//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that AArch64 uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "aarch64-isel" #include "AArch64.h" #include "AArch64ISelLowering.h" #include "AArch64MachineFunctionInfo.h" #include "AArch64TargetMachine.h" #include "AArch64TargetObjectFile.h" #include "Utils/AArch64BaseInfo.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/IR/CallingConv.h" using namespace llvm; static TargetLoweringObjectFile *createTLOF(AArch64TargetMachine &TM) { const AArch64Subtarget *Subtarget = &TM.getSubtarget(); assert (Subtarget->isTargetELF() && "unknown subtarget type"); return new AArch64ElfTargetObjectFile(); } AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM) : TargetLowering(TM, createTLOF(TM)), Itins(TM.getInstrItineraryData()) { const AArch64Subtarget *Subtarget = &TM.getSubtarget(); // SIMD compares set the entire lane's bits to 1 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); // Scalar register <-> type mapping addRegisterClass(MVT::i32, &AArch64::GPR32RegClass); addRegisterClass(MVT::i64, &AArch64::GPR64RegClass); if (Subtarget->hasFPARMv8()) { addRegisterClass(MVT::f16, &AArch64::FPR16RegClass); addRegisterClass(MVT::f32, &AArch64::FPR32RegClass); addRegisterClass(MVT::f64, &AArch64::FPR64RegClass); addRegisterClass(MVT::f128, &AArch64::FPR128RegClass); } if (Subtarget->hasNEON()) { // And the vectors addRegisterClass(MVT::v1i8, &AArch64::FPR8RegClass); addRegisterClass(MVT::v1i16, &AArch64::FPR16RegClass); addRegisterClass(MVT::v1i32, &AArch64::FPR32RegClass); addRegisterClass(MVT::v1i64, &AArch64::FPR64RegClass); addRegisterClass(MVT::v1f64, &AArch64::FPR64RegClass); addRegisterClass(MVT::v8i8, &AArch64::FPR64RegClass); addRegisterClass(MVT::v4i16, &AArch64::FPR64RegClass); addRegisterClass(MVT::v2i32, &AArch64::FPR64RegClass); addRegisterClass(MVT::v1i64, &AArch64::FPR64RegClass); addRegisterClass(MVT::v2f32, &AArch64::FPR64RegClass); addRegisterClass(MVT::v16i8, &AArch64::FPR128RegClass); addRegisterClass(MVT::v8i16, &AArch64::FPR128RegClass); addRegisterClass(MVT::v4i32, &AArch64::FPR128RegClass); addRegisterClass(MVT::v2i64, &AArch64::FPR128RegClass); addRegisterClass(MVT::v4f32, &AArch64::FPR128RegClass); addRegisterClass(MVT::v2f64, &AArch64::FPR128RegClass); } computeRegisterProperties(); // We combine OR nodes for bitfield and NEON BSL operations. setTargetDAGCombine(ISD::OR); setTargetDAGCombine(ISD::AND); setTargetDAGCombine(ISD::SRA); setTargetDAGCombine(ISD::SRL); setTargetDAGCombine(ISD::SHL); setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); setTargetDAGCombine(ISD::INTRINSIC_VOID); setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); // AArch64 does not have i1 loads, or much of anything for i1 really. setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); setStackPointerRegisterToSaveRestore(AArch64::XSP); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); // We'll lower globals to wrappers for selection. setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); // A64 instructions have the comparison predicate attached to the user of the // result, but having a separate comparison is valuable for matching. setOperationAction(ISD::BR_CC, MVT::i32, Custom); setOperationAction(ISD::BR_CC, MVT::i64, Custom); setOperationAction(ISD::BR_CC, MVT::f32, Custom); setOperationAction(ISD::BR_CC, MVT::f64, Custom); setOperationAction(ISD::SELECT, MVT::i32, Custom); setOperationAction(ISD::SELECT, MVT::i64, Custom); setOperationAction(ISD::SELECT, MVT::f32, Custom); setOperationAction(ISD::SELECT, MVT::f64, Custom); setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); setOperationAction(ISD::BRCOND, MVT::Other, Custom); setOperationAction(ISD::SETCC, MVT::i32, Custom); setOperationAction(ISD::SETCC, MVT::i64, Custom); setOperationAction(ISD::SETCC, MVT::f32, Custom); setOperationAction(ISD::SETCC, MVT::f64, Custom); setOperationAction(ISD::BR_JT, MVT::Other, Expand); setOperationAction(ISD::JumpTable, MVT::i32, Custom); setOperationAction(ISD::JumpTable, MVT::i64, Custom); setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VACOPY, MVT::Other, Custom); setOperationAction(ISD::VAEND, MVT::Other, Expand); setOperationAction(ISD::VAARG, MVT::Other, Expand); setOperationAction(ISD::BlockAddress, MVT::i64, Custom); setOperationAction(ISD::ConstantPool, MVT::i64, Custom); setOperationAction(ISD::ROTL, MVT::i32, Expand); setOperationAction(ISD::ROTL, MVT::i64, Expand); setOperationAction(ISD::UREM, MVT::i32, Expand); setOperationAction(ISD::UREM, MVT::i64, Expand); setOperationAction(ISD::UDIVREM, MVT::i32, Expand); setOperationAction(ISD::UDIVREM, MVT::i64, Expand); setOperationAction(ISD::SREM, MVT::i32, Expand); setOperationAction(ISD::SREM, MVT::i64, Expand); setOperationAction(ISD::SDIVREM, MVT::i32, Expand); setOperationAction(ISD::SDIVREM, MVT::i64, Expand); setOperationAction(ISD::CTPOP, MVT::i32, Expand); setOperationAction(ISD::CTPOP, MVT::i64, Expand); // Legal floating-point operations. setOperationAction(ISD::FABS, MVT::f32, Legal); setOperationAction(ISD::FABS, MVT::f64, Legal); setOperationAction(ISD::FCEIL, MVT::f32, Legal); setOperationAction(ISD::FCEIL, MVT::f64, Legal); setOperationAction(ISD::FFLOOR, MVT::f32, Legal); setOperationAction(ISD::FFLOOR, MVT::f64, Legal); setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); setOperationAction(ISD::FNEG, MVT::f32, Legal); setOperationAction(ISD::FNEG, MVT::f64, Legal); setOperationAction(ISD::FRINT, MVT::f32, Legal); setOperationAction(ISD::FRINT, MVT::f64, Legal); setOperationAction(ISD::FSQRT, MVT::f32, Legal); setOperationAction(ISD::FSQRT, MVT::f64, Legal); setOperationAction(ISD::FTRUNC, MVT::f32, Legal); setOperationAction(ISD::FTRUNC, MVT::f64, Legal); setOperationAction(ISD::ConstantFP, MVT::f32, Legal); setOperationAction(ISD::ConstantFP, MVT::f64, Legal); setOperationAction(ISD::ConstantFP, MVT::f128, Legal); // Illegal floating-point operations. setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); setOperationAction(ISD::FCOS, MVT::f32, Expand); setOperationAction(ISD::FCOS, MVT::f64, Expand); setOperationAction(ISD::FEXP, MVT::f32, Expand); setOperationAction(ISD::FEXP, MVT::f64, Expand); setOperationAction(ISD::FEXP2, MVT::f32, Expand); setOperationAction(ISD::FEXP2, MVT::f64, Expand); setOperationAction(ISD::FLOG, MVT::f32, Expand); setOperationAction(ISD::FLOG, MVT::f64, Expand); setOperationAction(ISD::FLOG2, MVT::f32, Expand); setOperationAction(ISD::FLOG2, MVT::f64, Expand); setOperationAction(ISD::FLOG10, MVT::f32, Expand); setOperationAction(ISD::FLOG10, MVT::f64, Expand); setOperationAction(ISD::FPOW, MVT::f32, Expand); setOperationAction(ISD::FPOW, MVT::f64, Expand); setOperationAction(ISD::FPOWI, MVT::f32, Expand); setOperationAction(ISD::FPOWI, MVT::f64, Expand); setOperationAction(ISD::FREM, MVT::f32, Expand); setOperationAction(ISD::FREM, MVT::f64, Expand); setOperationAction(ISD::FSIN, MVT::f32, Expand); setOperationAction(ISD::FSIN, MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f32, Expand); setOperationAction(ISD::FSINCOS, MVT::f64, Expand); // Virtually no operation on f128 is legal, but LLVM can't expand them when // there's a valid register class, so we need custom operations in most cases. setOperationAction(ISD::FABS, MVT::f128, Expand); setOperationAction(ISD::FADD, MVT::f128, Custom); setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); setOperationAction(ISD::FCOS, MVT::f128, Expand); setOperationAction(ISD::FDIV, MVT::f128, Custom); setOperationAction(ISD::FMA, MVT::f128, Expand); setOperationAction(ISD::FMUL, MVT::f128, Custom); setOperationAction(ISD::FNEG, MVT::f128, Expand); setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); setOperationAction(ISD::FP_ROUND, MVT::f128, Expand); setOperationAction(ISD::FPOW, MVT::f128, Expand); setOperationAction(ISD::FREM, MVT::f128, Expand); setOperationAction(ISD::FRINT, MVT::f128, Expand); setOperationAction(ISD::FSIN, MVT::f128, Expand); setOperationAction(ISD::FSINCOS, MVT::f128, Expand); setOperationAction(ISD::FSQRT, MVT::f128, Expand); setOperationAction(ISD::FSUB, MVT::f128, Custom); setOperationAction(ISD::FTRUNC, MVT::f128, Expand); setOperationAction(ISD::SETCC, MVT::f128, Custom); setOperationAction(ISD::BR_CC, MVT::f128, Custom); setOperationAction(ISD::SELECT, MVT::f128, Expand); setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); // Lowering for many of the conversions is actually specified by the non-f128 // type. The LowerXXX function will be trivial when f128 isn't involved. setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom); setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); // This prevents LLVM trying to compress double constants into a floating // constant-pool entry and trying to load from there. It's of doubtful benefit // for A64: we'd need LDR followed by FCVT, I believe. setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand); setTruncStoreAction(MVT::f128, MVT::f64, Expand); setTruncStoreAction(MVT::f128, MVT::f32, Expand); setTruncStoreAction(MVT::f128, MVT::f16, Expand); setTruncStoreAction(MVT::f64, MVT::f32, Expand); setTruncStoreAction(MVT::f64, MVT::f16, Expand); setTruncStoreAction(MVT::f32, MVT::f16, Expand); setExceptionPointerRegister(AArch64::X0); setExceptionSelectorRegister(AArch64::X1); if (Subtarget->hasNEON()) { setOperationAction(ISD::BUILD_VECTOR, MVT::v1i8, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v1i16, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v1i32, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v1f64, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i16, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i32, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f32, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1f64, Custom); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Legal); setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Legal); setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Legal); setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Legal); setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Legal); setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Legal); setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Legal); setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Legal); setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Legal); setOperationAction(ISD::SETCC, MVT::v8i8, Custom); setOperationAction(ISD::SETCC, MVT::v16i8, Custom); setOperationAction(ISD::SETCC, MVT::v4i16, Custom); setOperationAction(ISD::SETCC, MVT::v8i16, Custom); setOperationAction(ISD::SETCC, MVT::v2i32, Custom); setOperationAction(ISD::SETCC, MVT::v4i32, Custom); setOperationAction(ISD::SETCC, MVT::v1i64, Custom); setOperationAction(ISD::SETCC, MVT::v2i64, Custom); setOperationAction(ISD::SETCC, MVT::v2f32, Custom); setOperationAction(ISD::SETCC, MVT::v4f32, Custom); setOperationAction(ISD::SETCC, MVT::v1f64, Custom); setOperationAction(ISD::SETCC, MVT::v2f64, Custom); setOperationAction(ISD::FFLOOR, MVT::v2f32, Legal); setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); setOperationAction(ISD::FFLOOR, MVT::v1f64, Legal); setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); setOperationAction(ISD::FCEIL, MVT::v2f32, Legal); setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); setOperationAction(ISD::FCEIL, MVT::v1f64, Legal); setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); setOperationAction(ISD::FTRUNC, MVT::v2f32, Legal); setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); setOperationAction(ISD::FTRUNC, MVT::v1f64, Legal); setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); setOperationAction(ISD::FRINT, MVT::v2f32, Legal); setOperationAction(ISD::FRINT, MVT::v4f32, Legal); setOperationAction(ISD::FRINT, MVT::v1f64, Legal); setOperationAction(ISD::FRINT, MVT::v2f64, Legal); setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Legal); setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Legal); setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); setOperationAction(ISD::FROUND, MVT::v2f32, Legal); setOperationAction(ISD::FROUND, MVT::v4f32, Legal); setOperationAction(ISD::FROUND, MVT::v1f64, Legal); setOperationAction(ISD::FROUND, MVT::v2f64, Legal); // Vector ExtLoad and TruncStore are expanded. for (unsigned I = MVT::FIRST_VECTOR_VALUETYPE; I <= MVT::LAST_VECTOR_VALUETYPE; ++I) { MVT VT = (MVT::SimpleValueType) I; setLoadExtAction(ISD::SEXTLOAD, VT, Expand); setLoadExtAction(ISD::ZEXTLOAD, VT, Expand); setLoadExtAction(ISD::EXTLOAD, VT, Expand); for (unsigned II = MVT::FIRST_VECTOR_VALUETYPE; II <= MVT::LAST_VECTOR_VALUETYPE; ++II) { MVT VT1 = (MVT::SimpleValueType) II; // A TruncStore has two vector types of the same number of elements // and different element sizes. if (VT.getVectorNumElements() == VT1.getVectorNumElements() && VT.getVectorElementType().getSizeInBits() > VT1.getVectorElementType().getSizeInBits()) setTruncStoreAction(VT, VT1, Expand); } } // There is no v1i64/v2i64 multiply, expand v1i64/v2i64 to GPR i64 multiply. // FIXME: For a v2i64 multiply, we copy VPR to GPR and do 2 i64 multiplies, // and then copy back to VPR. This solution may be optimized by Following 3 // NEON instructions: // pmull v2.1q, v0.1d, v1.1d // pmull2 v3.1q, v0.2d, v1.2d // ins v2.d[1], v3.d[0] // As currently we can't verify the correctness of such assumption, we can // do such optimization in the future. setOperationAction(ISD::MUL, MVT::v1i64, Expand); setOperationAction(ISD::MUL, MVT::v2i64, Expand); } } EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { // It's reasonably important that this value matches the "natural" legal // promotion from i1 for scalar types. Otherwise LegalizeTypes can get itself // in a twist (e.g. inserting an any_extend which then becomes i64 -> i64). if (!VT.isVector()) return MVT::i32; return VT.changeVectorElementTypeToInteger(); } static void getExclusiveOperation(unsigned Size, AtomicOrdering Ord, unsigned &LdrOpc, unsigned &StrOpc) { static const unsigned LoadBares[] = {AArch64::LDXR_byte, AArch64::LDXR_hword, AArch64::LDXR_word, AArch64::LDXR_dword}; static const unsigned LoadAcqs[] = {AArch64::LDAXR_byte, AArch64::LDAXR_hword, AArch64::LDAXR_word, AArch64::LDAXR_dword}; static const unsigned StoreBares[] = {AArch64::STXR_byte, AArch64::STXR_hword, AArch64::STXR_word, AArch64::STXR_dword}; static const unsigned StoreRels[] = {AArch64::STLXR_byte,AArch64::STLXR_hword, AArch64::STLXR_word, AArch64::STLXR_dword}; const unsigned *LoadOps, *StoreOps; if (Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent) LoadOps = LoadAcqs; else LoadOps = LoadBares; if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent) StoreOps = StoreRels; else StoreOps = StoreBares; assert(isPowerOf2_32(Size) && Size <= 8 && "unsupported size for atomic binary op!"); LdrOpc = LoadOps[Log2_32(Size)]; StrOpc = StoreOps[Log2_32(Size)]; } // FIXME: AArch64::DTripleRegClass and AArch64::QTripleRegClass don't really // have value type mapped, and they are both being defined as MVT::untyped. // Without knowing the MVT type, MachineLICM::getRegisterClassIDAndCost // would fail to figure out the register pressure correctly. std::pair AArch64TargetLowering::findRepresentativeClass(MVT VT) const{ const TargetRegisterClass *RRC = 0; uint8_t Cost = 1; switch (VT.SimpleTy) { default: return TargetLowering::findRepresentativeClass(VT); case MVT::v4i64: RRC = &AArch64::QPairRegClass; Cost = 2; break; case MVT::v8i64: RRC = &AArch64::QQuadRegClass; Cost = 4; break; } return std::make_pair(RRC, Cost); } MachineBasicBlock * AArch64TargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned BinOpcode) const { // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction *MF = BB->getParent(); MachineFunction::iterator It = BB; ++It; unsigned dest = MI->getOperand(0).getReg(); unsigned ptr = MI->getOperand(1).getReg(); unsigned incr = MI->getOperand(2).getReg(); AtomicOrdering Ord = static_cast(MI->getOperand(3).getImm()); DebugLoc dl = MI->getDebugLoc(); MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); unsigned ldrOpc, strOpc; getExclusiveOperation(Size, Ord, ldrOpc, strOpc); MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); MF->insert(It, loopMBB); MF->insert(It, exitMBB); // Transfer the remainder of BB and its successor edges to exitMBB. exitMBB->splice(exitMBB->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)), BB->end()); exitMBB->transferSuccessorsAndUpdatePHIs(BB); const TargetRegisterClass *TRC = Size == 8 ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass; unsigned scratch = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC); // thisMBB: // ... // fallthrough --> loopMBB BB->addSuccessor(loopMBB); // loopMBB: // ldxr dest, ptr // scratch, dest, incr // stxr stxr_status, scratch, ptr // cbnz stxr_status, loopMBB // fallthrough --> exitMBB BB = loopMBB; BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); if (BinOpcode) { // All arithmetic operations we'll be creating are designed to take an extra // shift or extend operand, which we can conveniently set to zero. // Operand order needs to go the other way for NAND. if (BinOpcode == AArch64::BICwww_lsl || BinOpcode == AArch64::BICxxx_lsl) BuildMI(BB, dl, TII->get(BinOpcode), scratch) .addReg(incr).addReg(dest).addImm(0); else BuildMI(BB, dl, TII->get(BinOpcode), scratch) .addReg(dest).addReg(incr).addImm(0); } // From the stxr, the register is GPR32; from the cmp it's GPR32wsp unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass); MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass); BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(scratch).addReg(ptr); BuildMI(BB, dl, TII->get(AArch64::CBNZw)) .addReg(stxr_status).addMBB(loopMBB); BB->addSuccessor(loopMBB); BB->addSuccessor(exitMBB); // exitMBB: // ... BB = exitMBB; MI->eraseFromParent(); // The instruction is gone now. return BB; } MachineBasicBlock * AArch64TargetLowering::emitAtomicBinaryMinMax(MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned CmpOp, A64CC::CondCodes Cond) const { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction *MF = BB->getParent(); MachineFunction::iterator It = BB; ++It; unsigned dest = MI->getOperand(0).getReg(); unsigned ptr = MI->getOperand(1).getReg(); unsigned incr = MI->getOperand(2).getReg(); AtomicOrdering Ord = static_cast(MI->getOperand(3).getImm()); unsigned oldval = dest; DebugLoc dl = MI->getDebugLoc(); MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); const TargetRegisterClass *TRC, *TRCsp; if (Size == 8) { TRC = &AArch64::GPR64RegClass; TRCsp = &AArch64::GPR64xspRegClass; } else { TRC = &AArch64::GPR32RegClass; TRCsp = &AArch64::GPR32wspRegClass; } unsigned ldrOpc, strOpc; getExclusiveOperation(Size, Ord, ldrOpc, strOpc); MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); MF->insert(It, loopMBB); MF->insert(It, exitMBB); // Transfer the remainder of BB and its successor edges to exitMBB. exitMBB->splice(exitMBB->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)), BB->end()); exitMBB->transferSuccessorsAndUpdatePHIs(BB); unsigned scratch = MRI.createVirtualRegister(TRC); MRI.constrainRegClass(scratch, TRCsp); // thisMBB: // ... // fallthrough --> loopMBB BB->addSuccessor(loopMBB); // loopMBB: // ldxr dest, ptr // cmp incr, dest (, sign extend if necessary) // csel scratch, dest, incr, cond // stxr stxr_status, scratch, ptr // cbnz stxr_status, loopMBB // fallthrough --> exitMBB BB = loopMBB; BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); // Build compare and cmov instructions. MRI.constrainRegClass(incr, TRCsp); BuildMI(BB, dl, TII->get(CmpOp)) .addReg(incr).addReg(oldval).addImm(0); BuildMI(BB, dl, TII->get(Size == 8 ? AArch64::CSELxxxc : AArch64::CSELwwwc), scratch) .addReg(oldval).addReg(incr).addImm(Cond); unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass); MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass); BuildMI(BB, dl, TII->get(strOpc), stxr_status) .addReg(scratch).addReg(ptr); BuildMI(BB, dl, TII->get(AArch64::CBNZw)) .addReg(stxr_status).addMBB(loopMBB); BB->addSuccessor(loopMBB); BB->addSuccessor(exitMBB); // exitMBB: // ... BB = exitMBB; MI->eraseFromParent(); // The instruction is gone now. return BB; } MachineBasicBlock * AArch64TargetLowering::emitAtomicCmpSwap(MachineInstr *MI, MachineBasicBlock *BB, unsigned Size) const { unsigned dest = MI->getOperand(0).getReg(); unsigned ptr = MI->getOperand(1).getReg(); unsigned oldval = MI->getOperand(2).getReg(); unsigned newval = MI->getOperand(3).getReg(); AtomicOrdering Ord = static_cast(MI->getOperand(4).getImm()); const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); DebugLoc dl = MI->getDebugLoc(); MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); const TargetRegisterClass *TRCsp; TRCsp = Size == 8 ? &AArch64::GPR64xspRegClass : &AArch64::GPR32wspRegClass; unsigned ldrOpc, strOpc; getExclusiveOperation(Size, Ord, ldrOpc, strOpc); MachineFunction *MF = BB->getParent(); const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = BB; ++It; // insert the new blocks after the current block MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); MF->insert(It, loop1MBB); MF->insert(It, loop2MBB); MF->insert(It, exitMBB); // Transfer the remainder of BB and its successor edges to exitMBB. exitMBB->splice(exitMBB->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)), BB->end()); exitMBB->transferSuccessorsAndUpdatePHIs(BB); // thisMBB: // ... // fallthrough --> loop1MBB BB->addSuccessor(loop1MBB); // loop1MBB: // ldxr dest, [ptr] // cmp dest, oldval // b.ne exitMBB BB = loop1MBB; BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); unsigned CmpOp = Size == 8 ? AArch64::CMPxx_lsl : AArch64::CMPww_lsl; MRI.constrainRegClass(dest, TRCsp); BuildMI(BB, dl, TII->get(CmpOp)) .addReg(dest).addReg(oldval).addImm(0); BuildMI(BB, dl, TII->get(AArch64::Bcc)) .addImm(A64CC::NE).addMBB(exitMBB); BB->addSuccessor(loop2MBB); BB->addSuccessor(exitMBB); // loop2MBB: // strex stxr_status, newval, [ptr] // cbnz stxr_status, loop1MBB BB = loop2MBB; unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass); MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass); BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(newval).addReg(ptr); BuildMI(BB, dl, TII->get(AArch64::CBNZw)) .addReg(stxr_status).addMBB(loop1MBB); BB->addSuccessor(loop1MBB); BB->addSuccessor(exitMBB); // exitMBB: // ... BB = exitMBB; MI->eraseFromParent(); // The instruction is gone now. return BB; } MachineBasicBlock * AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI, MachineBasicBlock *MBB) const { // We materialise the F128CSEL pseudo-instruction using conditional branches // and loads, giving an instruciton sequence like: // str q0, [sp] // b.ne IfTrue // b Finish // IfTrue: // str q1, [sp] // Finish: // ldr q0, [sp] // // Using virtual registers would probably not be beneficial since COPY // instructions are expensive for f128 (there's no actual instruction to // implement them). // // An alternative would be to do an integer-CSEL on some address. E.g.: // mov x0, sp // add x1, sp, #16 // str q0, [x0] // str q1, [x1] // csel x0, x0, x1, ne // ldr q0, [x0] // // It's unclear which approach is actually optimal. const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); MachineFunction *MF = MBB->getParent(); const BasicBlock *LLVM_BB = MBB->getBasicBlock(); DebugLoc DL = MI->getDebugLoc(); MachineFunction::iterator It = MBB; ++It; unsigned DestReg = MI->getOperand(0).getReg(); unsigned IfTrueReg = MI->getOperand(1).getReg(); unsigned IfFalseReg = MI->getOperand(2).getReg(); unsigned CondCode = MI->getOperand(3).getImm(); bool NZCVKilled = MI->getOperand(4).isKill(); MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB); MF->insert(It, TrueBB); MF->insert(It, EndBB); // Transfer rest of current basic-block to EndBB EndBB->splice(EndBB->begin(), MBB, llvm::next(MachineBasicBlock::iterator(MI)), MBB->end()); EndBB->transferSuccessorsAndUpdatePHIs(MBB); // We need somewhere to store the f128 value needed. int ScratchFI = MF->getFrameInfo()->CreateSpillStackObject(16, 16); // [... start of incoming MBB ...] // str qIFFALSE, [sp] // b.cc IfTrue // b Done BuildMI(MBB, DL, TII->get(AArch64::LSFP128_STR)) .addReg(IfFalseReg) .addFrameIndex(ScratchFI) .addImm(0); BuildMI(MBB, DL, TII->get(AArch64::Bcc)) .addImm(CondCode) .addMBB(TrueBB); BuildMI(MBB, DL, TII->get(AArch64::Bimm)) .addMBB(EndBB); MBB->addSuccessor(TrueBB); MBB->addSuccessor(EndBB); if (!NZCVKilled) { // NZCV is live-through TrueBB. TrueBB->addLiveIn(AArch64::NZCV); EndBB->addLiveIn(AArch64::NZCV); } // IfTrue: // str qIFTRUE, [sp] BuildMI(TrueBB, DL, TII->get(AArch64::LSFP128_STR)) .addReg(IfTrueReg) .addFrameIndex(ScratchFI) .addImm(0); // Note: fallthrough. We can rely on LLVM adding a branch if it reorders the // blocks. TrueBB->addSuccessor(EndBB); // Done: // ldr qDEST, [sp] // [... rest of incoming MBB ...] MachineInstr *StartOfEnd = EndBB->begin(); BuildMI(*EndBB, StartOfEnd, DL, TII->get(AArch64::LSFP128_LDR), DestReg) .addFrameIndex(ScratchFI) .addImm(0); MI->eraseFromParent(); return EndBB; } MachineBasicBlock * AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { switch (MI->getOpcode()) { default: llvm_unreachable("Unhandled instruction with custom inserter"); case AArch64::F128CSEL: return EmitF128CSEL(MI, MBB); case AArch64::ATOMIC_LOAD_ADD_I8: return emitAtomicBinary(MI, MBB, 1, AArch64::ADDwww_lsl); case AArch64::ATOMIC_LOAD_ADD_I16: return emitAtomicBinary(MI, MBB, 2, AArch64::ADDwww_lsl); case AArch64::ATOMIC_LOAD_ADD_I32: return emitAtomicBinary(MI, MBB, 4, AArch64::ADDwww_lsl); case AArch64::ATOMIC_LOAD_ADD_I64: return emitAtomicBinary(MI, MBB, 8, AArch64::ADDxxx_lsl); case AArch64::ATOMIC_LOAD_SUB_I8: return emitAtomicBinary(MI, MBB, 1, AArch64::SUBwww_lsl); case AArch64::ATOMIC_LOAD_SUB_I16: return emitAtomicBinary(MI, MBB, 2, AArch64::SUBwww_lsl); case AArch64::ATOMIC_LOAD_SUB_I32: return emitAtomicBinary(MI, MBB, 4, AArch64::SUBwww_lsl); case AArch64::ATOMIC_LOAD_SUB_I64: return emitAtomicBinary(MI, MBB, 8, AArch64::SUBxxx_lsl); case AArch64::ATOMIC_LOAD_AND_I8: return emitAtomicBinary(MI, MBB, 1, AArch64::ANDwww_lsl); case AArch64::ATOMIC_LOAD_AND_I16: return emitAtomicBinary(MI, MBB, 2, AArch64::ANDwww_lsl); case AArch64::ATOMIC_LOAD_AND_I32: return emitAtomicBinary(MI, MBB, 4, AArch64::ANDwww_lsl); case AArch64::ATOMIC_LOAD_AND_I64: return emitAtomicBinary(MI, MBB, 8, AArch64::ANDxxx_lsl); case AArch64::ATOMIC_LOAD_OR_I8: return emitAtomicBinary(MI, MBB, 1, AArch64::ORRwww_lsl); case AArch64::ATOMIC_LOAD_OR_I16: return emitAtomicBinary(MI, MBB, 2, AArch64::ORRwww_lsl); case AArch64::ATOMIC_LOAD_OR_I32: return emitAtomicBinary(MI, MBB, 4, AArch64::ORRwww_lsl); case AArch64::ATOMIC_LOAD_OR_I64: return emitAtomicBinary(MI, MBB, 8, AArch64::ORRxxx_lsl); case AArch64::ATOMIC_LOAD_XOR_I8: return emitAtomicBinary(MI, MBB, 1, AArch64::EORwww_lsl); case AArch64::ATOMIC_LOAD_XOR_I16: return emitAtomicBinary(MI, MBB, 2, AArch64::EORwww_lsl); case AArch64::ATOMIC_LOAD_XOR_I32: return emitAtomicBinary(MI, MBB, 4, AArch64::EORwww_lsl); case AArch64::ATOMIC_LOAD_XOR_I64: return emitAtomicBinary(MI, MBB, 8, AArch64::EORxxx_lsl); case AArch64::ATOMIC_LOAD_NAND_I8: return emitAtomicBinary(MI, MBB, 1, AArch64::BICwww_lsl); case AArch64::ATOMIC_LOAD_NAND_I16: return emitAtomicBinary(MI, MBB, 2, AArch64::BICwww_lsl); case AArch64::ATOMIC_LOAD_NAND_I32: return emitAtomicBinary(MI, MBB, 4, AArch64::BICwww_lsl); case AArch64::ATOMIC_LOAD_NAND_I64: return emitAtomicBinary(MI, MBB, 8, AArch64::BICxxx_lsl); case AArch64::ATOMIC_LOAD_MIN_I8: return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::GT); case AArch64::ATOMIC_LOAD_MIN_I16: return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::GT); case AArch64::ATOMIC_LOAD_MIN_I32: return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::GT); case AArch64::ATOMIC_LOAD_MIN_I64: return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::GT); case AArch64::ATOMIC_LOAD_MAX_I8: return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::LT); case AArch64::ATOMIC_LOAD_MAX_I16: return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::LT); case AArch64::ATOMIC_LOAD_MAX_I32: return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LT); case AArch64::ATOMIC_LOAD_MAX_I64: return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LT); case AArch64::ATOMIC_LOAD_UMIN_I8: return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::HI); case AArch64::ATOMIC_LOAD_UMIN_I16: return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::HI); case AArch64::ATOMIC_LOAD_UMIN_I32: return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::HI); case AArch64::ATOMIC_LOAD_UMIN_I64: return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::HI); case AArch64::ATOMIC_LOAD_UMAX_I8: return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::LO); case AArch64::ATOMIC_LOAD_UMAX_I16: return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::LO); case AArch64::ATOMIC_LOAD_UMAX_I32: return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LO); case AArch64::ATOMIC_LOAD_UMAX_I64: return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LO); case AArch64::ATOMIC_SWAP_I8: return emitAtomicBinary(MI, MBB, 1, 0); case AArch64::ATOMIC_SWAP_I16: return emitAtomicBinary(MI, MBB, 2, 0); case AArch64::ATOMIC_SWAP_I32: return emitAtomicBinary(MI, MBB, 4, 0); case AArch64::ATOMIC_SWAP_I64: return emitAtomicBinary(MI, MBB, 8, 0); case AArch64::ATOMIC_CMP_SWAP_I8: return emitAtomicCmpSwap(MI, MBB, 1); case AArch64::ATOMIC_CMP_SWAP_I16: return emitAtomicCmpSwap(MI, MBB, 2); case AArch64::ATOMIC_CMP_SWAP_I32: return emitAtomicCmpSwap(MI, MBB, 4); case AArch64::ATOMIC_CMP_SWAP_I64: return emitAtomicCmpSwap(MI, MBB, 8); } } const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { case AArch64ISD::BR_CC: return "AArch64ISD::BR_CC"; case AArch64ISD::Call: return "AArch64ISD::Call"; case AArch64ISD::FPMOV: return "AArch64ISD::FPMOV"; case AArch64ISD::GOTLoad: return "AArch64ISD::GOTLoad"; case AArch64ISD::BFI: return "AArch64ISD::BFI"; case AArch64ISD::EXTR: return "AArch64ISD::EXTR"; case AArch64ISD::Ret: return "AArch64ISD::Ret"; case AArch64ISD::SBFX: return "AArch64ISD::SBFX"; case AArch64ISD::SELECT_CC: return "AArch64ISD::SELECT_CC"; case AArch64ISD::SETCC: return "AArch64ISD::SETCC"; case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN"; case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER"; case AArch64ISD::TLSDESCCALL: return "AArch64ISD::TLSDESCCALL"; case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge"; case AArch64ISD::WrapperSmall: return "AArch64ISD::WrapperSmall"; case AArch64ISD::NEON_MOVIMM: return "AArch64ISD::NEON_MOVIMM"; case AArch64ISD::NEON_MVNIMM: return "AArch64ISD::NEON_MVNIMM"; case AArch64ISD::NEON_FMOVIMM: return "AArch64ISD::NEON_FMOVIMM"; case AArch64ISD::NEON_CMP: return "AArch64ISD::NEON_CMP"; case AArch64ISD::NEON_CMPZ: return "AArch64ISD::NEON_CMPZ"; case AArch64ISD::NEON_TST: return "AArch64ISD::NEON_TST"; case AArch64ISD::NEON_QSHLs: return "AArch64ISD::NEON_QSHLs"; case AArch64ISD::NEON_QSHLu: return "AArch64ISD::NEON_QSHLu"; case AArch64ISD::NEON_VDUP: return "AArch64ISD::NEON_VDUP"; case AArch64ISD::NEON_VDUPLANE: return "AArch64ISD::NEON_VDUPLANE"; case AArch64ISD::NEON_REV16: return "AArch64ISD::NEON_REV16"; case AArch64ISD::NEON_REV32: return "AArch64ISD::NEON_REV32"; case AArch64ISD::NEON_REV64: return "AArch64ISD::NEON_REV64"; case AArch64ISD::NEON_UZP1: return "AArch64ISD::NEON_UZP1"; case AArch64ISD::NEON_UZP2: return "AArch64ISD::NEON_UZP2"; case AArch64ISD::NEON_ZIP1: return "AArch64ISD::NEON_ZIP1"; case AArch64ISD::NEON_ZIP2: return "AArch64ISD::NEON_ZIP2"; case AArch64ISD::NEON_TRN1: return "AArch64ISD::NEON_TRN1"; case AArch64ISD::NEON_TRN2: return "AArch64ISD::NEON_TRN2"; case AArch64ISD::NEON_LD1_UPD: return "AArch64ISD::NEON_LD1_UPD"; case AArch64ISD::NEON_LD2_UPD: return "AArch64ISD::NEON_LD2_UPD"; case AArch64ISD::NEON_LD3_UPD: return "AArch64ISD::NEON_LD3_UPD"; case AArch64ISD::NEON_LD4_UPD: return "AArch64ISD::NEON_LD4_UPD"; case AArch64ISD::NEON_ST1_UPD: return "AArch64ISD::NEON_ST1_UPD"; case AArch64ISD::NEON_ST2_UPD: return "AArch64ISD::NEON_ST2_UPD"; case AArch64ISD::NEON_ST3_UPD: return "AArch64ISD::NEON_ST3_UPD"; case AArch64ISD::NEON_ST4_UPD: return "AArch64ISD::NEON_ST4_UPD"; case AArch64ISD::NEON_LD1x2_UPD: return "AArch64ISD::NEON_LD1x2_UPD"; case AArch64ISD::NEON_LD1x3_UPD: return "AArch64ISD::NEON_LD1x3_UPD"; case AArch64ISD::NEON_LD1x4_UPD: return "AArch64ISD::NEON_LD1x4_UPD"; case AArch64ISD::NEON_ST1x2_UPD: return "AArch64ISD::NEON_ST1x2_UPD"; case AArch64ISD::NEON_ST1x3_UPD: return "AArch64ISD::NEON_ST1x3_UPD"; case AArch64ISD::NEON_ST1x4_UPD: return "AArch64ISD::NEON_ST1x4_UPD"; case AArch64ISD::NEON_LD2DUP: return "AArch64ISD::NEON_LD2DUP"; case AArch64ISD::NEON_LD3DUP: return "AArch64ISD::NEON_LD3DUP"; case AArch64ISD::NEON_LD4DUP: return "AArch64ISD::NEON_LD4DUP"; case AArch64ISD::NEON_LD2DUP_UPD: return "AArch64ISD::NEON_LD2DUP_UPD"; case AArch64ISD::NEON_LD3DUP_UPD: return "AArch64ISD::NEON_LD3DUP_UPD"; case AArch64ISD::NEON_LD4DUP_UPD: return "AArch64ISD::NEON_LD4DUP_UPD"; case AArch64ISD::NEON_LD2LN_UPD: return "AArch64ISD::NEON_LD2LN_UPD"; case AArch64ISD::NEON_LD3LN_UPD: return "AArch64ISD::NEON_LD3LN_UPD"; case AArch64ISD::NEON_LD4LN_UPD: return "AArch64ISD::NEON_LD4LN_UPD"; case AArch64ISD::NEON_ST2LN_UPD: return "AArch64ISD::NEON_ST2LN_UPD"; case AArch64ISD::NEON_ST3LN_UPD: return "AArch64ISD::NEON_ST3LN_UPD"; case AArch64ISD::NEON_ST4LN_UPD: return "AArch64ISD::NEON_ST4LN_UPD"; case AArch64ISD::NEON_VEXTRACT: return "AArch64ISD::NEON_VEXTRACT"; default: return NULL; } } static const uint16_t AArch64FPRArgRegs[] = { AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7 }; static const unsigned NumFPRArgRegs = llvm::array_lengthof(AArch64FPRArgRegs); static const uint16_t AArch64ArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3, AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7 }; static const unsigned NumArgRegs = llvm::array_lengthof(AArch64ArgRegs); static bool CC_AArch64NoMoreRegs(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { // Mark all remaining general purpose registers as allocated. We don't // backtrack: if (for example) an i128 gets put on the stack, no subsequent // i64 will go in registers (C.11). for (unsigned i = 0; i < NumArgRegs; ++i) State.AllocateReg(AArch64ArgRegs[i]); return false; } #include "AArch64GenCallingConv.inc" CCAssignFn *AArch64TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const { switch(CC) { default: llvm_unreachable("Unsupported calling convention"); case CallingConv::Fast: case CallingConv::C: return CC_A64_APCS; } } void AArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG, SDLoc DL, SDValue &Chain) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); AArch64MachineFunctionInfo *FuncInfo = MF.getInfo(); SmallVector MemOps; unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(AArch64ArgRegs, NumArgRegs); unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(AArch64FPRArgRegs, NumFPRArgRegs); unsigned GPRSaveSize = 8 * (NumArgRegs - FirstVariadicGPR); int GPRIdx = 0; if (GPRSaveSize != 0) { GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false); SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy()); for (unsigned i = FirstVariadicGPR; i < NumArgRegs; ++i) { unsigned VReg = MF.addLiveIn(AArch64ArgRegs[i], &AArch64::GPR64RegClass); SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN, MachinePointerInfo::getStack(i * 8), false, false, 0); MemOps.push_back(Store); FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, DAG.getConstant(8, getPointerTy())); } } if (getSubtarget()->hasFPARMv8()) { unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR); int FPRIdx = 0; // According to the AArch64 Procedure Call Standard, section B.1/B.3, we // can omit a register save area if we know we'll never use registers of // that class. if (FPRSaveSize != 0) { FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false); SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy()); for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) { unsigned VReg = MF.addLiveIn(AArch64FPRArgRegs[i], &AArch64::FPR128RegClass); SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128); SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN, MachinePointerInfo::getStack(i * 16), false, false, 0); MemOps.push_back(Store); FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, DAG.getConstant(16, getPointerTy())); } } FuncInfo->setVariadicFPRIdx(FPRIdx); FuncInfo->setVariadicFPRSize(FPRSaveSize); } int StackIdx = MFI->CreateFixedObject(8, CCInfo.getNextStackOffset(), true); FuncInfo->setVariadicStackIdx(StackIdx); FuncInfo->setVariadicGPRIdx(GPRIdx); FuncInfo->setVariadicGPRSize(GPRSaveSize); if (!MemOps.empty()) { Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0], MemOps.size()); } } SDValue AArch64TargetLowering::LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); AArch64MachineFunctionInfo *FuncInfo = MF.getInfo(); MachineFrameInfo *MFI = MF.getFrameInfo(); bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; SmallVector ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv)); SmallVector ArgValues; SDValue ArgValue; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; ISD::ArgFlagsTy Flags = Ins[i].Flags; if (Flags.isByVal()) { // Byval is used for small structs and HFAs in the PCS, but the system // should work in a non-compliant manner for larger structs. EVT PtrTy = getPointerTy(); int Size = Flags.getByValSize(); unsigned NumRegs = (Size + 7) / 8; unsigned FrameIdx = MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false); SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy); InVals.push_back(FrameIdxN); continue; } else if (VA.isRegLoc()) { MVT RegVT = VA.getLocVT(); const TargetRegisterClass *RC = getRegClassFor(RegVT); unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); } else { // VA.isRegLoc() assert(VA.isMemLoc()); int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8, VA.getLocMemOffset(), true); SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); ArgValue = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, MachinePointerInfo::getFixedStack(FI), false, false, false, 0); } switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::BCvt: ArgValue = DAG.getNode(ISD::BITCAST,dl, VA.getValVT(), ArgValue); break; case CCValAssign::SExt: case CCValAssign::ZExt: case CCValAssign::AExt: { unsigned DestSize = VA.getValVT().getSizeInBits(); unsigned DestSubReg; switch (DestSize) { case 8: DestSubReg = AArch64::sub_8; break; case 16: DestSubReg = AArch64::sub_16; break; case 32: DestSubReg = AArch64::sub_32; break; case 64: DestSubReg = AArch64::sub_64; break; default: llvm_unreachable("Unexpected argument promotion"); } ArgValue = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VA.getValVT(), ArgValue, DAG.getTargetConstant(DestSubReg, MVT::i32)), 0); break; } } InVals.push_back(ArgValue); } if (isVarArg) SaveVarArgRegisters(CCInfo, DAG, dl, Chain); unsigned StackArgSize = CCInfo.getNextStackOffset(); if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) { // This is a non-standard ABI so by fiat I say we're allowed to make full // use of the stack area to be popped, which must be aligned to 16 bytes in // any case: StackArgSize = RoundUpToAlignment(StackArgSize, 16); // If we're expected to restore the stack (e.g. fastcc) then we'll be adding // a multiple of 16. FuncInfo->setArgumentStackToRestore(StackArgSize); // This realignment carries over to the available bytes below. Our own // callers will guarantee the space is free by giving an aligned value to // CALLSEQ_START. } // Even if we're not expected to free up the space, it's useful to know how // much is there while considering tail calls (because we can reuse it). FuncInfo->setBytesInStackArgArea(StackArgSize); return Chain; } SDValue AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, SDLoc dl, SelectionDAG &DAG) const { // CCValAssign - represent the assignment of the return value to a location. SmallVector RVLocs; // CCState - Info about the registers and stack slots. CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), RVLocs, *DAG.getContext()); // Analyze outgoing return values. CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv)); SDValue Flag; SmallVector RetOps(1, Chain); for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { // PCS: "If the type, T, of the result of a function is such that // void func(T arg) would require that arg be passed as a value in a // register (or set of registers) according to the rules in 5.4, then the // result is returned in the same registers as would be used for such an // argument. // // Otherwise, the caller shall reserve a block of memory of sufficient // size and alignment to hold the result. The address of the memory block // shall be passed as an additional argument to the function in x8." // // This is implemented in two places. The register-return values are dealt // with here, more complex returns are passed as an sret parameter, which // means we don't have to worry about it during actual return. CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Only register-returns should be created by PCS"); SDValue Arg = OutVals[i]; // There's no convenient note in the ABI about this as there is for normal // arguments, but it says return values are passed in the same registers as // an argument would be. I believe that includes the comments about // unspecified higher bits, putting the burden of widening on the *caller* // for return values. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info"); case CCValAssign::Full: break; case CCValAssign::SExt: case CCValAssign::ZExt: case CCValAssign::AExt: // Floating-point values should only be extended when they're going into // memory, which can't happen here so an integer extend is acceptable. Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); break; } Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } RetOps[0] = Chain; // Update chain. // Add the flag if we have it. if (Flag.getNode()) RetOps.push_back(Flag); return DAG.getNode(AArch64ISD::Ret, dl, MVT::Other, &RetOps[0], RetOps.size()); } unsigned AArch64TargetLowering::getByValTypeAlignment(Type *Ty) const { // This is a new backend. For anything more precise than this a FE should // set an explicit alignment. return 4; } SDValue AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc &dl = CLI.DL; SmallVectorImpl &Outs = CLI.Outs; SmallVectorImpl &OutVals = CLI.OutVals; SmallVectorImpl &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &IsTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool IsVarArg = CLI.IsVarArg; MachineFunction &MF = DAG.getMachineFunction(); AArch64MachineFunctionInfo *FuncInfo = MF.getInfo(); bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; bool IsStructRet = !Outs.empty() && Outs[0].Flags.isSRet(); bool IsSibCall = false; if (IsTailCall) { IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, IsVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG); // A sibling call is one where we're under the usual C ABI and not planning // to change that but can still do a tail call: if (!TailCallOpt && IsTailCall) IsSibCall = true; } SmallVector ArgLocs; CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv)); // On AArch64 (and all other architectures I'm aware of) the most this has to // do is adjust the stack pointer. unsigned NumBytes = RoundUpToAlignment(CCInfo.getNextStackOffset(), 16); if (IsSibCall) { // Since we're not changing the ABI to make this a tail call, the memory // operands are already available in the caller's incoming argument space. NumBytes = 0; } // FPDiff is the byte offset of the call's argument area from the callee's. // Stores to callee stack arguments will be placed in FixedStackSlots offset // by this amount for a tail call. In a sibling call it must be 0 because the // caller will deallocate the entire stack and the callee still expects its // arguments to begin at SP+0. Completely unused for non-tail calls. int FPDiff = 0; if (IsTailCall && !IsSibCall) { unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); // FPDiff will be negative if this tail call requires more space than we // would automatically have in our incoming argument space. Positive if we // can actually shrink the stack. FPDiff = NumReusableBytes - NumBytes; // The stack pointer must be 16-byte aligned at all times it's used for a // memory operation, which in practice means at *all* times and in // particular across call boundaries. Therefore our own arguments started at // a 16-byte aligned SP and the delta applied for the tail call should // satisfy the same constraint. assert(FPDiff % 16 == 0 && "unaligned stack on tail call"); } if (!IsSibCall) Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), dl); SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, AArch64::XSP, getPointerTy()); SmallVector MemOpChains; SmallVector, 8> RegsToPass; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; ISD::ArgFlagsTy Flags = Outs[i].Flags; SDValue Arg = OutVals[i]; // Callee does the actual widening, so all extensions just use an implicit // definition of the rest of the Loc. Aesthetically, this would be nicer as // an ANY_EXTEND, but that isn't valid for floating-point types and this // alternative works on integer types too. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::SExt: case CCValAssign::ZExt: case CCValAssign::AExt: { unsigned SrcSize = VA.getValVT().getSizeInBits(); unsigned SrcSubReg; switch (SrcSize) { case 8: SrcSubReg = AArch64::sub_8; break; case 16: SrcSubReg = AArch64::sub_16; break; case 32: SrcSubReg = AArch64::sub_32; break; case 64: SrcSubReg = AArch64::sub_64; break; default: llvm_unreachable("Unexpected argument promotion"); } Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VA.getLocVT(), DAG.getUNDEF(VA.getLocVT()), Arg, DAG.getTargetConstant(SrcSubReg, MVT::i32)), 0); break; } case CCValAssign::BCvt: Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); break; } if (VA.isRegLoc()) { // A normal register (sub-) argument. For now we just note it down because // we want to copy things into registers as late as possible to avoid // register-pressure (and possibly worse). RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); continue; } assert(VA.isMemLoc() && "unexpected argument location"); SDValue DstAddr; MachinePointerInfo DstInfo; if (IsTailCall) { uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize() : VA.getLocVT().getSizeInBits(); OpSize = (OpSize + 7) / 8; int32_t Offset = VA.getLocMemOffset() + FPDiff; int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); DstAddr = DAG.getFrameIndex(FI, getPointerTy()); DstInfo = MachinePointerInfo::getFixedStack(FI); // Make sure any stack arguments overlapping with where we're storing are // loaded before this eventual operation. Otherwise they'll be clobbered. Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI); } else { SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset()); DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); DstInfo = MachinePointerInfo::getStack(VA.getLocMemOffset()); } if (Flags.isByVal()) { SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i64); SDValue Cpy = DAG.getMemcpy(Chain, dl, DstAddr, Arg, SizeNode, Flags.getByValAlign(), /*isVolatile = */ false, /*alwaysInline = */ false, DstInfo, MachinePointerInfo(0)); MemOpChains.push_back(Cpy); } else { // Normal stack argument, put it where it's needed. SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo, false, false, 0); MemOpChains.push_back(Store); } } // The loads and stores generated above shouldn't clash with each // other. Combining them with this TokenFactor notes that fact for the rest of // the backend. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOpChains[0], MemOpChains.size()); // Most of the rest of the instructions need to be glued together; we don't // want assignments to actual registers used by a call to be rearranged by a // well-meaning scheduler. SDValue InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } // The linker is responsible for inserting veneers when necessary to put a // function call destination in range, so we don't need to bother with a // wrapper here. if (GlobalAddressSDNode *G = dyn_cast(Callee)) { const GlobalValue *GV = G->getGlobal(); Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy()); } else if (ExternalSymbolSDNode *S = dyn_cast(Callee)) { const char *Sym = S->getSymbol(); Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy()); } // We don't usually want to end the call-sequence here because we would tidy // the frame up *after* the call, however in the ABI-changing tail-call case // we've carefully laid out the parameters so that when sp is reset they'll be // in the correct location. if (IsTailCall && !IsSibCall) { Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), DAG.getIntPtrConstant(0, true), InFlag, dl); InFlag = Chain.getValue(1); } // We produce the following DAG scheme for the actual call instruction: // (AArch64Call Chain, Callee, reg1, ..., regn, preserveMask, inflag? // // Most arguments aren't going to be used and just keep the values live as // far as LLVM is concerned. It's expected to be selected as simply "bl // callee" (for a direct, non-tail call). std::vector Ops; Ops.push_back(Chain); Ops.push_back(Callee); if (IsTailCall) { // Each tail call may have to adjust the stack by a different amount, so // this information must travel along with the operation for eventual // consumption by emitEpilogue. Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32)); } for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); // Add a register mask operand representing the call-preserved registers. This // is used later in codegen to constrain register-allocation. const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); const uint32_t *Mask = TRI->getCallPreservedMask(CallConv); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); // If we needed glue, put it in as the last argument. if (InFlag.getNode()) Ops.push_back(InFlag); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); if (IsTailCall) { return DAG.getNode(AArch64ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size()); } Chain = DAG.getNode(AArch64ISD::Call, dl, NodeTys, &Ops[0], Ops.size()); InFlag = Chain.getValue(1); // Now we can reclaim the stack, just as well do it before working out where // our return value is. if (!IsSibCall) { uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt) ? NumBytes : 0; Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), DAG.getIntPtrConstant(CalleePopBytes, true), InFlag, dl); InFlag = Chain.getValue(1); } return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, dl, DAG, InVals); } SDValue AArch64TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, SDLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { // Assign locations to each value returned by this call. SmallVector RVLocs; CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), getTargetMachine(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv)); for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign VA = RVLocs[i]; // Return values that are too big to fit into registers should use an sret // pointer, so this can be a lot simpler than the main argument code. assert(VA.isRegLoc() && "Memory locations not expected for call return"); SDValue Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(), InFlag); Chain = Val.getValue(1); InFlag = Val.getValue(2); switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::BCvt: Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val); break; case CCValAssign::ZExt: case CCValAssign::SExt: case CCValAssign::AExt: // Floating-point arguments only get extended/truncated if they're going // in memory, so using the integer operation is acceptable here. Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); break; } InVals.push_back(Val); } return Chain; } bool AArch64TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg, bool IsCalleeStructRet, bool IsCallerStructRet, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, SelectionDAG& DAG) const { // For CallingConv::C this function knows whether the ABI needs // changing. That's not true for other conventions so they will have to opt in // manually. if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C) return false; const MachineFunction &MF = DAG.getMachineFunction(); const Function *CallerF = MF.getFunction(); CallingConv::ID CallerCC = CallerF->getCallingConv(); bool CCMatch = CallerCC == CalleeCC; // Byval parameters hand the function a pointer directly into the stack area // we want to reuse during a tail call. Working around this *is* possible (see // X86) but less efficient and uglier in LowerCall. for (Function::const_arg_iterator i = CallerF->arg_begin(), e = CallerF->arg_end(); i != e; ++i) if (i->hasByValAttr()) return false; if (getTargetMachine().Options.GuaranteedTailCallOpt) { if (IsTailCallConvention(CalleeCC) && CCMatch) return true; return false; } // Now we search for cases where we can use a tail call without changing the // ABI. Sibcall is used in some places (particularly gcc) to refer to this // concept. // I want anyone implementing a new calling convention to think long and hard // about this assert. assert((!IsVarArg || CalleeCC == CallingConv::C) && "Unexpected variadic calling convention"); if (IsVarArg && !Outs.empty()) { // At least two cases here: if caller is fastcc then we can't have any // memory arguments (we'd be expected to clean up the stack afterwards). If // caller is C then we could potentially use its argument area. // FIXME: for now we take the most conservative of these in both cases: // disallow all variadic memory operands. SmallVector ArgLocs; CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC)); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) if (!ArgLocs[i].isRegLoc()) return false; } // If the calling conventions do not match, then we'd better make sure the // results are returned in the same way as what the caller expects. if (!CCMatch) { SmallVector RVLocs1; CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), getTargetMachine(), RVLocs1, *DAG.getContext()); CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC)); SmallVector RVLocs2; CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), getTargetMachine(), RVLocs2, *DAG.getContext()); CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC)); if (RVLocs1.size() != RVLocs2.size()) return false; for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) return false; if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) return false; if (RVLocs1[i].isRegLoc()) { if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) return false; } else { if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) return false; } } } // Nothing more to check if the callee is taking no arguments if (Outs.empty()) return true; SmallVector ArgLocs; CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC)); const AArch64MachineFunctionInfo *FuncInfo = MF.getInfo(); // If the stack arguments for this call would fit into our own save area then // the call can be made tail. return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea(); } bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC, bool TailCallOpt) const { return CallCC == CallingConv::Fast && TailCallOpt; } bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const { return CallCC == CallingConv::Fast; } SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain, SelectionDAG &DAG, MachineFrameInfo *MFI, int ClobberedFI) const { SmallVector ArgChains; int64_t FirstByte = MFI->getObjectOffset(ClobberedFI); int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1; // Include the original chain at the beginning of the list. When this is // used by target LowerCall hooks, this helps legalize find the // CALLSEQ_BEGIN node. ArgChains.push_back(Chain); // Add a chain value for each stack argument corresponding for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U) if (LoadSDNode *L = dyn_cast(*U)) if (FrameIndexSDNode *FI = dyn_cast(L->getBasePtr())) if (FI->getIndex() < 0) { int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex()); int64_t InLastByte = InFirstByte; InLastByte += MFI->getObjectSize(FI->getIndex()) - 1; if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || (FirstByte <= InFirstByte && InFirstByte <= LastByte)) ArgChains.push_back(SDValue(L, 1)); } // Build a tokenfactor for all the chains. return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, &ArgChains[0], ArgChains.size()); } static A64CC::CondCodes IntCCToA64CC(ISD::CondCode CC) { switch (CC) { case ISD::SETEQ: return A64CC::EQ; case ISD::SETGT: return A64CC::GT; case ISD::SETGE: return A64CC::GE; case ISD::SETLT: return A64CC::LT; case ISD::SETLE: return A64CC::LE; case ISD::SETNE: return A64CC::NE; case ISD::SETUGT: return A64CC::HI; case ISD::SETUGE: return A64CC::HS; case ISD::SETULT: return A64CC::LO; case ISD::SETULE: return A64CC::LS; default: llvm_unreachable("Unexpected condition code"); } } bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Val) const { // icmp is implemented using adds/subs immediate, which take an unsigned // 12-bit immediate, optionally shifted left by 12 bits. // Symmetric by using adds/subs if (Val < 0) Val = -Val; return (Val & ~0xfff) == 0 || (Val & ~0xfff000) == 0; } SDValue AArch64TargetLowering::getSelectableIntSetCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDValue &A64cc, SelectionDAG &DAG, SDLoc &dl) const { if (ConstantSDNode *RHSC = dyn_cast(RHS.getNode())) { int64_t C = 0; EVT VT = RHSC->getValueType(0); bool knownInvalid = false; // I'm not convinced the rest of LLVM handles these edge cases properly, but // we can at least get it right. if (isSignedIntSetCC(CC)) { C = RHSC->getSExtValue(); } else if (RHSC->getZExtValue() > INT64_MAX) { // A 64-bit constant not representable by a signed 64-bit integer is far // too big to fit into a SUBS immediate anyway. knownInvalid = true; } else { C = RHSC->getZExtValue(); } if (!knownInvalid && !isLegalICmpImmediate(C)) { // Constant does not fit, try adjusting it by one? switch (CC) { default: break; case ISD::SETLT: case ISD::SETGE: if (isLegalICmpImmediate(C-1)) { CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; RHS = DAG.getConstant(C-1, VT); } break; case ISD::SETULT: case ISD::SETUGE: if (isLegalICmpImmediate(C-1)) { CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; RHS = DAG.getConstant(C-1, VT); } break; case ISD::SETLE: case ISD::SETGT: if (isLegalICmpImmediate(C+1)) { CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; RHS = DAG.getConstant(C+1, VT); } break; case ISD::SETULE: case ISD::SETUGT: if (isLegalICmpImmediate(C+1)) { CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; RHS = DAG.getConstant(C+1, VT); } break; } } } A64CC::CondCodes CondCode = IntCCToA64CC(CC); A64cc = DAG.getConstant(CondCode, MVT::i32); return DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS, DAG.getCondCode(CC)); } static A64CC::CondCodes FPCCToA64CC(ISD::CondCode CC, A64CC::CondCodes &Alternative) { A64CC::CondCodes CondCode = A64CC::Invalid; Alternative = A64CC::Invalid; switch (CC) { default: llvm_unreachable("Unknown FP condition!"); case ISD::SETEQ: case ISD::SETOEQ: CondCode = A64CC::EQ; break; case ISD::SETGT: case ISD::SETOGT: CondCode = A64CC::GT; break; case ISD::SETGE: case ISD::SETOGE: CondCode = A64CC::GE; break; case ISD::SETOLT: CondCode = A64CC::MI; break; case ISD::SETOLE: CondCode = A64CC::LS; break; case ISD::SETONE: CondCode = A64CC::MI; Alternative = A64CC::GT; break; case ISD::SETO: CondCode = A64CC::VC; break; case ISD::SETUO: CondCode = A64CC::VS; break; case ISD::SETUEQ: CondCode = A64CC::EQ; Alternative = A64CC::VS; break; case ISD::SETUGT: CondCode = A64CC::HI; break; case ISD::SETUGE: CondCode = A64CC::PL; break; case ISD::SETLT: case ISD::SETULT: CondCode = A64CC::LT; break; case ISD::SETLE: case ISD::SETULE: CondCode = A64CC::LE; break; case ISD::SETNE: case ISD::SETUNE: CondCode = A64CC::NE; break; } return CondCode; } SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT PtrVT = getPointerTy(); const BlockAddress *BA = cast(Op)->getBlockAddress(); switch(getTargetMachine().getCodeModel()) { case CodeModel::Small: // The most efficient code is PC-relative anyway for the small memory model, // so we don't need to worry about relocation model. return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT, DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_NO_FLAG), DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_LO12), DAG.getConstant(/*Alignment=*/ 4, MVT::i32)); case CodeModel::Large: return DAG.getNode( AArch64ISD::WrapperLarge, DL, PtrVT, DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G3), DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G2_NC), DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G1_NC), DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G0_NC)); default: llvm_unreachable("Only small and large code models supported now"); } } // (BRCOND chain, val, dest) SDValue AArch64TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); SDValue Chain = Op.getOperand(0); SDValue TheBit = Op.getOperand(1); SDValue DestBB = Op.getOperand(2); // AArch64 BooleanContents is the default UndefinedBooleanContent, which means // that as the consumer we are responsible for ignoring rubbish in higher // bits. TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit, DAG.getConstant(1, MVT::i32)); SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit, DAG.getConstant(0, TheBit.getValueType()), DAG.getCondCode(ISD::SETNE)); return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, Chain, A64CMP, DAG.getConstant(A64CC::NE, MVT::i32), DestBB); } // (BR_CC chain, condcode, lhs, rhs, dest) SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); SDValue Chain = Op.getOperand(0); ISD::CondCode CC = cast(Op.getOperand(1))->get(); SDValue LHS = Op.getOperand(2); SDValue RHS = Op.getOperand(3); SDValue DestBB = Op.getOperand(4); if (LHS.getValueType() == MVT::f128) { // f128 comparisons are lowered to runtime calls by a routine which sets // LHS, RHS and CC appropriately for the rest of this function to continue. softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); // If softenSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (RHS.getNode() == 0) { RHS = DAG.getConstant(0, LHS.getValueType()); CC = ISD::SETNE; } } if (LHS.getValueType().isInteger()) { SDValue A64cc; // Integers are handled in a separate function because the combinations of // immediates and tests can get hairy and we may want to fiddle things. SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl); return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, Chain, CmpOp, A64cc, DestBB); } // Note that some LLVM floating-point CondCodes can't be lowered to a single // conditional branch, hence FPCCToA64CC can set a second test, where either // passing is sufficient. A64CC::CondCodes CondCode, Alternative = A64CC::Invalid; CondCode = FPCCToA64CC(CC, Alternative); SDValue A64cc = DAG.getConstant(CondCode, MVT::i32); SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS, DAG.getCondCode(CC)); SDValue A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, Chain, SetCC, A64cc, DestBB); if (Alternative != A64CC::Invalid) { A64cc = DAG.getConstant(Alternative, MVT::i32); A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, A64BR_CC, SetCC, A64cc, DestBB); } return A64BR_CC; } SDValue AArch64TargetLowering::LowerF128ToCall(SDValue Op, SelectionDAG &DAG, RTLIB::Libcall Call) const { ArgListTy Args; ArgListEntry Entry; for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) { EVT ArgVT = Op.getOperand(i).getValueType(); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); Entry.Node = Op.getOperand(i); Entry.Ty = ArgTy; Entry.isSExt = false; Entry.isZExt = false; Args.push_back(Entry); } SDValue Callee = DAG.getExternalSymbol(getLibcallName(Call), getPointerTy()); Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext()); // By default, the input chain to this libcall is the entry node of the // function. If the libcall is going to be emitted as a tail call then // isUsedByReturnOnly will change it to the right chain if the return // node which is being folded has a non-entry input chain. SDValue InChain = DAG.getEntryNode(); // isTailCall may be true since the callee does not reference caller stack // frame. Check if it's in the right position. SDValue TCChain = InChain; bool isTailCall = isInTailCallPosition(DAG, Op.getNode(), TCChain); if (isTailCall) InChain = TCChain; TargetLowering:: CallLoweringInfo CLI(InChain, RetTy, false, false, false, false, 0, getLibcallCallingConv(Call), isTailCall, /*doesNotReturn=*/false, /*isReturnValueUsed=*/true, Callee, Args, DAG, SDLoc(Op)); std::pair CallInfo = LowerCallTo(CLI); if (!CallInfo.second.getNode()) // It's a tailcall, return the chain (which is the DAG root). return DAG.getRoot(); return CallInfo.first; } SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { if (Op.getOperand(0).getValueType() != MVT::f128) { // It's legal except when f128 is involved return Op; } RTLIB::Libcall LC; LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType()); SDValue SrcVal = Op.getOperand(0); return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1, /*isSigned*/ false, SDLoc(Op)).first; } SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { assert(Op.getValueType() == MVT::f128 && "Unexpected lowering"); RTLIB::Libcall LC; LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType()); return LowerF128ToCall(Op, DAG, LC); } SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, bool IsSigned) const { if (Op.getOperand(0).getValueType() != MVT::f128) { // It's legal except when f128 is involved return Op; } RTLIB::Libcall LC; if (IsSigned) LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType()); else LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType()); return LowerF128ToCall(Op, DAG, LC); } SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{ MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MFI->setReturnAddressIsTaken(true); if (verifyReturnAddressArgumentIsConstant(Op, DAG)) return SDValue(); EVT VT = Op.getValueType(); SDLoc dl(Op); unsigned Depth = cast(Op.getOperand(0))->getZExtValue(); if (Depth) { SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); SDValue Offset = DAG.getConstant(8, MVT::i64); return DAG.getLoad(VT, dl, DAG.getEntryNode(), DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), MachinePointerInfo(), false, false, false, 0); } // Return X30, which contains the return address. Mark it an implicit live-in. unsigned Reg = MF.addLiveIn(AArch64::X30, getRegClassFor(MVT::i64)); return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, MVT::i64); } SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); MFI->setFrameAddressIsTaken(true); EVT VT = Op.getValueType(); SDLoc dl(Op); unsigned Depth = cast(Op.getOperand(0))->getZExtValue(); unsigned FrameReg = AArch64::X29; SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); while (Depth--) FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, MachinePointerInfo(), false, false, false, 0); return FrameAddr; } SDValue AArch64TargetLowering::LowerGlobalAddressELFLarge(SDValue Op, SelectionDAG &DAG) const { assert(getTargetMachine().getCodeModel() == CodeModel::Large); assert(getTargetMachine().getRelocationModel() == Reloc::Static); EVT PtrVT = getPointerTy(); SDLoc dl(Op); const GlobalAddressSDNode *GN = cast(Op); const GlobalValue *GV = GN->getGlobal(); SDValue GlobalAddr = DAG.getNode( AArch64ISD::WrapperLarge, dl, PtrVT, DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G3), DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G2_NC), DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G1_NC), DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G0_NC)); if (GN->getOffset() != 0) return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr, DAG.getConstant(GN->getOffset(), PtrVT)); return GlobalAddr; } SDValue AArch64TargetLowering::LowerGlobalAddressELFSmall(SDValue Op, SelectionDAG &DAG) const { assert(getTargetMachine().getCodeModel() == CodeModel::Small); EVT PtrVT = getPointerTy(); SDLoc dl(Op); const GlobalAddressSDNode *GN = cast(Op); const GlobalValue *GV = GN->getGlobal(); unsigned Alignment = GV->getAlignment(); Reloc::Model RelocM = getTargetMachine().getRelocationModel(); if (GV->isWeakForLinker() && GV->isDeclaration() && RelocM == Reloc::Static) { // Weak undefined symbols can't use ADRP/ADD pair since they should evaluate // to zero when they remain undefined. In PIC mode the GOT can take care of // this, but in absolute mode we use a constant pool load. SDValue PoolAddr; PoolAddr = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT, DAG.getTargetConstantPool(GV, PtrVT, 0, 0, AArch64II::MO_NO_FLAG), DAG.getTargetConstantPool(GV, PtrVT, 0, 0, AArch64II::MO_LO12), DAG.getConstant(8, MVT::i32)); SDValue GlobalAddr = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), PoolAddr, MachinePointerInfo::getConstantPool(), /*isVolatile=*/ false, /*isNonTemporal=*/ true, /*isInvariant=*/ true, 8); if (GN->getOffset() != 0) return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr, DAG.getConstant(GN->getOffset(), PtrVT)); return GlobalAddr; } if (Alignment == 0) { const PointerType *GVPtrTy = cast(GV->getType()); if (GVPtrTy->getElementType()->isSized()) { Alignment = getDataLayout()->getABITypeAlignment(GVPtrTy->getElementType()); } else { // Be conservative if we can't guess, not that it really matters: // functions and labels aren't valid for loads, and the methods used to // actually calculate an address work with any alignment. Alignment = 1; } } unsigned char HiFixup, LoFixup; bool UseGOT = getSubtarget()->GVIsIndirectSymbol(GV, RelocM); if (UseGOT) { HiFixup = AArch64II::MO_GOT; LoFixup = AArch64II::MO_GOT_LO12; Alignment = 8; } else { HiFixup = AArch64II::MO_NO_FLAG; LoFixup = AArch64II::MO_LO12; } // AArch64's small model demands the following sequence: // ADRP x0, somewhere // ADD x0, x0, #:lo12:somewhere ; (or LDR directly). SDValue GlobalRef = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT, DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HiFixup), DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, LoFixup), DAG.getConstant(Alignment, MVT::i32)); if (UseGOT) { GlobalRef = DAG.getNode(AArch64ISD::GOTLoad, dl, PtrVT, DAG.getEntryNode(), GlobalRef); } if (GN->getOffset() != 0) return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalRef, DAG.getConstant(GN->getOffset(), PtrVT)); return GlobalRef; } SDValue AArch64TargetLowering::LowerGlobalAddressELF(SDValue Op, SelectionDAG &DAG) const { // TableGen doesn't have easy access to the CodeModel or RelocationModel, so // we make those distinctions here. switch (getTargetMachine().getCodeModel()) { case CodeModel::Small: return LowerGlobalAddressELFSmall(Op, DAG); case CodeModel::Large: return LowerGlobalAddressELFLarge(Op, DAG); default: llvm_unreachable("Only small and large code models supported now"); } } SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT PtrVT = getPointerTy(); ConstantPoolSDNode *CN = cast(Op); const Constant *C = CN->getConstVal(); switch(getTargetMachine().getCodeModel()) { case CodeModel::Small: // The most efficient code is PC-relative anyway for the small memory model, // so we don't need to worry about relocation model. return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT, DAG.getTargetConstantPool(C, PtrVT, 0, 0, AArch64II::MO_NO_FLAG), DAG.getTargetConstantPool(C, PtrVT, 0, 0, AArch64II::MO_LO12), DAG.getConstant(CN->getAlignment(), MVT::i32)); case CodeModel::Large: return DAG.getNode( AArch64ISD::WrapperLarge, DL, PtrVT, DAG.getTargetConstantPool(C, PtrVT, 0, 0, AArch64II::MO_ABS_G3), DAG.getTargetConstantPool(C, PtrVT, 0, 0, AArch64II::MO_ABS_G2_NC), DAG.getTargetConstantPool(C, PtrVT, 0, 0, AArch64II::MO_ABS_G1_NC), DAG.getTargetConstantPool(C, PtrVT, 0, 0, AArch64II::MO_ABS_G0_NC)); default: llvm_unreachable("Only small and large code models supported now"); } } SDValue AArch64TargetLowering::LowerTLSDescCall(SDValue SymAddr, SDValue DescAddr, SDLoc DL, SelectionDAG &DAG) const { EVT PtrVT = getPointerTy(); // The function we need to call is simply the first entry in the GOT for this // descriptor, load it in preparation. SDValue Func, Chain; Func = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(), DescAddr); // The function takes only one argument: the address of the descriptor itself // in X0. SDValue Glue; Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue); Glue = Chain.getValue(1); // Finally, there's a special calling-convention which means that the lookup // must preserve all registers (except X0, obviously). const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); const AArch64RegisterInfo *A64RI = static_cast(TRI); const uint32_t *Mask = A64RI->getTLSDescCallPreservedMask(); // We're now ready to populate the argument list, as with a normal call: std::vector Ops; Ops.push_back(Chain); Ops.push_back(Func); Ops.push_back(SymAddr); Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT)); Ops.push_back(DAG.getRegisterMask(Mask)); Ops.push_back(Glue); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); Chain = DAG.getNode(AArch64ISD::TLSDESCCALL, DL, NodeTys, &Ops[0], Ops.size()); Glue = Chain.getValue(1); // After the call, the offset from TPIDR_EL0 is in X0, copy it out and pass it // back to the generic handling code. return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue); } SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { assert(getSubtarget()->isTargetELF() && "TLS not implemented for non-ELF targets"); assert(getTargetMachine().getCodeModel() == CodeModel::Small && "TLS only supported in small memory model"); const GlobalAddressSDNode *GA = cast(Op); TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal()); SDValue TPOff; EVT PtrVT = getPointerTy(); SDLoc DL(Op); const GlobalValue *GV = GA->getGlobal(); SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT); if (Model == TLSModel::InitialExec) { TPOff = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT, DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_GOTTPREL), DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_GOTTPREL_LO12), DAG.getConstant(8, MVT::i32)); TPOff = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(), TPOff); } else if (Model == TLSModel::LocalExec) { SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0, AArch64II::MO_TPREL_G1); SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0, AArch64II::MO_TPREL_G0_NC); TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar, DAG.getTargetConstant(1, MVT::i32)), 0); TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT, TPOff, LoVar, DAG.getTargetConstant(0, MVT::i32)), 0); } else if (Model == TLSModel::GeneralDynamic) { // Accesses used in this sequence go via the TLS descriptor which lives in // the GOT. Prepare an address we can use to handle this. SDValue HiDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLSDESC); SDValue LoDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLSDESC_LO12); SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT, HiDesc, LoDesc, DAG.getConstant(8, MVT::i32)); SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0); TPOff = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG); } else if (Model == TLSModel::LocalDynamic) { // Local-dynamic accesses proceed in two phases. A general-dynamic TLS // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate // the beginning of the module's TLS region, followed by a DTPREL offset // calculation. // These accesses will need deduplicating if there's more than one. AArch64MachineFunctionInfo* MFI = DAG.getMachineFunction() .getInfo(); MFI->incNumLocalDynamicTLSAccesses(); // Get the location of _TLS_MODULE_BASE_: SDValue HiDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT, AArch64II::MO_TLSDESC); SDValue LoDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT, AArch64II::MO_TLSDESC_LO12); SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT, HiDesc, LoDesc, DAG.getConstant(8, MVT::i32)); SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT); ThreadBase = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG); // Get the variable's offset from _TLS_MODULE_BASE_ SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0, AArch64II::MO_DTPREL_G1); SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0, AArch64II::MO_DTPREL_G0_NC); TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar, DAG.getTargetConstant(0, MVT::i32)), 0); TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT, TPOff, LoVar, DAG.getTargetConstant(0, MVT::i32)), 0); } else llvm_unreachable("Unsupported TLS access model"); return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); } SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG, bool IsSigned) const { if (Op.getValueType() != MVT::f128) { // Legal for everything except f128. return Op; } RTLIB::Libcall LC; if (IsSigned) LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); else LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); return LowerF128ToCall(Op, DAG, LC); } SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { JumpTableSDNode *JT = cast(Op); SDLoc dl(JT); EVT PtrVT = getPointerTy(); // When compiling PIC, jump tables get put in the code section so a static // relocation-style is acceptable for both cases. switch (getTargetMachine().getCodeModel()) { case CodeModel::Small: return DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT, DAG.getTargetJumpTable(JT->getIndex(), PtrVT), DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_LO12), DAG.getConstant(1, MVT::i32)); case CodeModel::Large: return DAG.getNode( AArch64ISD::WrapperLarge, dl, PtrVT, DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G3), DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G2_NC), DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G1_NC), DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G0_NC)); default: llvm_unreachable("Only small and large code models supported now"); } } // (SELECT_CC lhs, rhs, iftrue, iffalse, condcode) SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDValue IfTrue = Op.getOperand(2); SDValue IfFalse = Op.getOperand(3); ISD::CondCode CC = cast(Op.getOperand(4))->get(); if (LHS.getValueType() == MVT::f128) { // f128 comparisons are lowered to libcalls, but slot in nicely here // afterwards. softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); // If softenSetCCOperands returned a scalar, we need to compare the result // against zero to select between true and false values. if (RHS.getNode() == 0) { RHS = DAG.getConstant(0, LHS.getValueType()); CC = ISD::SETNE; } } if (LHS.getValueType().isInteger()) { SDValue A64cc; // Integers are handled in a separate function because the combinations of // immediates and tests can get hairy and we may want to fiddle things. SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl); return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(), CmpOp, IfTrue, IfFalse, A64cc); } // Note that some LLVM floating-point CondCodes can't be lowered to a single // conditional branch, hence FPCCToA64CC can set a second test, where either // passing is sufficient. A64CC::CondCodes CondCode, Alternative = A64CC::Invalid; CondCode = FPCCToA64CC(CC, Alternative); SDValue A64cc = DAG.getConstant(CondCode, MVT::i32); SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS, DAG.getCondCode(CC)); SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(), SetCC, IfTrue, IfFalse, A64cc); if (Alternative != A64CC::Invalid) { A64cc = DAG.getConstant(Alternative, MVT::i32); A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(), SetCC, IfTrue, A64SELECT_CC, A64cc); } return A64SELECT_CC; } // (SELECT testbit, iftrue, iffalse) SDValue AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); SDValue TheBit = Op.getOperand(0); SDValue IfTrue = Op.getOperand(1); SDValue IfFalse = Op.getOperand(2); // AArch64 BooleanContents is the default UndefinedBooleanContent, which means // that as the consumer we are responsible for ignoring rubbish in higher // bits. TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit, DAG.getConstant(1, MVT::i32)); SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit, DAG.getConstant(0, TheBit.getValueType()), DAG.getCondCode(ISD::SETNE)); return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(), A64CMP, IfTrue, IfFalse, DAG.getConstant(A64CC::NE, MVT::i32)); } static SDValue LowerVectorSETCC(SDValue Op, SelectionDAG &DAG) { SDLoc DL(Op); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); ISD::CondCode CC = cast(Op.getOperand(2))->get(); EVT VT = Op.getValueType(); bool Invert = false; SDValue Op0, Op1; unsigned Opcode; if (LHS.getValueType().isInteger()) { // Attempt to use Vector Integer Compare Mask Test instruction. // TST = icmp ne (and (op0, op1), zero). if (CC == ISD::SETNE) { if (((LHS.getOpcode() == ISD::AND) && ISD::isBuildVectorAllZeros(RHS.getNode())) || ((RHS.getOpcode() == ISD::AND) && ISD::isBuildVectorAllZeros(LHS.getNode()))) { SDValue AndOp = (LHS.getOpcode() == ISD::AND) ? LHS : RHS; SDValue NewLHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(0)); SDValue NewRHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(1)); return DAG.getNode(AArch64ISD::NEON_TST, DL, VT, NewLHS, NewRHS); } } // Attempt to use Vector Integer Compare Mask against Zero instr (Signed). // Note: Compare against Zero does not support unsigned predicates. if ((ISD::isBuildVectorAllZeros(RHS.getNode()) || ISD::isBuildVectorAllZeros(LHS.getNode())) && !isUnsignedIntSetCC(CC)) { // If LHS is the zero value, swap operands and CondCode. if (ISD::isBuildVectorAllZeros(LHS.getNode())) { CC = getSetCCSwappedOperands(CC); Op0 = RHS; } else Op0 = LHS; // Ensure valid CondCode for Compare Mask against Zero instruction: // EQ, GE, GT, LE, LT. if (ISD::SETNE == CC) { Invert = true; CC = ISD::SETEQ; } // Using constant type to differentiate integer and FP compares with zero. Op1 = DAG.getConstant(0, MVT::i32); Opcode = AArch64ISD::NEON_CMPZ; } else { // Attempt to use Vector Integer Compare Mask instr (Signed/Unsigned). // Ensure valid CondCode for Compare Mask instr: EQ, GE, GT, UGE, UGT. bool Swap = false; switch (CC) { default: llvm_unreachable("Illegal integer comparison."); case ISD::SETEQ: case ISD::SETGT: case ISD::SETGE: case ISD::SETUGT: case ISD::SETUGE: break; case ISD::SETNE: Invert = true; CC = ISD::SETEQ; break; case ISD::SETULT: case ISD::SETULE: case ISD::SETLT: case ISD::SETLE: Swap = true; CC = getSetCCSwappedOperands(CC); } if (Swap) std::swap(LHS, RHS); Opcode = AArch64ISD::NEON_CMP; Op0 = LHS; Op1 = RHS; } // Generate Compare Mask instr or Compare Mask against Zero instr. SDValue NeonCmp = DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC)); if (Invert) NeonCmp = DAG.getNOT(DL, NeonCmp, VT); return NeonCmp; } // Now handle Floating Point cases. // Attempt to use Vector Floating Point Compare Mask against Zero instruction. if (ISD::isBuildVectorAllZeros(RHS.getNode()) || ISD::isBuildVectorAllZeros(LHS.getNode())) { // If LHS is the zero value, swap operands and CondCode. if (ISD::isBuildVectorAllZeros(LHS.getNode())) { CC = getSetCCSwappedOperands(CC); Op0 = RHS; } else Op0 = LHS; // Using constant type to differentiate integer and FP compares with zero. Op1 = DAG.getConstantFP(0, MVT::f32); Opcode = AArch64ISD::NEON_CMPZ; } else { // Attempt to use Vector Floating Point Compare Mask instruction. Op0 = LHS; Op1 = RHS; Opcode = AArch64ISD::NEON_CMP; } SDValue NeonCmpAlt; // Some register compares have to be implemented with swapped CC and operands, // e.g.: OLT implemented as OGT with swapped operands. bool SwapIfRegArgs = false; // Ensure valid CondCode for FP Compare Mask against Zero instruction: // EQ, GE, GT, LE, LT. // And ensure valid CondCode for FP Compare Mask instruction: EQ, GE, GT. switch (CC) { default: llvm_unreachable("Illegal FP comparison"); case ISD::SETUNE: case ISD::SETNE: Invert = true; // Fallthrough case ISD::SETOEQ: case ISD::SETEQ: CC = ISD::SETEQ; break; case ISD::SETOLT: case ISD::SETLT: CC = ISD::SETLT; SwapIfRegArgs = true; break; case ISD::SETOGT: case ISD::SETGT: CC = ISD::SETGT; break; case ISD::SETOLE: case ISD::SETLE: CC = ISD::SETLE; SwapIfRegArgs = true; break; case ISD::SETOGE: case ISD::SETGE: CC = ISD::SETGE; break; case ISD::SETUGE: Invert = true; CC = ISD::SETLT; SwapIfRegArgs = true; break; case ISD::SETULE: Invert = true; CC = ISD::SETGT; break; case ISD::SETUGT: Invert = true; CC = ISD::SETLE; SwapIfRegArgs = true; break; case ISD::SETULT: Invert = true; CC = ISD::SETGE; break; case ISD::SETUEQ: Invert = true; // Fallthrough case ISD::SETONE: // Expand this to (OGT |OLT). NeonCmpAlt = DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGT)); CC = ISD::SETLT; SwapIfRegArgs = true; break; case ISD::SETUO: Invert = true; // Fallthrough case ISD::SETO: // Expand this to (OGE | OLT). NeonCmpAlt = DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGE)); CC = ISD::SETLT; SwapIfRegArgs = true; break; } if (Opcode == AArch64ISD::NEON_CMP && SwapIfRegArgs) { CC = getSetCCSwappedOperands(CC); std::swap(Op0, Op1); } // Generate FP Compare Mask instr or FP Compare Mask against Zero instr SDValue NeonCmp = DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC)); if (NeonCmpAlt.getNode()) NeonCmp = DAG.getNode(ISD::OR, DL, VT, NeonCmp, NeonCmpAlt); if (Invert) NeonCmp = DAG.getNOT(DL, NeonCmp, VT); return NeonCmp; } // (SETCC lhs, rhs, condcode) SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); ISD::CondCode CC = cast(Op.getOperand(2))->get(); EVT VT = Op.getValueType(); if (VT.isVector()) return LowerVectorSETCC(Op, DAG); if (LHS.getValueType() == MVT::f128) { // f128 comparisons will be lowered to libcalls giving a valid LHS and RHS // for the rest of the function (some i32 or i64 values). softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); // If softenSetCCOperands returned a scalar, use it. if (RHS.getNode() == 0) { assert(LHS.getValueType() == Op.getValueType() && "Unexpected setcc expansion!"); return LHS; } } if (LHS.getValueType().isInteger()) { SDValue A64cc; // Integers are handled in a separate function because the combinations of // immediates and tests can get hairy and we may want to fiddle things. SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl); return DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp, DAG.getConstant(1, VT), DAG.getConstant(0, VT), A64cc); } // Note that some LLVM floating-point CondCodes can't be lowered to a single // conditional branch, hence FPCCToA64CC can set a second test, where either // passing is sufficient. A64CC::CondCodes CondCode, Alternative = A64CC::Invalid; CondCode = FPCCToA64CC(CC, Alternative); SDValue A64cc = DAG.getConstant(CondCode, MVT::i32); SDValue CmpOp = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS, DAG.getCondCode(CC)); SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp, DAG.getConstant(1, VT), DAG.getConstant(0, VT), A64cc); if (Alternative != A64CC::Invalid) { A64cc = DAG.getConstant(Alternative, MVT::i32); A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp, DAG.getConstant(1, VT), A64SELECT_CC, A64cc); } return A64SELECT_CC; } SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { const Value *DestSV = cast(Op.getOperand(3))->getValue(); const Value *SrcSV = cast(Op.getOperand(3))->getValue(); // We have to make sure we copy the entire structure: 8+8+8+4+4 = 32 bytes // rather than just 8. return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), Op.getOperand(1), Op.getOperand(2), DAG.getConstant(32, MVT::i32), 8, false, false, MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV)); } SDValue AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { // The layout of the va_list struct is specified in the AArch64 Procedure Call // Standard, section B.3. MachineFunction &MF = DAG.getMachineFunction(); AArch64MachineFunctionInfo *FuncInfo = MF.getInfo(); SDLoc DL(Op); SDValue Chain = Op.getOperand(0); SDValue VAList = Op.getOperand(1); const Value *SV = cast(Op.getOperand(2))->getValue(); SmallVector MemOps; // void *__stack at offset 0 SDValue Stack = DAG.getFrameIndex(FuncInfo->getVariadicStackIdx(), getPointerTy()); MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList, MachinePointerInfo(SV), false, false, 0)); // void *__gr_top at offset 8 int GPRSize = FuncInfo->getVariadicGPRSize(); if (GPRSize > 0) { SDValue GRTop, GRTopAddr; GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, DAG.getConstant(8, getPointerTy())); GRTop = DAG.getFrameIndex(FuncInfo->getVariadicGPRIdx(), getPointerTy()); GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop, DAG.getConstant(GPRSize, getPointerTy())); MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr, MachinePointerInfo(SV, 8), false, false, 0)); } // void *__vr_top at offset 16 int FPRSize = FuncInfo->getVariadicFPRSize(); if (FPRSize > 0) { SDValue VRTop, VRTopAddr; VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, DAG.getConstant(16, getPointerTy())); VRTop = DAG.getFrameIndex(FuncInfo->getVariadicFPRIdx(), getPointerTy()); VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop, DAG.getConstant(FPRSize, getPointerTy())); MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr, MachinePointerInfo(SV, 16), false, false, 0)); } // int __gr_offs at offset 24 SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, DAG.getConstant(24, getPointerTy())); MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32), GROffsAddr, MachinePointerInfo(SV, 24), false, false, 0)); // int __vr_offs at offset 28 SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, DAG.getConstant(28, getPointerTy())); MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32), VROffsAddr, MachinePointerInfo(SV, 28), false, false, 0)); return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0], MemOps.size()); } SDValue AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: llvm_unreachable("Don't know how to custom lower this!"); case ISD::FADD: return LowerF128ToCall(Op, DAG, RTLIB::ADD_F128); case ISD::FSUB: return LowerF128ToCall(Op, DAG, RTLIB::SUB_F128); case ISD::FMUL: return LowerF128ToCall(Op, DAG, RTLIB::MUL_F128); case ISD::FDIV: return LowerF128ToCall(Op, DAG, RTLIB::DIV_F128); case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, true); case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG, false); case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG, true); case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG, false); case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG); case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); case ISD::BRCOND: return LowerBRCOND(Op, DAG); case ISD::BR_CC: return LowerBR_CC(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddressELF(Op, DAG); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::SELECT: return LowerSELECT(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); case ISD::SETCC: return LowerSETCC(Op, DAG); case ISD::VACOPY: return LowerVACOPY(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG); case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, getSubtarget()); case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); } return SDValue(); } /// Check if the specified splat value corresponds to a valid vector constant /// for a Neon instruction with a "modified immediate" operand (e.g., MOVI). If /// so, return the encoded 8-bit immediate and the OpCmode instruction fields /// values. static bool isNeonModifiedImm(uint64_t SplatBits, uint64_t SplatUndef, unsigned SplatBitSize, SelectionDAG &DAG, bool is128Bits, NeonModImmType type, EVT &VT, unsigned &Imm, unsigned &OpCmode) { switch (SplatBitSize) { default: llvm_unreachable("unexpected size for isNeonModifiedImm"); case 8: { if (type != Neon_Mov_Imm) return false; assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big"); // Neon movi per byte: Op=0, Cmode=1110. OpCmode = 0xe; Imm = SplatBits; VT = is128Bits ? MVT::v16i8 : MVT::v8i8; break; } case 16: { // Neon move inst per halfword VT = is128Bits ? MVT::v8i16 : MVT::v4i16; if ((SplatBits & ~0xff) == 0) { // Value = 0x00nn is 0x00nn LSL 0 // movi: Op=0, Cmode=1000; mvni: Op=1, Cmode=1000 // bic: Op=1, Cmode=1001; orr: Op=0, Cmode=1001 // Op=x, Cmode=100y Imm = SplatBits; OpCmode = 0x8; break; } if ((SplatBits & ~0xff00) == 0) { // Value = 0xnn00 is 0x00nn LSL 8 // movi: Op=0, Cmode=1010; mvni: Op=1, Cmode=1010 // bic: Op=1, Cmode=1011; orr: Op=0, Cmode=1011 // Op=x, Cmode=101x Imm = SplatBits >> 8; OpCmode = 0xa; break; } // can't handle any other return false; } case 32: { // First the LSL variants (MSL is unusable by some interested instructions). // Neon move instr per word, shift zeros VT = is128Bits ? MVT::v4i32 : MVT::v2i32; if ((SplatBits & ~0xff) == 0) { // Value = 0x000000nn is 0x000000nn LSL 0 // movi: Op=0, Cmode= 0000; mvni: Op=1, Cmode= 0000 // bic: Op=1, Cmode= 0001; orr: Op=0, Cmode= 0001 // Op=x, Cmode=000x Imm = SplatBits; OpCmode = 0; break; } if ((SplatBits & ~0xff00) == 0) { // Value = 0x0000nn00 is 0x000000nn LSL 8 // movi: Op=0, Cmode= 0010; mvni: Op=1, Cmode= 0010 // bic: Op=1, Cmode= 0011; orr : Op=0, Cmode= 0011 // Op=x, Cmode=001x Imm = SplatBits >> 8; OpCmode = 0x2; break; } if ((SplatBits & ~0xff0000) == 0) { // Value = 0x00nn0000 is 0x000000nn LSL 16 // movi: Op=0, Cmode= 0100; mvni: Op=1, Cmode= 0100 // bic: Op=1, Cmode= 0101; orr: Op=0, Cmode= 0101 // Op=x, Cmode=010x Imm = SplatBits >> 16; OpCmode = 0x4; break; } if ((SplatBits & ~0xff000000) == 0) { // Value = 0xnn000000 is 0x000000nn LSL 24 // movi: Op=0, Cmode= 0110; mvni: Op=1, Cmode= 0110 // bic: Op=1, Cmode= 0111; orr: Op=0, Cmode= 0111 // Op=x, Cmode=011x Imm = SplatBits >> 24; OpCmode = 0x6; break; } // Now the MSL immediates. // Neon move instr per word, shift ones if ((SplatBits & ~0xffff) == 0 && ((SplatBits | SplatUndef) & 0xff) == 0xff) { // Value = 0x0000nnff is 0x000000nn MSL 8 // movi: Op=0, Cmode= 1100; mvni: Op=1, Cmode= 1100 // Op=x, Cmode=1100 Imm = SplatBits >> 8; OpCmode = 0xc; break; } if ((SplatBits & ~0xffffff) == 0 && ((SplatBits | SplatUndef) & 0xffff) == 0xffff) { // Value = 0x00nnffff is 0x000000nn MSL 16 // movi: Op=1, Cmode= 1101; mvni: Op=1, Cmode= 1101 // Op=x, Cmode=1101 Imm = SplatBits >> 16; OpCmode = 0xd; break; } // can't handle any other return false; } case 64: { if (type != Neon_Mov_Imm) return false; // Neon move instr bytemask, where each byte is either 0x00 or 0xff. // movi Op=1, Cmode=1110. OpCmode = 0x1e; uint64_t BitMask = 0xff; uint64_t Val = 0; unsigned ImmMask = 1; Imm = 0; for (int ByteNum = 0; ByteNum < 8; ++ByteNum) { if (((SplatBits | SplatUndef) & BitMask) == BitMask) { Val |= BitMask; Imm |= ImmMask; } else if ((SplatBits & BitMask) != 0) { return false; } BitMask <<= 8; ImmMask <<= 1; } SplatBits = Val; VT = is128Bits ? MVT::v2i64 : MVT::v1i64; break; } } return true; } static SDValue PerformANDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); EVT VT = N->getValueType(0); // We're looking for an SRA/SHL pair which form an SBFX. if (VT != MVT::i32 && VT != MVT::i64) return SDValue(); if (!isa(N->getOperand(1))) return SDValue(); uint64_t TruncMask = N->getConstantOperandVal(1); if (!isMask_64(TruncMask)) return SDValue(); uint64_t Width = CountPopulation_64(TruncMask); SDValue Shift = N->getOperand(0); if (Shift.getOpcode() != ISD::SRL) return SDValue(); if (!isa(Shift->getOperand(1))) return SDValue(); uint64_t LSB = Shift->getConstantOperandVal(1); if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits()) return SDValue(); return DAG.getNode(AArch64ISD::UBFX, DL, VT, Shift.getOperand(0), DAG.getConstant(LSB, MVT::i64), DAG.getConstant(LSB + Width - 1, MVT::i64)); } /// For a true bitfield insert, the bits getting into that contiguous mask /// should come from the low part of an existing value: they must be formed from /// a compatible SHL operation (unless they're already low). This function /// checks that condition and returns the least-significant bit that's /// intended. If the operation not a field preparation, -1 is returned. static int32_t getLSBForBFI(SelectionDAG &DAG, SDLoc DL, EVT VT, SDValue &MaskedVal, uint64_t Mask) { if (!isShiftedMask_64(Mask)) return -1; // Now we need to alter MaskedVal so that it is an appropriate input for a BFI // instruction. BFI will do a left-shift by LSB before applying the mask we've // spotted, so in general we should pre-emptively "undo" that by making sure // the incoming bits have had a right-shift applied to them. // // This right shift, however, will combine with existing left/right shifts. In // the simplest case of a completely straight bitfield operation, it will be // expected to completely cancel out with an existing SHL. More complicated // cases (e.g. bitfield to bitfield copy) may still need a real shift before // the BFI. uint64_t LSB = countTrailingZeros(Mask); int64_t ShiftRightRequired = LSB; if (MaskedVal.getOpcode() == ISD::SHL && isa(MaskedVal.getOperand(1))) { ShiftRightRequired -= MaskedVal.getConstantOperandVal(1); MaskedVal = MaskedVal.getOperand(0); } else if (MaskedVal.getOpcode() == ISD::SRL && isa(MaskedVal.getOperand(1))) { ShiftRightRequired += MaskedVal.getConstantOperandVal(1); MaskedVal = MaskedVal.getOperand(0); } if (ShiftRightRequired > 0) MaskedVal = DAG.getNode(ISD::SRL, DL, VT, MaskedVal, DAG.getConstant(ShiftRightRequired, MVT::i64)); else if (ShiftRightRequired < 0) { // We could actually end up with a residual left shift, for example with // "struc.bitfield = val << 1". MaskedVal = DAG.getNode(ISD::SHL, DL, VT, MaskedVal, DAG.getConstant(-ShiftRightRequired, MVT::i64)); } return LSB; } /// Searches from N for an existing AArch64ISD::BFI node, possibly surrounded by /// a mask and an extension. Returns true if a BFI was found and provides /// information on its surroundings. static bool findMaskedBFI(SDValue N, SDValue &BFI, uint64_t &Mask, bool &Extended) { Extended = false; if (N.getOpcode() == ISD::ZERO_EXTEND) { Extended = true; N = N.getOperand(0); } if (N.getOpcode() == ISD::AND && isa(N.getOperand(1))) { Mask = N->getConstantOperandVal(1); N = N.getOperand(0); } else { // Mask is the whole width. Mask = -1ULL >> (64 - N.getValueType().getSizeInBits()); } if (N.getOpcode() == AArch64ISD::BFI) { BFI = N; return true; } return false; } /// Try to combine a subtree (rooted at an OR) into a "masked BFI" node, which /// is roughly equivalent to (and (BFI ...), mask). This form is used because it /// can often be further combined with a larger mask. Ultimately, we want mask /// to be 2^32-1 or 2^64-1 so the AND can be skipped. static SDValue tryCombineToBFI(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget) { SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); EVT VT = N->getValueType(0); assert(N->getOpcode() == ISD::OR && "Unexpected root"); // We need the LHS to be (and SOMETHING, MASK). Find out what that mask is or // abandon the effort. SDValue LHS = N->getOperand(0); if (LHS.getOpcode() != ISD::AND) return SDValue(); uint64_t LHSMask; if (isa(LHS.getOperand(1))) LHSMask = LHS->getConstantOperandVal(1); else return SDValue(); // We also need the RHS to be (and SOMETHING, MASK). Find out what that mask // is or abandon the effort. SDValue RHS = N->getOperand(1); if (RHS.getOpcode() != ISD::AND) return SDValue(); uint64_t RHSMask; if (isa(RHS.getOperand(1))) RHSMask = RHS->getConstantOperandVal(1); else return SDValue(); // Can't do anything if the masks are incompatible. if (LHSMask & RHSMask) return SDValue(); // Now we need one of the masks to be a contiguous field. Without loss of // generality that should be the RHS one. SDValue Bitfield = LHS.getOperand(0); if (getLSBForBFI(DAG, DL, VT, Bitfield, LHSMask) != -1) { // We know that LHS is a candidate new value, and RHS isn't already a better // one. std::swap(LHS, RHS); std::swap(LHSMask, RHSMask); } // We've done our best to put the right operands in the right places, all we // can do now is check whether a BFI exists. Bitfield = RHS.getOperand(0); int32_t LSB = getLSBForBFI(DAG, DL, VT, Bitfield, RHSMask); if (LSB == -1) return SDValue(); uint32_t Width = CountPopulation_64(RHSMask); assert(Width && "Expected non-zero bitfield width"); SDValue BFI = DAG.getNode(AArch64ISD::BFI, DL, VT, LHS.getOperand(0), Bitfield, DAG.getConstant(LSB, MVT::i64), DAG.getConstant(Width, MVT::i64)); // Mask is trivial if ((LHSMask | RHSMask) == (-1ULL >> (64 - VT.getSizeInBits()))) return BFI; return DAG.getNode(ISD::AND, DL, VT, BFI, DAG.getConstant(LHSMask | RHSMask, VT)); } /// Search for the bitwise combining (with careful masks) of a MaskedBFI and its /// original input. This is surprisingly common because SROA splits things up /// into i8 chunks, so the originally detected MaskedBFI may actually only act /// on the low (say) byte of a word. This is then orred into the rest of the /// word afterwards. /// /// Basic input: (or (and OLDFIELD, MASK1), (MaskedBFI MASK2, OLDFIELD, ...)). /// /// If MASK1 and MASK2 are compatible, we can fold the whole thing into the /// MaskedBFI. We can also deal with a certain amount of extend/truncate being /// involved. static SDValue tryCombineToLargerBFI(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget) { SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); EVT VT = N->getValueType(0); // First job is to hunt for a MaskedBFI on either the left or right. Swap // operands if it's actually on the right. SDValue BFI; SDValue PossExtraMask; uint64_t ExistingMask = 0; bool Extended = false; if (findMaskedBFI(N->getOperand(0), BFI, ExistingMask, Extended)) PossExtraMask = N->getOperand(1); else if (findMaskedBFI(N->getOperand(1), BFI, ExistingMask, Extended)) PossExtraMask = N->getOperand(0); else return SDValue(); // We can only combine a BFI with another compatible mask. if (PossExtraMask.getOpcode() != ISD::AND || !isa(PossExtraMask.getOperand(1))) return SDValue(); uint64_t ExtraMask = PossExtraMask->getConstantOperandVal(1); // Masks must be compatible. if (ExtraMask & ExistingMask) return SDValue(); SDValue OldBFIVal = BFI.getOperand(0); SDValue NewBFIVal = BFI.getOperand(1); if (Extended) { // We skipped a ZERO_EXTEND above, so the input to the MaskedBFIs should be // 32-bit and we'll be forming a 64-bit MaskedBFI. The MaskedBFI arguments // need to be made compatible. assert(VT == MVT::i64 && BFI.getValueType() == MVT::i32 && "Invalid types for BFI"); OldBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, OldBFIVal); NewBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NewBFIVal); } // We need the MaskedBFI to be combined with a mask of the *same* value. if (PossExtraMask.getOperand(0) != OldBFIVal) return SDValue(); BFI = DAG.getNode(AArch64ISD::BFI, DL, VT, OldBFIVal, NewBFIVal, BFI.getOperand(2), BFI.getOperand(3)); // If the masking is trivial, we don't need to create it. if ((ExtraMask | ExistingMask) == (-1ULL >> (64 - VT.getSizeInBits()))) return BFI; return DAG.getNode(ISD::AND, DL, VT, BFI, DAG.getConstant(ExtraMask | ExistingMask, VT)); } /// An EXTR instruction is made up of two shifts, ORed together. This helper /// searches for and classifies those shifts. static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount, bool &FromHi) { if (N.getOpcode() == ISD::SHL) FromHi = false; else if (N.getOpcode() == ISD::SRL) FromHi = true; else return false; if (!isa(N.getOperand(1))) return false; ShiftAmount = N->getConstantOperandVal(1); Src = N->getOperand(0); return true; } /// EXTR instruction extracts a contiguous chunk of bits from two existing /// registers viewed as a high/low pair. This function looks for the pattern: /// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an /// EXTR. Can't quite be done in TableGen because the two immediates aren't /// independent. static SDValue tryCombineToEXTR(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); EVT VT = N->getValueType(0); assert(N->getOpcode() == ISD::OR && "Unexpected root"); if (VT != MVT::i32 && VT != MVT::i64) return SDValue(); SDValue LHS; uint32_t ShiftLHS = 0; bool LHSFromHi = 0; if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi)) return SDValue(); SDValue RHS; uint32_t ShiftRHS = 0; bool RHSFromHi = 0; if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi)) return SDValue(); // If they're both trying to come from the high part of the register, they're // not really an EXTR. if (LHSFromHi == RHSFromHi) return SDValue(); if (ShiftLHS + ShiftRHS != VT.getSizeInBits()) return SDValue(); if (LHSFromHi) { std::swap(LHS, RHS); std::swap(ShiftLHS, ShiftRHS); } return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS, DAG.getConstant(ShiftRHS, MVT::i64)); } /// Target-specific dag combine xforms for ISD::OR static SDValue PerformORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget) { SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); EVT VT = N->getValueType(0); if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) return SDValue(); // Attempt to recognise bitfield-insert operations. SDValue Res = tryCombineToBFI(N, DCI, Subtarget); if (Res.getNode()) return Res; // Attempt to combine an existing MaskedBFI operation into one with a larger // mask. Res = tryCombineToLargerBFI(N, DCI, Subtarget); if (Res.getNode()) return Res; Res = tryCombineToEXTR(N, DCI); if (Res.getNode()) return Res; if (!Subtarget->hasNEON()) return SDValue(); // Attempt to use vector immediate-form BSL // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant. SDValue N0 = N->getOperand(0); if (N0.getOpcode() != ISD::AND) return SDValue(); SDValue N1 = N->getOperand(1); if (N1.getOpcode() != ISD::AND) return SDValue(); if (VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT)) { APInt SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; BuildVectorSDNode *BVN0 = dyn_cast(N0->getOperand(1)); APInt SplatBits0; if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize, HasAnyUndefs) && !HasAnyUndefs) { BuildVectorSDNode *BVN1 = dyn_cast(N1->getOperand(1)); APInt SplatBits1; if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize, HasAnyUndefs) && !HasAnyUndefs && SplatBits0 == ~SplatBits1) { return DAG.getNode(ISD::VSELECT, DL, VT, N0->getOperand(1), N0->getOperand(0), N1->getOperand(0)); } } } return SDValue(); } /// Target-specific dag combine xforms for ISD::SRA static SDValue PerformSRACombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); EVT VT = N->getValueType(0); // We're looking for an SRA/SHL pair which form an SBFX. if (VT != MVT::i32 && VT != MVT::i64) return SDValue(); if (!isa(N->getOperand(1))) return SDValue(); uint64_t ExtraSignBits = N->getConstantOperandVal(1); SDValue Shift = N->getOperand(0); if (Shift.getOpcode() != ISD::SHL) return SDValue(); if (!isa(Shift->getOperand(1))) return SDValue(); uint64_t BitsOnLeft = Shift->getConstantOperandVal(1); uint64_t Width = VT.getSizeInBits() - ExtraSignBits; uint64_t LSB = VT.getSizeInBits() - Width - BitsOnLeft; if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits()) return SDValue(); return DAG.getNode(AArch64ISD::SBFX, DL, VT, Shift.getOperand(0), DAG.getConstant(LSB, MVT::i64), DAG.getConstant(LSB + Width - 1, MVT::i64)); } /// Check if this is a valid build_vector for the immediate operand of /// a vector shift operation, where all the elements of the build_vector /// must have the same constant integer value. static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { // Ignore bit_converts. while (Op.getOpcode() == ISD::BITCAST) Op = Op.getOperand(0); BuildVectorSDNode *BVN = dyn_cast(Op.getNode()); APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, ElementBits) || SplatBitSize > ElementBits) return false; Cnt = SplatBits.getSExtValue(); return true; } /// Check if this is a valid build_vector for the immediate operand of /// a vector shift left operation. That value must be in the range: /// 0 <= Value < ElementBits static bool isVShiftLImm(SDValue Op, EVT VT, int64_t &Cnt) { assert(VT.isVector() && "vector shift count is not a vector type"); unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); if (!getVShiftImm(Op, ElementBits, Cnt)) return false; return (Cnt >= 0 && Cnt < ElementBits); } /// Check if this is a valid build_vector for the immediate operand of a /// vector shift right operation. The value must be in the range: /// 1 <= Value <= ElementBits static bool isVShiftRImm(SDValue Op, EVT VT, int64_t &Cnt) { assert(VT.isVector() && "vector shift count is not a vector type"); unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); if (!getVShiftImm(Op, ElementBits, Cnt)) return false; return (Cnt >= 1 && Cnt <= ElementBits); } /// Checks for immediate versions of vector shifts and lowers them. static SDValue PerformShiftCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *ST) { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); if (N->getOpcode() == ISD::SRA && (VT == MVT::i32 || VT == MVT::i64)) return PerformSRACombine(N, DCI); // Nothing to be done for scalar shifts. const TargetLowering &TLI = DAG.getTargetLoweringInfo(); if (!VT.isVector() || !TLI.isTypeLegal(VT)) return SDValue(); assert(ST->hasNEON() && "unexpected vector shift"); int64_t Cnt; switch (N->getOpcode()) { default: llvm_unreachable("unexpected shift opcode"); case ISD::SHL: if (isVShiftLImm(N->getOperand(1), VT, Cnt)) { SDValue RHS = DAG.getNode(AArch64ISD::NEON_VDUP, SDLoc(N->getOperand(1)), VT, DAG.getConstant(Cnt, MVT::i32)); return DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0), RHS); } break; case ISD::SRA: case ISD::SRL: if (isVShiftRImm(N->getOperand(1), VT, Cnt)) { SDValue RHS = DAG.getNode(AArch64ISD::NEON_VDUP, SDLoc(N->getOperand(1)), VT, DAG.getConstant(Cnt, MVT::i32)); return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N->getOperand(0), RHS); } break; } return SDValue(); } /// ARM-specific DAG combining for intrinsics. static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) { unsigned IntNo = cast(N->getOperand(0))->getZExtValue(); switch (IntNo) { default: // Don't do anything for most intrinsics. break; case Intrinsic::arm_neon_vqshifts: case Intrinsic::arm_neon_vqshiftu: EVT VT = N->getOperand(1).getValueType(); int64_t Cnt; if (!isVShiftLImm(N->getOperand(2), VT, Cnt)) break; unsigned VShiftOpc = (IntNo == Intrinsic::arm_neon_vqshifts) ? AArch64ISD::NEON_QSHLs : AArch64ISD::NEON_QSHLu; return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0), N->getOperand(1), DAG.getConstant(Cnt, MVT::i32)); } return SDValue(); } /// Target-specific DAG combine function for NEON load/store intrinsics /// to merge base address updates. static SDValue CombineBaseUpdate(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) return SDValue(); SelectionDAG &DAG = DCI.DAG; bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID || N->getOpcode() == ISD::INTRINSIC_W_CHAIN); unsigned AddrOpIdx = (isIntrinsic ? 2 : 1); SDValue Addr = N->getOperand(AddrOpIdx); // Search for a use of the address operand that is an increment. for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE = Addr.getNode()->use_end(); UI != UE; ++UI) { SDNode *User = *UI; if (User->getOpcode() != ISD::ADD || UI.getUse().getResNo() != Addr.getResNo()) continue; // Check that the add is independent of the load/store. Otherwise, folding // it would create a cycle. if (User->isPredecessorOf(N) || N->isPredecessorOf(User)) continue; // Find the new opcode for the updating load/store. bool isLoad = true; bool isLaneOp = false; unsigned NewOpc = 0; unsigned NumVecs = 0; if (isIntrinsic) { unsigned IntNo = cast(N->getOperand(1))->getZExtValue(); switch (IntNo) { default: llvm_unreachable("unexpected intrinsic for Neon base update"); case Intrinsic::arm_neon_vld1: NewOpc = AArch64ISD::NEON_LD1_UPD; NumVecs = 1; break; case Intrinsic::arm_neon_vld2: NewOpc = AArch64ISD::NEON_LD2_UPD; NumVecs = 2; break; case Intrinsic::arm_neon_vld3: NewOpc = AArch64ISD::NEON_LD3_UPD; NumVecs = 3; break; case Intrinsic::arm_neon_vld4: NewOpc = AArch64ISD::NEON_LD4_UPD; NumVecs = 4; break; case Intrinsic::arm_neon_vst1: NewOpc = AArch64ISD::NEON_ST1_UPD; NumVecs = 1; isLoad = false; break; case Intrinsic::arm_neon_vst2: NewOpc = AArch64ISD::NEON_ST2_UPD; NumVecs = 2; isLoad = false; break; case Intrinsic::arm_neon_vst3: NewOpc = AArch64ISD::NEON_ST3_UPD; NumVecs = 3; isLoad = false; break; case Intrinsic::arm_neon_vst4: NewOpc = AArch64ISD::NEON_ST4_UPD; NumVecs = 4; isLoad = false; break; case Intrinsic::aarch64_neon_vld1x2: NewOpc = AArch64ISD::NEON_LD1x2_UPD; NumVecs = 2; break; case Intrinsic::aarch64_neon_vld1x3: NewOpc = AArch64ISD::NEON_LD1x3_UPD; NumVecs = 3; break; case Intrinsic::aarch64_neon_vld1x4: NewOpc = AArch64ISD::NEON_LD1x4_UPD; NumVecs = 4; break; case Intrinsic::aarch64_neon_vst1x2: NewOpc = AArch64ISD::NEON_ST1x2_UPD; NumVecs = 2; isLoad = false; break; case Intrinsic::aarch64_neon_vst1x3: NewOpc = AArch64ISD::NEON_ST1x3_UPD; NumVecs = 3; isLoad = false; break; case Intrinsic::aarch64_neon_vst1x4: NewOpc = AArch64ISD::NEON_ST1x4_UPD; NumVecs = 4; isLoad = false; break; case Intrinsic::arm_neon_vld2lane: NewOpc = AArch64ISD::NEON_LD2LN_UPD; NumVecs = 2; isLaneOp = true; break; case Intrinsic::arm_neon_vld3lane: NewOpc = AArch64ISD::NEON_LD3LN_UPD; NumVecs = 3; isLaneOp = true; break; case Intrinsic::arm_neon_vld4lane: NewOpc = AArch64ISD::NEON_LD4LN_UPD; NumVecs = 4; isLaneOp = true; break; case Intrinsic::arm_neon_vst2lane: NewOpc = AArch64ISD::NEON_ST2LN_UPD; NumVecs = 2; isLoad = false; isLaneOp = true; break; case Intrinsic::arm_neon_vst3lane: NewOpc = AArch64ISD::NEON_ST3LN_UPD; NumVecs = 3; isLoad = false; isLaneOp = true; break; case Intrinsic::arm_neon_vst4lane: NewOpc = AArch64ISD::NEON_ST4LN_UPD; NumVecs = 4; isLoad = false; isLaneOp = true; break; } } else { isLaneOp = true; switch (N->getOpcode()) { default: llvm_unreachable("unexpected opcode for Neon base update"); case AArch64ISD::NEON_LD2DUP: NewOpc = AArch64ISD::NEON_LD2DUP_UPD; NumVecs = 2; break; case AArch64ISD::NEON_LD3DUP: NewOpc = AArch64ISD::NEON_LD3DUP_UPD; NumVecs = 3; break; case AArch64ISD::NEON_LD4DUP: NewOpc = AArch64ISD::NEON_LD4DUP_UPD; NumVecs = 4; break; } } // Find the size of memory referenced by the load/store. EVT VecTy; if (isLoad) VecTy = N->getValueType(0); else VecTy = N->getOperand(AddrOpIdx + 1).getValueType(); unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; if (isLaneOp) NumBytes /= VecTy.getVectorNumElements(); // If the increment is a constant, it must match the memory ref size. SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); if (ConstantSDNode *CInc = dyn_cast(Inc.getNode())) { uint32_t IncVal = CInc->getZExtValue(); if (IncVal != NumBytes) continue; Inc = DAG.getTargetConstant(IncVal, MVT::i32); } // Create the new updating load/store node. EVT Tys[6]; unsigned NumResultVecs = (isLoad ? NumVecs : 0); unsigned n; for (n = 0; n < NumResultVecs; ++n) Tys[n] = VecTy; Tys[n++] = MVT::i64; Tys[n] = MVT::Other; SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs + 2); SmallVector Ops; Ops.push_back(N->getOperand(0)); // incoming chain Ops.push_back(N->getOperand(AddrOpIdx)); Ops.push_back(Inc); for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) { Ops.push_back(N->getOperand(i)); } MemIntrinsicSDNode *MemInt = cast(N); SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops.data(), Ops.size(), MemInt->getMemoryVT(), MemInt->getMemOperand()); // Update the uses. std::vector NewResults; for (unsigned i = 0; i < NumResultVecs; ++i) { NewResults.push_back(SDValue(UpdN.getNode(), i)); } NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain DCI.CombineTo(N, NewResults); DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); break; } return SDValue(); } /// For a VDUPLANE node N, check if its source operand is a vldN-lane (N > 1) /// intrinsic, and if all the other uses of that intrinsic are also VDUPLANEs. /// If so, combine them to a vldN-dup operation and return true. static SDValue CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); // Check if the VDUPLANE operand is a vldN-dup intrinsic. SDNode *VLD = N->getOperand(0).getNode(); if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN) return SDValue(); unsigned NumVecs = 0; unsigned NewOpc = 0; unsigned IntNo = cast(VLD->getOperand(1))->getZExtValue(); if (IntNo == Intrinsic::arm_neon_vld2lane) { NumVecs = 2; NewOpc = AArch64ISD::NEON_LD2DUP; } else if (IntNo == Intrinsic::arm_neon_vld3lane) { NumVecs = 3; NewOpc = AArch64ISD::NEON_LD3DUP; } else if (IntNo == Intrinsic::arm_neon_vld4lane) { NumVecs = 4; NewOpc = AArch64ISD::NEON_LD4DUP; } else { return SDValue(); } // First check that all the vldN-lane uses are VDUPLANEs and that the lane // numbers match the load. unsigned VLDLaneNo = cast(VLD->getOperand(NumVecs + 3))->getZExtValue(); for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); UI != UE; ++UI) { // Ignore uses of the chain result. if (UI.getUse().getResNo() == NumVecs) continue; SDNode *User = *UI; if (User->getOpcode() != AArch64ISD::NEON_VDUPLANE || VLDLaneNo != cast(User->getOperand(1))->getZExtValue()) return SDValue(); } // Create the vldN-dup node. EVT Tys[5]; unsigned n; for (n = 0; n < NumVecs; ++n) Tys[n] = VT; Tys[n] = MVT::Other; SDVTList SDTys = DAG.getVTList(Tys, NumVecs + 1); SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) }; MemIntrinsicSDNode *VLDMemInt = cast(VLD); SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys, Ops, 2, VLDMemInt->getMemoryVT(), VLDMemInt->getMemOperand()); // Update the uses. for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); UI != UE; ++UI) { unsigned ResNo = UI.getUse().getResNo(); // Ignore uses of the chain result. if (ResNo == NumVecs) continue; SDNode *User = *UI; DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo)); } // Now the vldN-lane intrinsic is dead except for its chain result. // Update uses of the chain. std::vector VLDDupResults; for (unsigned n = 0; n < NumVecs; ++n) VLDDupResults.push_back(SDValue(VLDDup.getNode(), n)); VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs)); DCI.CombineTo(VLD, VLDDupResults); return SDValue(N, 0); } SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { switch (N->getOpcode()) { default: break; case ISD::AND: return PerformANDCombine(N, DCI); case ISD::OR: return PerformORCombine(N, DCI, getSubtarget()); case ISD::SHL: case ISD::SRA: case ISD::SRL: return PerformShiftCombine(N, DCI, getSubtarget()); case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG); case AArch64ISD::NEON_VDUPLANE: return CombineVLDDUP(N, DCI); case AArch64ISD::NEON_LD2DUP: case AArch64ISD::NEON_LD3DUP: case AArch64ISD::NEON_LD4DUP: return CombineBaseUpdate(N, DCI); case ISD::INTRINSIC_VOID: case ISD::INTRINSIC_W_CHAIN: switch (cast(N->getOperand(1))->getZExtValue()) { case Intrinsic::arm_neon_vld1: case Intrinsic::arm_neon_vld2: case Intrinsic::arm_neon_vld3: case Intrinsic::arm_neon_vld4: case Intrinsic::arm_neon_vst1: case Intrinsic::arm_neon_vst2: case Intrinsic::arm_neon_vst3: case Intrinsic::arm_neon_vst4: case Intrinsic::arm_neon_vld2lane: case Intrinsic::arm_neon_vld3lane: case Intrinsic::arm_neon_vld4lane: case Intrinsic::aarch64_neon_vld1x2: case Intrinsic::aarch64_neon_vld1x3: case Intrinsic::aarch64_neon_vld1x4: case Intrinsic::aarch64_neon_vst1x2: case Intrinsic::aarch64_neon_vst1x3: case Intrinsic::aarch64_neon_vst1x4: case Intrinsic::arm_neon_vst2lane: case Intrinsic::arm_neon_vst3lane: case Intrinsic::arm_neon_vst4lane: return CombineBaseUpdate(N, DCI); default: break; } } return SDValue(); } bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { VT = VT.getScalarType(); if (!VT.isSimple()) return false; switch (VT.getSimpleVT().SimpleTy) { case MVT::f16: case MVT::f32: case MVT::f64: return true; case MVT::f128: return false; default: break; } return false; } // Check whether a Build Vector could be presented as Shuffle Vector. If yes, // try to call LowerVECTOR_SHUFFLE to lower it. bool AArch64TargetLowering::isKnownShuffleVector(SDValue Op, SelectionDAG &DAG, SDValue &Res) const { SDLoc DL(Op); EVT VT = Op.getValueType(); unsigned NumElts = VT.getVectorNumElements(); unsigned V0NumElts = 0; int Mask[16]; SDValue V0, V1; // Check if all elements are extracted from less than 3 vectors. for (unsigned i = 0; i < NumElts; ++i) { SDValue Elt = Op.getOperand(i); if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT) return false; if (V0.getNode() == 0) { V0 = Elt.getOperand(0); V0NumElts = V0.getValueType().getVectorNumElements(); } if (Elt.getOperand(0) == V0) { Mask[i] = (cast(Elt->getOperand(1))->getZExtValue()); continue; } else if (V1.getNode() == 0) { V1 = Elt.getOperand(0); } if (Elt.getOperand(0) == V1) { unsigned Lane = cast(Elt->getOperand(1))->getZExtValue(); Mask[i] = (Lane + V0NumElts); continue; } else { return false; } } if (!V1.getNode() && V0NumElts == NumElts * 2) { V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V0, DAG.getConstant(NumElts, MVT::i64)); V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V0, DAG.getConstant(0, MVT::i64)); V0NumElts = V0.getValueType().getVectorNumElements(); } if (V1.getNode() && NumElts == V0NumElts && V0NumElts == V1.getValueType().getVectorNumElements()) { SDValue Shuffle = DAG.getVectorShuffle(VT, DL, V0, V1, Mask); if(Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE) Res = Shuffle; else Res = LowerVECTOR_SHUFFLE(Shuffle, DAG); return true; } else return false; } // If this is a case we can't handle, return null and let the default // expansion code take care of it. SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, const AArch64Subtarget *ST) const { BuildVectorSDNode *BVN = cast(Op.getNode()); SDLoc DL(Op); EVT VT = Op.getValueType(); APInt SplatBits, SplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; unsigned UseNeonMov = VT.getSizeInBits() >= 64; // Note we favor lowering MOVI over MVNI. // This has implications on the definition of patterns in TableGen to select // BIC immediate instructions but not ORR immediate instructions. // If this lowering order is changed, TableGen patterns for BIC immediate and // ORR immediate instructions have to be updated. if (UseNeonMov && BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { if (SplatBitSize <= 64) { // First attempt to use vector immediate-form MOVI EVT NeonMovVT; unsigned Imm = 0; unsigned OpCmode = 0; if (isNeonModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(), SplatBitSize, DAG, VT.is128BitVector(), Neon_Mov_Imm, NeonMovVT, Imm, OpCmode)) { SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32); SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32); if (ImmVal.getNode() && OpCmodeVal.getNode()) { SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MOVIMM, DL, NeonMovVT, ImmVal, OpCmodeVal); return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov); } } // Then attempt to use vector immediate-form MVNI uint64_t NegatedImm = (~SplatBits).getZExtValue(); if (isNeonModifiedImm(NegatedImm, SplatUndef.getZExtValue(), SplatBitSize, DAG, VT.is128BitVector(), Neon_Mvn_Imm, NeonMovVT, Imm, OpCmode)) { SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32); SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32); if (ImmVal.getNode() && OpCmodeVal.getNode()) { SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MVNIMM, DL, NeonMovVT, ImmVal, OpCmodeVal); return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov); } } // Attempt to use vector immediate-form FMOV if (((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) || (VT == MVT::v2f64 && SplatBitSize == 64)) { APFloat RealVal( SplatBitSize == 32 ? APFloat::IEEEsingle : APFloat::IEEEdouble, SplatBits); uint32_t ImmVal; if (A64Imms::isFPImm(RealVal, ImmVal)) { SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32); return DAG.getNode(AArch64ISD::NEON_FMOVIMM, DL, VT, Val); } } } } unsigned NumElts = VT.getVectorNumElements(); bool isOnlyLowElement = true; bool usesOnlyOneValue = true; bool hasDominantValue = false; bool isConstant = true; // Map of the number of times a particular SDValue appears in the // element list. DenseMap ValueCounts; SDValue Value; for (unsigned i = 0; i < NumElts; ++i) { SDValue V = Op.getOperand(i); if (V.getOpcode() == ISD::UNDEF) continue; if (i > 0) isOnlyLowElement = false; if (!isa(V) && !isa(V)) isConstant = false; ValueCounts.insert(std::make_pair(V, 0)); unsigned &Count = ValueCounts[V]; // Is this value dominant? (takes up more than half of the lanes) if (++Count > (NumElts / 2)) { hasDominantValue = true; Value = V; } } if (ValueCounts.size() != 1) usesOnlyOneValue = false; if (!Value.getNode() && ValueCounts.size() > 0) Value = ValueCounts.begin()->first; if (ValueCounts.size() == 0) return DAG.getUNDEF(VT); if (isOnlyLowElement) return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); unsigned EltSize = VT.getVectorElementType().getSizeInBits(); if (hasDominantValue && EltSize <= 64) { // Use VDUP for non-constant splats. if (!isConstant) { SDValue N; // If we are DUPing a value that comes directly from a vector, we could // just use DUPLANE. We can only do this if the lane being extracted // is at a constant index, as the DUP from lane instructions only have // constant-index forms. // // If there is a TRUNCATE between EXTRACT_VECTOR_ELT and DUP, we can // remove TRUNCATE for DUPLANE by apdating the source vector to // appropriate vector type and lane index. // // FIXME: for now we have v1i8, v1i16, v1i32 legal vector types, if they // are not legal any more, no need to check the type size in bits should // be large than 64. SDValue V = Value; if (Value->getOpcode() == ISD::TRUNCATE) V = Value->getOperand(0); if (V->getOpcode() == ISD::EXTRACT_VECTOR_ELT && isa(V->getOperand(1)) && V->getOperand(0).getValueType().getSizeInBits() >= 64) { // If the element size of source vector is larger than DUPLANE // element size, we can do transformation by, // 1) bitcasting source register to smaller element vector // 2) mutiplying the lane index by SrcEltSize/ResEltSize // For example, we can lower // "v8i16 vdup_lane(v4i32, 1)" // to be // "v8i16 vdup_lane(v8i16 bitcast(v4i32), 2)". SDValue SrcVec = V->getOperand(0); unsigned SrcEltSize = SrcVec.getValueType().getVectorElementType().getSizeInBits(); unsigned ResEltSize = VT.getVectorElementType().getSizeInBits(); if (SrcEltSize > ResEltSize) { assert((SrcEltSize % ResEltSize == 0) && "Invalid element size"); SDValue BitCast; unsigned SrcSize = SrcVec.getValueType().getSizeInBits(); unsigned ResSize = VT.getSizeInBits(); if (SrcSize > ResSize) { assert((SrcSize % ResSize == 0) && "Invalid vector size"); EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), SrcSize / ResEltSize); BitCast = DAG.getNode(ISD::BITCAST, DL, CastVT, SrcVec); } else { assert((SrcSize == ResSize) && "Invalid vector size of source vec"); BitCast = DAG.getNode(ISD::BITCAST, DL, VT, SrcVec); } unsigned LaneIdx = V->getConstantOperandVal(1); SDValue Lane = DAG.getConstant((SrcEltSize / ResEltSize) * LaneIdx, MVT::i64); N = DAG.getNode(AArch64ISD::NEON_VDUPLANE, DL, VT, BitCast, Lane); } else { assert((SrcEltSize == ResEltSize) && "Invalid element size of source vec"); N = DAG.getNode(AArch64ISD::NEON_VDUPLANE, DL, VT, V->getOperand(0), V->getOperand(1)); } } else N = DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Value); if (!usesOnlyOneValue) { // The dominant value was splatted as 'N', but we now have to insert // all differing elements. for (unsigned I = 0; I < NumElts; ++I) { if (Op.getOperand(I) == Value) continue; SmallVector Ops; Ops.push_back(N); Ops.push_back(Op.getOperand(I)); Ops.push_back(DAG.getConstant(I, MVT::i64)); N = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, &Ops[0], 3); } } return N; } if (usesOnlyOneValue && isConstant) { return DAG.getNode(AArch64ISD::NEON_VDUP, DL, VT, Value); } } // If all elements are constants and the case above didn't get hit, fall back // to the default expansion, which will generate a load from the constant // pool. if (isConstant) return SDValue(); // Try to lower this in lowering ShuffleVector way. SDValue Shuf; if (isKnownShuffleVector(Op, DAG, Shuf)) return Shuf; // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we // know the default expansion would otherwise fall back on something even // worse. For a vector with one or two non-undef values, that's // scalar_to_vector for the elements followed by a shuffle (provided the // shuffle is valid for the target) and materialization element by element // on the stack followed by a load for everything else. if (!isConstant && !usesOnlyOneValue) { SDValue Vec = DAG.getUNDEF(VT); for (unsigned i = 0 ; i < NumElts; ++i) { SDValue V = Op.getOperand(i); if (V.getOpcode() == ISD::UNDEF) continue; SDValue LaneIdx = DAG.getConstant(i, MVT::i64); Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V, LaneIdx); } return Vec; } return SDValue(); } /// isREVMask - Check if a vector shuffle corresponds to a REV /// instruction with the specified blocksize. (The order of the elements /// within each block of the vector is reversed.) static bool isREVMask(ArrayRef M, EVT VT, unsigned BlockSize) { assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) && "Only possible block sizes for REV are: 16, 32, 64"); unsigned EltSz = VT.getVectorElementType().getSizeInBits(); if (EltSz == 64) return false; unsigned NumElts = VT.getVectorNumElements(); unsigned BlockElts = M[0] + 1; // If the first shuffle index is UNDEF, be optimistic. if (M[0] < 0) BlockElts = BlockSize / EltSz; if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) return false; for (unsigned i = 0; i < NumElts; ++i) { if (M[i] < 0) continue; // ignore UNDEF indices if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts)) return false; } return true; } // isPermuteMask - Check whether the vector shuffle matches to UZP, ZIP and // TRN instruction. static unsigned isPermuteMask(ArrayRef M, EVT VT) { unsigned NumElts = VT.getVectorNumElements(); if (NumElts < 4) return 0; bool ismatch = true; // Check UZP1 for (unsigned i = 0; i < NumElts; ++i) { if ((unsigned)M[i] != i * 2) { ismatch = false; break; } } if (ismatch) return AArch64ISD::NEON_UZP1; // Check UZP2 ismatch = true; for (unsigned i = 0; i < NumElts; ++i) { if ((unsigned)M[i] != i * 2 + 1) { ismatch = false; break; } } if (ismatch) return AArch64ISD::NEON_UZP2; // Check ZIP1 ismatch = true; for (unsigned i = 0; i < NumElts; ++i) { if ((unsigned)M[i] != i / 2 + NumElts * (i % 2)) { ismatch = false; break; } } if (ismatch) return AArch64ISD::NEON_ZIP1; // Check ZIP2 ismatch = true; for (unsigned i = 0; i < NumElts; ++i) { if ((unsigned)M[i] != (NumElts + i) / 2 + NumElts * (i % 2)) { ismatch = false; break; } } if (ismatch) return AArch64ISD::NEON_ZIP2; // Check TRN1 ismatch = true; for (unsigned i = 0; i < NumElts; ++i) { if ((unsigned)M[i] != i + (NumElts - 1) * (i % 2)) { ismatch = false; break; } } if (ismatch) return AArch64ISD::NEON_TRN1; // Check TRN2 ismatch = true; for (unsigned i = 0; i < NumElts; ++i) { if ((unsigned)M[i] != 1 + i + (NumElts - 1) * (i % 2)) { ismatch = false; break; } } if (ismatch) return AArch64ISD::NEON_TRN2; return 0; } SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); SDLoc dl(Op); EVT VT = Op.getValueType(); ShuffleVectorSDNode *SVN = cast(Op.getNode()); // Convert shuffles that are directly supported on NEON to target-specific // DAG nodes, instead of keeping them as shuffles and matching them again // during code selection. This is more efficient and avoids the possibility // of inconsistencies between legalization and selection. ArrayRef ShuffleMask = SVN->getMask(); unsigned EltSize = VT.getVectorElementType().getSizeInBits(); if (EltSize > 64) return SDValue(); if (isREVMask(ShuffleMask, VT, 64)) return DAG.getNode(AArch64ISD::NEON_REV64, dl, VT, V1); if (isREVMask(ShuffleMask, VT, 32)) return DAG.getNode(AArch64ISD::NEON_REV32, dl, VT, V1); if (isREVMask(ShuffleMask, VT, 16)) return DAG.getNode(AArch64ISD::NEON_REV16, dl, VT, V1); unsigned ISDNo = isPermuteMask(ShuffleMask, VT); if (ISDNo) return DAG.getNode(ISDNo, dl, VT, V1, V2); // If the element of shuffle mask are all the same constant, we can // transform it into either NEON_VDUP or NEON_VDUPLANE if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) { int Lane = SVN->getSplatIndex(); // If this is undef splat, generate it via "just" vdup, if possible. if (Lane == -1) Lane = 0; // Test if V1 is a SCALAR_TO_VECTOR. if (V1.getOpcode() == ISD::SCALAR_TO_VECTOR) { return DAG.getNode(AArch64ISD::NEON_VDUP, dl, VT, V1.getOperand(0)); } // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR. if (V1.getOpcode() == ISD::BUILD_VECTOR) { bool IsScalarToVector = true; for (unsigned i = 0, e = V1.getNumOperands(); i != e; ++i) if (V1.getOperand(i).getOpcode() != ISD::UNDEF && i != (unsigned)Lane) { IsScalarToVector = false; break; } if (IsScalarToVector) return DAG.getNode(AArch64ISD::NEON_VDUP, dl, VT, V1.getOperand(Lane)); } // Test if V1 is a EXTRACT_SUBVECTOR. if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) { int ExtLane = cast(V1.getOperand(1))->getZExtValue(); return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, V1.getOperand(0), DAG.getConstant(Lane + ExtLane, MVT::i64)); } // Test if V1 is a CONCAT_VECTORS. if (V1.getOpcode() == ISD::CONCAT_VECTORS && V1.getOperand(1).getOpcode() == ISD::UNDEF) { SDValue Op0 = V1.getOperand(0); assert((unsigned)Lane < Op0.getValueType().getVectorNumElements() && "Invalid vector lane access"); return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, Op0, DAG.getConstant(Lane, MVT::i64)); } return DAG.getNode(AArch64ISD::NEON_VDUPLANE, dl, VT, V1, DAG.getConstant(Lane, MVT::i64)); } int Length = ShuffleMask.size(); int V1EltNum = V1.getValueType().getVectorNumElements(); // If the number of v1 elements is the same as the number of shuffle mask // element and the shuffle masks are sequential values, we can transform // it into NEON_VEXTRACT. if (V1EltNum == Length) { // Check if the shuffle mask is sequential. bool IsSequential = true; int CurMask = ShuffleMask[0]; for (int I = 0; I < Length; ++I) { if (ShuffleMask[I] != CurMask) { IsSequential = false; break; } CurMask++; } if (IsSequential) { assert((EltSize % 8 == 0) && "Bitsize of vector element is incorrect"); unsigned VecSize = EltSize * V1EltNum; unsigned Index = (EltSize/8) * ShuffleMask[0]; if (VecSize == 64 || VecSize == 128) return DAG.getNode(AArch64ISD::NEON_VEXTRACT, dl, VT, V1, V2, DAG.getConstant(Index, MVT::i64)); } } // For shuffle mask like "0, 1, 2, 3, 4, 5, 13, 7", try to generate insert // by element from V2 to V1 . // If shuffle mask is like "0, 1, 10, 11, 12, 13, 14, 15", V2 would be a // better choice to be inserted than V1 as less insert needed, so we count // element to be inserted for both V1 and V2, and select less one as insert // target. // Collect elements need to be inserted and their index. SmallVector NV1Elt; SmallVector N1Index; SmallVector NV2Elt; SmallVector N2Index; for (int I = 0; I != Length; ++I) { if (ShuffleMask[I] != I) { NV1Elt.push_back(ShuffleMask[I]); N1Index.push_back(I); } } for (int I = 0; I != Length; ++I) { if (ShuffleMask[I] != (I + V1EltNum)) { NV2Elt.push_back(ShuffleMask[I]); N2Index.push_back(I); } } // Decide which to be inserted. If all lanes mismatch, neither V1 nor V2 // will be inserted. SDValue InsV = V1; SmallVector InsMasks = NV1Elt; SmallVector InsIndex = N1Index; if ((int)NV1Elt.size() != Length || (int)NV2Elt.size() != Length) { if (NV1Elt.size() > NV2Elt.size()) { InsV = V2; InsMasks = NV2Elt; InsIndex = N2Index; } } else { InsV = DAG.getNode(ISD::UNDEF, dl, VT); } for (int I = 0, E = InsMasks.size(); I != E; ++I) { SDValue ExtV = V1; int Mask = InsMasks[I]; if (Mask >= V1EltNum) { ExtV = V2; Mask -= V1EltNum; } // Any value type smaller than i32 is illegal in AArch64, and this lower // function is called after legalize pass, so we need to legalize // the result here. EVT EltVT; if (VT.getVectorElementType().isFloatingPoint()) EltVT = (EltSize == 64) ? MVT::f64 : MVT::f32; else EltVT = (EltSize == 64) ? MVT::i64 : MVT::i32; if (Mask >= 0) { ExtV = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, ExtV, DAG.getConstant(Mask, MVT::i64)); InsV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, InsV, ExtV, DAG.getConstant(InsIndex[I], MVT::i64)); } } return InsV; } AArch64TargetLowering::ConstraintType AArch64TargetLowering::getConstraintType(const std::string &Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 'w': // An FP/SIMD vector register return C_RegisterClass; case 'I': // Constant that can be used with an ADD instruction case 'J': // Constant that can be used with a SUB instruction case 'K': // Constant that can be used with a 32-bit logical instruction case 'L': // Constant that can be used with a 64-bit logical instruction case 'M': // Constant that can be used as a 32-bit MOV immediate case 'N': // Constant that can be used as a 64-bit MOV immediate case 'Y': // Floating point constant zero case 'Z': // Integer constant zero return C_Other; case 'Q': // A memory reference with base register and no offset return C_Memory; case 'S': // A symbolic address return C_Other; } } // FIXME: Ump, Utf, Usa, Ush // Ump: A memory address suitable for ldp/stp in SI, DI, SF and DF modes, // whatever they may be // Utf: A memory address suitable for ldp/stp in TF mode, whatever it may be // Usa: An absolute symbolic address // Ush: The high part (bits 32:12) of a pc-relative symbolic address assert(Constraint != "Ump" && Constraint != "Utf" && Constraint != "Usa" && Constraint != "Ush" && "Unimplemented constraints"); return TargetLowering::getConstraintType(Constraint); } TargetLowering::ConstraintWeight AArch64TargetLowering::getSingleConstraintMatchWeight(AsmOperandInfo &Info, const char *Constraint) const { llvm_unreachable("Constraint weight unimplemented"); } void AArch64TargetLowering::LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector &Ops, SelectionDAG &DAG) const { SDValue Result(0, 0); // Only length 1 constraints are C_Other. if (Constraint.size() != 1) return; // Only C_Other constraints get lowered like this. That means constants for us // so return early if there's no hope the constraint can be lowered. switch(Constraint[0]) { default: break; case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'Z': { ConstantSDNode *C = dyn_cast(Op); if (!C) return; uint64_t CVal = C->getZExtValue(); uint32_t Bits; switch (Constraint[0]) { default: // FIXME: 'M' and 'N' are MOV pseudo-insts -- unsupported in assembly. 'J' // is a peculiarly useless SUB constraint. llvm_unreachable("Unimplemented C_Other constraint"); case 'I': if (CVal <= 0xfff) break; return; case 'K': if (A64Imms::isLogicalImm(32, CVal, Bits)) break; return; case 'L': if (A64Imms::isLogicalImm(64, CVal, Bits)) break; return; case 'Z': if (CVal == 0) break; return; } Result = DAG.getTargetConstant(CVal, Op.getValueType()); break; } case 'S': { // An absolute symbolic address or label reference. if (const GlobalAddressSDNode *GA = dyn_cast(Op)) { Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), GA->getValueType(0)); } else if (const BlockAddressSDNode *BA = dyn_cast(Op)) { Result = DAG.getTargetBlockAddress(BA->getBlockAddress(), BA->getValueType(0)); } else if (const ExternalSymbolSDNode *ES = dyn_cast(Op)) { Result = DAG.getTargetExternalSymbol(ES->getSymbol(), ES->getValueType(0)); } else return; break; } case 'Y': if (const ConstantFPSDNode *CFP = dyn_cast(Op)) { if (CFP->isExactlyValue(0.0)) { Result = DAG.getTargetConstantFP(0.0, CFP->getValueType(0)); break; } } return; } if (Result.getNode()) { Ops.push_back(Result); return; } // It's an unknown constraint for us. Let generic code have a go. TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } std::pair AArch64TargetLowering::getRegForInlineAsmConstraint( const std::string &Constraint, MVT VT) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'r': if (VT.getSizeInBits() <= 32) return std::make_pair(0U, &AArch64::GPR32RegClass); else if (VT == MVT::i64) return std::make_pair(0U, &AArch64::GPR64RegClass); break; case 'w': if (VT == MVT::f16) return std::make_pair(0U, &AArch64::FPR16RegClass); else if (VT == MVT::f32) return std::make_pair(0U, &AArch64::FPR32RegClass); else if (VT.getSizeInBits() == 64) return std::make_pair(0U, &AArch64::FPR64RegClass); else if (VT.getSizeInBits() == 128) return std::make_pair(0U, &AArch64::FPR128RegClass); break; } } // Use the default implementation in TargetLowering to convert the register // constraint into a member of a register class. return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); } /// Represent NEON load and store intrinsics as MemIntrinsicNodes. /// The associated MachineMemOperands record the alignment specified /// in the intrinsic calls. bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, unsigned Intrinsic) const { switch (Intrinsic) { case Intrinsic::arm_neon_vld1: case Intrinsic::arm_neon_vld2: case Intrinsic::arm_neon_vld3: case Intrinsic::arm_neon_vld4: case Intrinsic::aarch64_neon_vld1x2: case Intrinsic::aarch64_neon_vld1x3: case Intrinsic::aarch64_neon_vld1x4: case Intrinsic::arm_neon_vld2lane: case Intrinsic::arm_neon_vld3lane: case Intrinsic::arm_neon_vld4lane: { Info.opc = ISD::INTRINSIC_W_CHAIN; // Conservatively set memVT to the entire set of vectors loaded. uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8; Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1); Info.align = cast(AlignArg)->getZExtValue(); Info.vol = false; // volatile loads with NEON intrinsics not supported Info.readMem = true; Info.writeMem = false; return true; } case Intrinsic::arm_neon_vst1: case Intrinsic::arm_neon_vst2: case Intrinsic::arm_neon_vst3: case Intrinsic::arm_neon_vst4: case Intrinsic::aarch64_neon_vst1x2: case Intrinsic::aarch64_neon_vst1x3: case Intrinsic::aarch64_neon_vst1x4: case Intrinsic::arm_neon_vst2lane: case Intrinsic::arm_neon_vst3lane: case Intrinsic::arm_neon_vst4lane: { Info.opc = ISD::INTRINSIC_VOID; // Conservatively set memVT to the entire set of vectors stored. unsigned NumElts = 0; for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { Type *ArgTy = I.getArgOperand(ArgI)->getType(); if (!ArgTy->isVectorTy()) break; NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8; } Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1); Info.align = cast(AlignArg)->getZExtValue(); Info.vol = false; // volatile stores with NEON intrinsics not supported Info.readMem = false; Info.writeMem = true; return true; } default: break; } return false; }