVT::i32)); if (MOVType != DestType) { ResNode = CurDAG->getMachineNode(TargetOpcode::SUBREG_TO_REG, dl, MVT::i64, MVT::i32, MVT::Other, CurDAG->getTargetConstant(0, MVT::i64), SDValue(ResNode, 0), CurDAG->getTargetConstant(AArch64::sub_32, MVT::i32)); } return ResNode; } SDValue AArch64DAGToDAGISel::getConstantPoolItemAddress(SDLoc DL, const Constant *CV) { EVT PtrVT = getTargetLowering()->getPointerTy(); switch (getTargetLowering()->getTargetMachine().getCodeModel()) { case CodeModel::Small: { unsigned Alignment = getTargetLowering()->getDataLayout()->getABITypeAlignment(CV->getType()); return CurDAG->getNode( AArch64ISD::WrapperSmall, DL, PtrVT, CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_NO_FLAG), CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_LO12), CurDAG->getConstant(Alignment, MVT::i32)); } case CodeModel::Large: { SDNode *LitAddr; LitAddr = CurDAG->getMachineNode( AArch64::MOVZxii, DL, PtrVT, CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G3), CurDAG->getTargetConstant(3, MVT::i32)); LitAddr = CurDAG->getMachineNode( AArch64::MOVKxii, DL, PtrVT, SDValue(LitAddr, 0), CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G2_NC), CurDAG->getTargetConstant(2, MVT::i32)); LitAddr = CurDAG->getMachineNode( AArch64::MOVKxii, DL, PtrVT, SDValue(LitAddr, 0), CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G1_NC), CurDAG->getTargetConstant(1, MVT::i32)); LitAddr = CurDAG->getMachineNode( AArch64::MOVKxii, DL, PtrVT, SDValue(LitAddr, 0), CurDAG->getTargetConstantPool(CV, PtrVT, 0, 0, AArch64II::MO_ABS_G0_NC), CurDAG->getTargetConstant(0, MVT::i32)); return SDValue(LitAddr, 0); } default: llvm_unreachable("Only small and large code models supported now"); } } SDNode *AArch64DAGToDAGISel::SelectToLitPool(SDNode *Node) { SDLoc DL(Node); uint64_t UnsignedVal = cast(Node)->getZExtValue(); int64_t SignedVal = cast(Node)->getSExtValue(); EVT DestType = Node->getValueType(0); // Since we may end up loading a 64-bit constant from a 32-bit entry the // constant in the pool may have a different type to the eventual node. ISD::LoadExtType Extension; EVT MemType; assert((DestType == MVT::i64 || DestType == MVT::i32) && "Only expect integer constants at the moment"); if (DestType == MVT::i32) { Extension = ISD::NON_EXTLOAD; MemType = MVT::i32; } else if (UnsignedVal <= UINT32_MAX) { Extension = ISD::ZEXTLOAD; MemType = MVT::i32; } else if (SignedVal >= INT32_MIN && SignedVal <= INT32_MAX) { Extension = ISD::SEXTLOAD; MemType = MVT::i32; } else { Extension = ISD::NON_EXTLOAD; MemType = MVT::i64; } Constant *CV = ConstantInt::get(Type::getIntNTy(*CurDAG->getContext(), MemType.getSizeInBits()), UnsignedVal); SDValue PoolAddr = getConstantPoolItemAddress(DL, CV); unsigned Alignment = getTargetLowering()->getDataLayout()->getABITypeAlignment(CV->getType()); return CurDAG->getExtLoad(Extension, DL, DestType, CurDAG->getEntryNode(), PoolAddr, MachinePointerInfo::getConstantPool(), MemType, /* isVolatile = */ false, /* isNonTemporal = */ false, Alignment).getNode(); } SDNode *AArch64DAGToDAGISel::LowerToFPLitPool(SDNode *Node) { SDLoc DL(Node); const ConstantFP *FV = cast(Node)->getConstantFPValue(); EVT DestType = Node->getValueType(0); unsigned Alignment = getTargetLowering()->getDataLayout()->getABITypeAlignment(FV->getType()); SDValue PoolAddr = getConstantPoolItemAddress(DL, FV); return CurDAG->getLoad(DestType, DL, CurDAG->getEntryNode(), PoolAddr, MachinePointerInfo::getConstantPool(), /* isVolatile = */ false, /* isNonTemporal = */ false, /* isInvariant = */ true, Alignment).getNode(); } bool AArch64DAGToDAGISel::SelectTSTBOperand(SDValue N, SDValue &FixedPos, unsigned RegWidth) { const ConstantSDNode *CN = dyn_cast(N); if (!CN) return false; uint64_t Val = CN->getZExtValue(); if (!isPowerOf2_64(Val)) return false; unsigned TestedBit = Log2_64(Val); // Checks above should have guaranteed that we haven't lost information in // finding TestedBit, but it must still be in range. if (TestedBit >= RegWidth) return false; FixedPos = CurDAG->getTargetConstant(TestedBit, MVT::i64); return true; } SDNode *AArch64DAGToDAGISel::SelectAtomic(SDNode *Node, unsigned Op8, unsigned Op16,unsigned Op32, unsigned Op64) { // Mostly direct translation to the given operations, except that we preserve // the AtomicOrdering for use later on. AtomicSDNode *AN = cast(Node); EVT VT = AN->getMemoryVT(); unsigned Op; if (VT == MVT::i8) Op = Op8; else if (VT == MVT::i16) Op = Op16; else if (VT == MVT::i32) Op = Op32; else if (VT == MVT::i64) Op = Op64; else llvm_unreachable("Unexpected atomic operation"); SmallVector Ops; for (unsigned i = 1; i < AN->getNumOperands(); ++i) Ops.push_back(AN->getOperand(i)); Ops.push_back(CurDAG->getTargetConstant(AN->getOrdering(), MVT::i32)); Ops.push_back(AN->getOperand(0)); // Chain moves to the end return CurDAG->SelectNodeTo(Node, Op, AN->getValueType(0), MVT::Other, &Ops[0], Ops.size()); } SDNode *AArch64DAGToDAGISel::createDPairNode(SDValue V0, SDValue V1) { SDLoc dl(V0.getNode()); SDValue RegClass = CurDAG->getTargetConstant(AArch64::DPairRegClassID, MVT::i32); SDValue SubReg0 = CurDAG->getTargetConstant(AArch64::dsub_0, MVT::i32); SDValue SubReg1 = CurDAG->getTargetConstant(AArch64::dsub_1, MVT::i32); const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::v2i64, Ops); } SDNode *AArch64DAGToDAGISel::createQPairNode(SDValue V0, SDValue V1) { SDLoc dl(V0.getNode()); SDValue RegClass = CurDAG->getTargetConstant(AArch64::QPairRegClassID, MVT::i32); SDValue SubReg0 = CurDAG->getTargetConstant(AArch64::qsub_0, MVT::i32); SDValue SubReg1 = CurDAG->getTargetConstant(AArch64::qsub_1, MVT::i32); const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::v4i64, Ops); } SDNode *AArch64DAGToDAGISel::createDTripleNode(SDValue V0, SDValue V1, SDValue V2) { SDLoc dl(V0.getNode()); SDValue RegClass = CurDAG->getTargetConstant(AArch64::DTripleRegClassID, MVT::i32); SDValue SubReg0 = CurDAG->getTargetConstant(AArch64::dsub_0, MVT::i32); SDValue SubReg1 = CurDAG->getTargetConstant(AArch64::dsub_1, MVT::i32); SDValue SubReg2 = CurDAG->getTargetConstant(AArch64::dsub_2, MVT::i32); const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1, V2, SubReg2 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops); } SDNode *AArch64DAGToDAGISel::createQTripleNode(SDValue V0, SDValue V1, SDValue V2) { SDLoc dl(V0.getNode()); SDValue RegClass = CurDAG->getTargetConstant(AArch64::QTripleRegClassID, MVT::i32); SDValue SubReg0 = CurDAG->getTargetConstant(AArch64::qsub_0, MVT::i32); SDValue SubReg1 = CurDAG->getTargetConstant(AArch64::qsub_1, MVT::i32); SDValue SubReg2 = CurDAG->getTargetConstant(AArch64::qsub_2, MVT::i32); const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1, V2, SubReg2 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops); } SDNode *AArch64DAGToDAGISel::createDQuadNode(SDValue V0, SDValue V1, SDValue V2, SDValue V3) { SDLoc dl(V0.getNode()); SDValue RegClass = CurDAG->getTargetConstant(AArch64::DQuadRegClassID, MVT::i32); SDValue SubReg0 = CurDAG->getTargetConstant(AArch64::dsub_0, MVT::i32); SDValue SubReg1 = CurDAG->getTargetConstant(AArch64::dsub_1, MVT::i32); SDValue SubReg2 = CurDAG->getTargetConstant(AArch64::dsub_2, MVT::i32); SDValue SubReg3 = CurDAG->getTargetConstant(AArch64::dsub_3, MVT::i32); const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1, V2, SubReg2, V3, SubReg3 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::v4i64, Ops); } SDNode *AArch64DAGToDAGISel::createQQuadNode(SDValue V0, SDValue V1, SDValue V2, SDValue V3) { SDLoc dl(V0.getNode()); SDValue RegClass = CurDAG->getTargetConstant(AArch64::QQuadRegClassID, MVT::i32); SDValue SubReg0 = CurDAG->getTargetConstant(AArch64::qsub_0, MVT::i32); SDValue SubReg1 = CurDAG->getTargetConstant(AArch64::qsub_1, MVT::i32); SDValue SubReg2 = CurDAG->getTargetConstant(AArch64::qsub_2, MVT::i32); SDValue SubReg3 = CurDAG->getTargetConstant(AArch64::qsub_3, MVT::i32); const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1, V2, SubReg2, V3, SubReg3 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::v8i64, Ops); } SDNode *AArch64DAGToDAGISel::SelectVLD(SDNode *N, unsigned NumVecs, const uint16_t *Opcodes) { assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range"); EVT VT = N->getValueType(0); unsigned OpcodeIndex; switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("unhandled vector load type"); case MVT::v8i8: OpcodeIndex = 0; break; case MVT::v4i16: OpcodeIndex = 1; break; case MVT::v2f32: case MVT::v2i32: OpcodeIndex = 2; break; case MVT::v1f64: case MVT::v1i64: OpcodeIndex = 3; break; case MVT::v16i8: OpcodeIndex = 4; break; case MVT::v8f16: case MVT::v8i16: OpcodeIndex = 5; break; case MVT::v4f32: case MVT::v4i32: OpcodeIndex = 6; break; case MVT::v2f64: case MVT::v2i64: OpcodeIndex = 7; break; } unsigned Opc = Opcodes[OpcodeIndex]; SmallVector Ops; Ops.push_back(N->getOperand(2)); // Push back the Memory Address Ops.push_back(N->getOperand(0)); // Push back the Chain std::vector ResTys; bool is64BitVector = VT.is64BitVector(); if (NumVecs == 1) ResTys.push_back(VT); else if (NumVecs == 3) ResTys.push_back(MVT::Untyped); else { EVT ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, is64BitVector ? NumVecs : NumVecs * 2); ResTys.push_back(ResTy); } ResTys.push_back(MVT::Other); // Type of the Chain SDLoc dl(N); SDNode *VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); // Transfer memoperands. MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); MemOp[0] = cast(N)->getMemOperand(); cast(VLd)->setMemRefs(MemOp, MemOp + 1); if (NumVecs == 1) return VLd; // If NumVecs > 1, the return result is a super register containing 2-4 // consecutive vector registers. SDValue SuperReg = SDValue(VLd, 0); unsigned Sub0 = is64BitVector ? AArch64::dsub_0 : AArch64::qsub_0; for (unsigned Vec = 0; Vec < NumVecs; ++Vec) ReplaceUses(SDValue(N, Vec), CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg)); // Update users of the Chain ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1)); return NULL; } SDNode *AArch64DAGToDAGISel::SelectVST(SDNode *N, unsigned NumVecs, const uint16_t *Opcodes) { assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range"); SDLoc dl(N); MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); MemOp[0] = cast(N)->getMemOperand(); unsigned Vec0Idx = 3; EVT VT = N->getOperand(Vec0Idx).getValueType(); unsigned OpcodeIndex; switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("unhandled vector store type"); case MVT::v8i8: OpcodeIndex = 0; break; case MVT::v4i16: OpcodeIndex = 1; break; case MVT::v2f32: case MVT::v2i32: OpcodeIndex = 2; break; case MVT::v1f64: case MVT::v1i64: OpcodeIndex = 3; break; case MVT::v16i8: OpcodeIndex = 4; break; case MVT::v8f16: case MVT::v8i16: OpcodeIndex = 5; break; case MVT::v4f32: case MVT::v4i32: OpcodeIndex = 6; break; case MVT::v2f64: case MVT::v2i64: OpcodeIndex = 7; break; } unsigned Opc = Opcodes[OpcodeIndex]; std::vector ResTys; ResTys.push_back(MVT::Other); // Type for the Chain SmallVector Ops; Ops.push_back(N->getOperand(2)); // Push back the Memory Address bool is64BitVector = VT.is64BitVector(); SDValue V0 = N->getOperand(Vec0Idx + 0); SDValue SrcReg; if (NumVecs == 1) SrcReg = V0; else { SDValue V1 = N->getOperand(Vec0Idx + 1); if (NumVecs == 2) SrcReg = is64BitVector ? SDValue(createDPairNode(V0, V1), 0) : SDValue(createQPairNode(V0, V1), 0); else { SDValue V2 = N->getOperand(Vec0Idx + 2); if (NumVecs == 3) SrcReg = is64BitVector ? SDValue(createDTripleNode(V0, V1, V2), 0) : SDValue(createQTripleNode(V0, V1, V2), 0); else { SDValue V3 = N->getOperand(Vec0Idx + 3); SrcReg = is64BitVector ? SDValue(createDQuadNode(V0, V1, V2, V3), 0) : SDValue(createQQuadNode(V0, V1, V2, V3), 0); } } } Ops.push_back(SrcReg); // Push back the Chain Ops.push_back(N->getOperand(0)); // Transfer memoperands. SDNode *VSt = CurDAG->getMachineNode(Opc, dl, ResTys, Ops); cast(VSt)->setMemRefs(MemOp, MemOp + 1); return VSt; } SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) { // Dump information about the Node being selected DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << "\n"); if (Node->isMachineOpcode()) { DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << "\n"); Node->setNodeId(-1); return NULL; } switch (Node->getOpcode()) { case ISD::ATOMIC_LOAD_ADD: return SelectAtomic(Node, AArch64::ATOMIC_LOAD_ADD_I8, AArch64::ATOMIC_LOAD_ADD_I16, AArch64::ATOMIC_LOAD_ADD_I32, AArch64::ATOMIC_LOAD_ADD_I64); case ISD::ATOMIC_LOAD_SUB: return SelectAtomic(Node, AArch64::ATOMIC_LOAD_SUB_I8, AArch64::ATOMIC_LOAD_SUB_I16, AArch64::ATOMIC_LOAD_SUB_I32, AArch64::ATOMIC_LOAD_SUB_I64); case ISD::ATOMIC_LOAD_AND: return SelectAtomic(Node, AArch64::ATOMIC_LOAD_AND_I8, AArch64::ATOMIC_LOAD_AND_I16, AArch64::ATOMIC_LOAD_AND_I32, AArch64::ATOMIC_LOAD_AND_I64); case ISD::ATOMIC_LOAD_OR: return SelectAtomic(Node, AArch64::ATOMIC_LOAD_OR_I8, AArch64::ATOMIC_LOAD_OR_I16, AArch64::ATOMIC_LOAD_OR_I32, AArch64::ATOMIC_LOAD_OR_I64); case ISD::ATOMIC_LOAD_XOR: return SelectAtomic(Node, AArch64::ATOMIC_LOAD_XOR_I8, AArch64::ATOMIC_LOAD_XOR_I16, AArch64::ATOMIC_LOAD_XOR_I32, AArch64::ATOMIC_LOAD_XOR_I64); case ISD::ATOMIC_LOAD_NAND: return SelectAtomic(Node, AArch64::ATOMIC_LOAD_NAND_I8, AArch64::ATOMIC_LOAD_NAND_I16, AArch64::ATOMIC_LOAD_NAND_I32, AArch64::ATOMIC_LOAD_NAND_I64); case ISD::ATOMIC_LOAD_MIN: return SelectAtomic(Node, AArch64::ATOMIC_LOAD_MIN_I8, AArch64::ATOMIC_LOAD_MIN_I16, AArch64::ATOMIC_LOAD_MIN_I32, AArch64::ATOMIC_LOAD_MIN_I64); case ISD::ATOMIC_LOAD_MAX: return SelectAtomic(Node, AArch64::ATOMIC_LOAD_MAX_I8, AArch64::ATOMIC_LOAD_MAX_I16, AArch64::ATOMIC_LOAD_MAX_I32, AArch64::ATOMIC_LOAD_MAX_I64); case ISD::ATOMIC_LOAD_UMIN: return SelectAtomic(Node, AArch64::ATOMIC_LOAD_UMIN_I8, AArch64::ATOMIC_LOAD_UMIN_I16, AArch64::ATOMIC_LOAD_UMIN_I32, AArch64::ATOMIC_LOAD_UMIN_I64); case ISD::ATOMIC_LOAD_UMAX: return SelectAtomic(Node, AArch64::ATOMIC_LOAD_UMAX_I8, AArch64::ATOMIC_LOAD_UMAX_I16, AArch64::ATOMIC_LOAD_UMAX_I32, AArch64::ATOMIC_LOAD_UMAX_I64); case ISD::ATOMIC_SWAP: return SelectAtomic(Node, AArch64::ATOMIC_SWAP_I8, AArch64::ATOMIC_SWAP_I16, AArch64::ATOMIC_SWAP_I32, AArch64::ATOMIC_SWAP_I64); case ISD::ATOMIC_CMP_SWAP: return SelectAtomic(Node, AArch64::ATOMIC_CMP_SWAP_I8, AArch64::ATOMIC_CMP_SWAP_I16, AArch64::ATOMIC_CMP_SWAP_I32, AArch64::ATOMIC_CMP_SWAP_I64); case ISD::FrameIndex: { int FI = cast(Node)->getIndex(); EVT PtrTy = getTargetLowering()->getPointerTy(); SDValue TFI = CurDAG->getTargetFrameIndex(FI, PtrTy); return CurDAG->SelectNodeTo(Node, AArch64::ADDxxi_lsl0_s, PtrTy, TFI, CurDAG->getTargetConstant(0, PtrTy)); } case ISD::ConstantPool: { // Constant pools are fine, just create a Target entry. ConstantPoolSDNode *CN = cast(Node); const Constant *C = CN->getConstVal(); SDValue CP = CurDAG->getTargetConstantPool(C, CN->getValueType(0)); ReplaceUses(SDValue(Node, 0), CP); return NULL; } case ISD::Constant: { SDNode *ResNode = 0; if (cast(Node)->getZExtValue() == 0) { // XZR and WZR are probably even better than an actual move: most of the // time they can be folded into another instruction with *no* cost. EVT Ty = Node->getValueType(0); assert((Ty == MVT::i32 || Ty == MVT::i64) && "unexpected type"); uint16_t Register = Ty == MVT::i32 ? AArch64::WZR : AArch64::XZR; ResNode = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(Node), Register, Ty).getNode(); } // Next best option is a move-immediate, see if we can do that. if (!ResNode) { ResNode = TrySelectToMoveImm(Node); } if (ResNode) return ResNode; // If even that fails we fall back to a lit-pool entry at the moment. Future // tuning may change this to a sequence of MOVZ/MOVN/MOVK instructions. ResNode = SelectToLitPool(Node); assert(ResNode && "We need *some* way to materialise a constant"); // We want to continue selection at this point since the litpool access // generated used generic nodes for simplicity. ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0)); Node = ResNode; break; } case ISD::ConstantFP: { if (A64Imms::isFPImm(cast(Node)->getValueAPF())) { // FMOV will take care of it from TableGen break; } SDNode *ResNode = LowerToFPLitPool(Node); ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0)); // We want to continue selection at this point since the litpool access // generated used generic nodes for simplicity. Node = ResNode; break; } case ISD::INTRINSIC_VOID: case ISD::INTRINSIC_W_CHAIN: { unsigned IntNo = cast(Node->getOperand(1))->getZExtValue(); switch (IntNo) { default: break; case Intrinsic::arm_neon_vld1: { static const uint16_t Opcodes[] = { AArch64::LD1_8B, AArch64::LD1_4H, AArch64::LD1_2S, AArch64::LD1_1D, AArch64::LD1_16B, AArch64::LD1_8H, AArch64::LD1_4S, AArch64::LD1_2D }; return SelectVLD(Node, 1, Opcodes); } case Intrinsic::arm_neon_vld2: { static const uint16_t Opcodes[] = { AArch64::LD2_8B, AArch64::LD2_4H, AArch64::LD2_2S, AArch64::LD1_2V_1D, AArch64::LD2_16B, AArch64::LD2_8H, AArch64::LD2_4S, AArch64::LD2_2D }; return SelectVLD(Node, 2, Opcodes); } case Intrinsic::arm_neon_vld3: { static const uint16_t Opcodes[] = { AArch64::LD3_8B, AArch64::LD3_4H, AArch64::LD3_2S, AArch64::LD1_3V_1D, AArch64::LD3_16B, AArch64::LD3_8H, AArch64::LD3_4S, AArch64::LD3_2D }; return SelectVLD(Node, 3, Opcodes); } case Intrinsic::arm_neon_vld4: { static const uint16_t Opcodes[] = { AArch64::LD4_8B, AArch64::LD4_4H, AArch64::LD4_2S, AArch64::LD1_4V_1D, AArch64::LD4_16B, AArch64::LD4_8H, AArch64::LD4_4S, AArch64::LD4_2D }; return SelectVLD(Node, 4, Opcodes); } case Intrinsic::arm_neon_vst1: { static const uint16_t Opcodes[] = { AArch64::ST1_8B, AArch64::ST1_4H, AArch64::ST1_2S, AArch64::ST1_1D, AArch64::ST1_16B, AArch64::ST1_8H, AArch64::ST1_4S, AArch64::ST1_2D }; return SelectVST(Node, 1, Opcodes); } case Intrinsic::arm_neon_vst2: { static const uint16_t Opcodes[] = { AArch64::ST2_8B, AArch64::ST2_4H, AArch64::ST2_2S, AArch64::ST1_2V_1D, AArch64::ST2_16B, AArch64::ST2_8H, AArch64::ST2_4S, AArch64::ST2_2D }; return SelectVST(Node, 2, Opcodes); } case Intrinsic::arm_neon_vst3: { static const uint16_t Opcodes[] = { AArch64::ST3_8B, AArch64::ST3_4H, AArch64::ST3_2S, AArch64::ST1_3V_1D, AArch64::ST3_16B, AArch64::ST3_8H, AArch64::ST3_4S, AArch64::ST3_2D }; return SelectVST(Node, 3, Opcodes); } case Intrinsic::arm_neon_vst4: { static const uint16_t Opcodes[] = { AArch64::ST4_8B, AArch64::ST4_4H, AArch64::ST4_2S, AArch64::ST1_4V_1D, AArch64::ST4_16B, AArch64::ST4_8H, AArch64::ST4_4S, AArch64::ST4_2D }; return SelectVST(Node, 4, Opcodes); } } break; } default: break; // Let generic code handle it } SDNode *ResNode = SelectCode(Node); DEBUG(dbgs() << "=> "; if (ResNode == NULL || ResNode == Node) Node->dump(CurDAG); else ResNode->dump(CurDAG); dbgs() << "\n"); return ResNode; } /// This pass converts a legalized DAG into a AArch64-specific DAG, ready for /// instruction scheduling. FunctionPass *llvm::createAArch64ISelDAG(AArch64TargetMachine &TM, CodeGenOpt::Level OptLevel) { return new AArch64DAGToDAGISel(TM, OptLevel); }