//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the pass that transforms the ARM machine instructions into // relocatable machine code. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "arm-emitter" #include "ARM.h" #include "ARMAddressingModes.h" #include "ARMInstrInfo.h" #include "ARMRelocations.h" #include "ARMSubtarget.h" #include "ARMTargetMachine.h" #include "llvm/PassManager.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/Passes.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Compiler.h" using namespace llvm; STATISTIC(NumEmitted, "Number of machine instructions emitted"); namespace { class VISIBILITY_HIDDEN ARMCodeEmitter : public MachineFunctionPass { const ARMInstrInfo *II; const TargetData *TD; TargetMachine &TM; MachineCodeEmitter &MCE; public: static char ID; explicit ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce) : MachineFunctionPass((intptr_t)&ID), II(0), TD(0), TM(tm), MCE(mce) {} ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce, const ARMInstrInfo &ii, const TargetData &td) : MachineFunctionPass((intptr_t)&ID), II(&ii), TD(&td), TM(tm), MCE(mce) {} bool runOnMachineFunction(MachineFunction &MF); virtual const char *getPassName() const { return "ARM Machine Code Emitter"; } void emitInstruction(const MachineInstr &MI); private: unsigned getAddrModeNoneInstrBinary(const MachineInstr &MI, const TargetInstrDesc &Desc, unsigned Binary) ; unsigned getAddrMode1InstrBinary(const MachineInstr &MI, const TargetInstrDesc &Desc, unsigned Binary); unsigned getAddrMode2InstrBinary(const MachineInstr &MI, const TargetInstrDesc &Desc, unsigned Binary); unsigned getAddrMode3InstrBinary(const MachineInstr &MI, const TargetInstrDesc &Desc, unsigned Binary); unsigned getAddrMode4InstrBinary(const MachineInstr &MI, const TargetInstrDesc &Desc, unsigned Binary); /// getInstrBinary - Return binary encoding for the specified /// machine instruction. unsigned getInstrBinary(const MachineInstr &MI); /// getBinaryCodeForInstr - This function, generated by the /// CodeEmitterGenerator using TableGen, produces the binary encoding for /// machine instructions. /// unsigned getBinaryCodeForInstr(const MachineInstr &MI); /// getMachineOpValue - Return binary encoding of operand. If the machine /// operand requires relocation, record the relocation and return zero. unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) { return getMachineOpValue(MI, MI.getOperand(OpIdx)); } unsigned getMachineOpValue(const MachineInstr &MI, const MachineOperand &MO); /// getBaseOpcodeFor - Return the opcode value. /// unsigned getBaseOpcodeFor(const TargetInstrDesc &TID) const { return (TID.TSFlags & ARMII::OpcodeMask) >> ARMII::OpcodeShift; } /// getShiftOp - Return the shift opcode (bit[6:5]) of the machine operand. /// unsigned getShiftOp(const MachineOperand &MO) const ; /// Routines that handle operands which add machine relocations which are /// fixed up by the JIT fixup stage. void emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub); void emitExternalSymbolAddress(const char *ES, unsigned Reloc); void emitConstPoolAddress(unsigned CPI, unsigned Reloc, int Disp = 0, unsigned PCAdj = 0 ); void emitJumpTableAddress(unsigned JTI, unsigned Reloc, unsigned PCAdj = 0); void emitGlobalConstant(const Constant *CV); void emitMachineBasicBlock(MachineBasicBlock *BB); }; char ARMCodeEmitter::ID = 0; } /// createARMCodeEmitterPass - Return a pass that emits the collected ARM code /// to the specified MCE object. FunctionPass *llvm::createARMCodeEmitterPass(ARMTargetMachine &TM, MachineCodeEmitter &MCE) { return new ARMCodeEmitter(TM, MCE); } bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) { assert((MF.getTarget().getRelocationModel() != Reloc::Default || MF.getTarget().getRelocationModel() != Reloc::Static) && "JIT relocation model must be set to static or default!"); II = ((ARMTargetMachine&)MF.getTarget()).getInstrInfo(); TD = ((ARMTargetMachine&)MF.getTarget()).getTargetData(); do { MCE.startFunction(MF); for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); MBB != E; ++MBB) { MCE.StartMachineBasicBlock(MBB); for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) emitInstruction(*I); } } while (MCE.finishFunction(MF)); return false; } /// getShiftOp - Return the shift opcode (bit[6:5]) of the machine operand. /// unsigned ARMCodeEmitter::getShiftOp(const MachineOperand &MO) const { switch (ARM_AM::getAM2ShiftOpc(MO.getImm())) { default: assert(0 && "Unknown shift opc!"); case ARM_AM::asr: return 2; case ARM_AM::lsl: return 0; case ARM_AM::lsr: return 1; case ARM_AM::ror: case ARM_AM::rrx: return 3; } return 0; } /// getMachineOpValue - Return binary encoding of operand. If the machine /// operand requires relocation, record the relocation and return zero. unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI, const MachineOperand &MO) { if (MO.isRegister()) return ARMRegisterInfo::getRegisterNumbering(MO.getReg()); else if (MO.isImmediate()) return static_cast(MO.getImm()); else if (MO.isGlobalAddress()) emitGlobalAddressForCall(MO.getGlobal(), false); else if (MO.isExternalSymbol()) emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_relative); else if (MO.isConstantPoolIndex()) emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_relative); else if (MO.isJumpTableIndex()) emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative); else if (MO.isMachineBasicBlock()) emitMachineBasicBlock(MO.getMBB()); abort(); return 0; } /// emitGlobalAddressForCall - Emit the specified address to the code stream /// assuming this is part of a function call, which is PC relative. /// void ARMCodeEmitter::emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub) { MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), ARM::reloc_arm_branch, GV, 0, DoesntNeedStub)); } /// emitExternalSymbolAddress - Arrange for the address of an external symbol to /// be emitted to the current location in the function, and allow it to be PC /// relative. void ARMCodeEmitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) { MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(), Reloc, ES)); } /// emitConstPoolAddress - Arrange for the address of an constant pool /// to be emitted to the current location in the function, and allow it to be PC /// relative. void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc, int Disp /* = 0 */, unsigned PCAdj /* = 0 */) { MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(), Reloc, CPI, PCAdj)); } /// emitJumpTableAddress - Arrange for the address of a jump table to /// be emitted to the current location in the function, and allow it to be PC /// relative. void ARMCodeEmitter::emitJumpTableAddress(unsigned JTI, unsigned Reloc, unsigned PCAdj /* = 0 */) { MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(), Reloc, JTI, PCAdj)); } /// emitMachineBasicBlock - Emit the specified address basic block. void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB) { MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(), ARM::reloc_arm_branch, BB)); } void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) { NumEmitted++; // Keep track of the # of mi's emitted MCE.emitWordLE(getInstrBinary(MI)); } unsigned ARMCodeEmitter::getAddrModeNoneInstrBinary(const MachineInstr &MI, const TargetInstrDesc &Desc, unsigned Binary) { switch (Desc.TSFlags & ARMII::FormMask) { default: assert(0 && "Unknown instruction subtype!"); break; case ARMII::Branch: { // Set signed_immed_24 field Binary |= getMachineOpValue(MI, 0); // if it is a conditional branch, set cond field if (Desc.Opcode == ARM::Bcc) { Binary &= 0x0FFFFFFF; // clear conditional field Binary |= getMachineOpValue(MI, 1) << 28; // set conditional field } break; } case ARMII::BranchMisc: { // Set bit[19:8] to 0xFFF Binary |= 0xfff << 8; if (Desc.Opcode == ARM::BX_RET) Binary |= 0xe; // the return register is LR else // otherwise, set the return register Binary |= getMachineOpValue(MI, 0); break; } } return Binary; } unsigned ARMCodeEmitter::getAddrMode1InstrBinary(const MachineInstr &MI, const TargetInstrDesc &Desc, unsigned Binary) { // FIXME: Clean up. // Treat 3 special instructions: MOVsra_flag, MOVsrl_flag and MOVrx. unsigned Format = Desc.TSFlags & ARMII::FormMask; if (Format == ARMII::DPRdMisc) { Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; Binary |= getMachineOpValue(MI, 1); switch (Desc.Opcode) { case ARM::MOVsra_flag: Binary |= 0x1 << 6; Binary |= 0x1 << 7; break; case ARM::MOVsrl_flag: Binary |= 0x1 << 5; Binary |= 0x1 << 7; break; case ARM::MOVrx: Binary |= 0x3 << 5; break; } return Binary; } // FIXME: Clean up this part. // Data processing operand instructions has 3 possible encodings (for more // information, see ARM-ARM page A3-10): // 1. , // 2. , // 3. ,, bool IsDataProcessing1 = Format == ARMII::DPRdIm || Format == ARMII::DPRdReg || Format == ARMII::DPRdSoReg; bool IsDataProcessing2 = Format == ARMII::DPRnIm || Format == ARMII::DPRnReg || Format == ARMII::DPRnSoReg; bool IsDataProcessing3 = false; if (Format == ARMII::DPRImS || Format == ARMII::DPRRegS || Format == ARMII::DPRSoRegS || IsDataProcessing2) IsDataProcessing3 = !IsDataProcessing2; IsDataProcessing3 = Format == ARMII::DPRIm || Format == ARMII::DPRReg || Format == ARMII::DPRSoReg || IsDataProcessing3; // Set first operand if (IsDataProcessing1 || IsDataProcessing3) { Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; } else if (IsDataProcessing2) { Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift; } // Set second operand of data processing #3 instructions if (IsDataProcessing3) Binary |= getMachineOpValue(MI, 1) << ARMII::RegRnShift; unsigned OpIdx = IsDataProcessing3 ? 2 : 1; switch (Format) { default: assert(false && "Unknown operand type!"); break; case ARMII::DPRdIm: case ARMII::DPRnIm: case ARMII::DPRIm: case ARMII::DPRImS: { // Set bit I(25) to identify this is the immediate form of Binary |= 1 << ARMII::I_BitShift; // Set immed_8 field const MachineOperand &MO = MI.getOperand(OpIdx); Binary |= ARM_AM::getSOImmVal(MO.getImm()); break; } case ARMII::DPRdReg: case ARMII::DPRnReg: case ARMII::DPRReg: case ARMII::DPRRegS: { // Set last operand (register Rm) Binary |= getMachineOpValue(MI, OpIdx); break; } case ARMII::DPRdSoReg: case ARMII::DPRnSoReg: case ARMII::DPRSoReg: case ARMII::DPRSoRegS: { // Set last operand (register Rm) Binary |= getMachineOpValue(MI, OpIdx); const MachineOperand &MO1 = MI.getOperand(OpIdx + 1); const MachineOperand &MO2 = MI.getOperand(OpIdx + 2); // Identify it the instr is in immed or register shifts encoding bool IsShiftByRegister = MO1.getReg() > 0; // Set shift operand (bit[6:4]). // ASR - 101 if it is in register shifts encoding; 100, otherwise. // LSL - 001 if it is in register shifts encoding; 000, otherwise. // LSR - 011 if it is in register shifts encoding; 010, otherwise. // ROR - 111 if it is in register shifts encoding; 110, otherwise. // RRX - 110 and bit[11:7] clear. switch (ARM_AM::getSORegShOp(MO2.getImm())) { default: assert(0 && "Unknown shift opc!"); case ARM_AM::asr: if (IsShiftByRegister) Binary |= 0x5 << 4; else Binary |= 0x1 << 6; break; case ARM_AM::lsl: if (IsShiftByRegister) Binary |= 0x1 << 4; break; case ARM_AM::lsr: if (IsShiftByRegister) Binary |= 0x3 << 4; else Binary |= 0x1 << 5; break; case ARM_AM::ror: if (IsShiftByRegister) Binary |= 0x7 << 4; else Binary |= 0x3 << 5; break; case ARM_AM::rrx: Binary |= 0x3 << 5; break; } // Set the field related to shift operations (except rrx). if (ARM_AM::getSORegShOp(MO2.getImm()) != ARM_AM::rrx) { if (IsShiftByRegister) { // Set the value of bit[11:8] (register Rs). assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0); Binary |= (ARMRegisterInfo::getRegisterNumbering(MO1.getReg()) << ARMII::RegRsShift); } else // Set the value of bit [11:7] (shift_immed field). Binary |= ARM_AM::getSORegOffset(MO2.getImm()) << 7; } break; } } return Binary; } unsigned ARMCodeEmitter::getAddrMode2InstrBinary(const MachineInstr &MI, const TargetInstrDesc &Desc, unsigned Binary) { // Set first operand Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; // Set second operand Binary |= getMachineOpValue(MI, 1) << ARMII::RegRnShift; const MachineOperand &MO2 = MI.getOperand(2); const MachineOperand &MO3 = MI.getOperand(3); // Set bit U(23) according to signal of immed value (positive or negative). Binary |= ((ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) << ARMII::U_BitShift); if (!MO2.getReg()) { // is immediate if (ARM_AM::getAM2Offset(MO3.getImm())) // Set the value of offset_12 field Binary |= ARM_AM::getAM2Offset(MO3.getImm()); return Binary; } // Set bit I(25), because this is not in immediate enconding. Binary |= 1 << ARMII::I_BitShift; assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg())); // Set bit[3:0] to the corresponding Rm register Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg()); // if this instr is in scaled register offset/index instruction, set // shift_immed(bit[11:7]) and shift(bit[6:5]) fields. if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm())) { Binary |= getShiftOp(MO3) << 5; // shift Binary |= ShImm << 7; // shift_immed } return Binary; } unsigned ARMCodeEmitter::getAddrMode3InstrBinary(const MachineInstr &MI, const TargetInstrDesc &Desc, unsigned Binary) { // Set first operand Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; // Set second operand Binary |= getMachineOpValue(MI, 1) << ARMII::RegRnShift; const MachineOperand &MO2 = MI.getOperand(2); const MachineOperand &MO3 = MI.getOperand(3); // Set bit U(23) according to signal of immed value (positive or negative) Binary |= ((ARM_AM::getAM2Op(MO3.getImm()) == ARM_AM::add ? 1 : 0) << ARMII::U_BitShift); // If this instr is in register offset/index encoding, set bit[3:0] // to the corresponding Rm register. if (MO2.getReg()) { Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg()); return Binary; } // if this instr is in immediate offset/index encoding, set bit 22 to 1 if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm())) { Binary |= 1 << 22; // Set operands Binary |= (ImmOffs >> 4) << 8; // immedH Binary |= (ImmOffs & ~0xF); // immedL } return Binary; } unsigned ARMCodeEmitter::getAddrMode4InstrBinary(const MachineInstr &MI, const TargetInstrDesc &Desc, unsigned Binary) { // Set first operand Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift; // Set addressing mode by modifying bits U(23) and P(24) // IA - Increment after - bit U = 1 and bit P = 0 // IB - Increment before - bit U = 1 and bit P = 1 // DA - Decrement after - bit U = 0 and bit P = 0 // DB - Decrement before - bit U = 0 and bit P = 1 const MachineOperand &MO = MI.getOperand(1); ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO.getImm()); switch (Mode) { default: assert(0 && "Unknown addressing sub-mode!"); case ARM_AM::da: break; case ARM_AM::db: Binary |= 0x1 << 24; break; case ARM_AM::ia: Binary |= 0x1 << 23; break; case ARM_AM::ib: Binary |= 0x3 << 23; break; } // Set bit W(21) if (ARM_AM::getAM4WBFlag(MO.getImm())) Binary |= 0x1 << 21; // Set registers for (unsigned i = 4, e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (MO.isRegister() && MO.isImplicit()) continue; unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(MO.getReg()); assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) && RegNum < 16); Binary |= 0x1 << RegNum; } return Binary; } /// getInstrBinary - Return binary encoding for the specified /// machine instruction. unsigned ARMCodeEmitter::getInstrBinary(const MachineInstr &MI) { // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); const TargetInstrDesc &Desc = MI.getDesc(); switch (Desc.TSFlags & ARMII::AddrModeMask) { case ARMII::AddrModeNone: return getAddrModeNoneInstrBinary(MI, Desc, Binary); case ARMII::AddrMode1: return getAddrMode1InstrBinary(MI, Desc, Binary); case ARMII::AddrMode2: return getAddrMode2InstrBinary(MI, Desc, Binary); case ARMII::AddrMode3: return getAddrMode3InstrBinary(MI, Desc, Binary); case ARMII::AddrMode4: return getAddrMode4InstrBinary(MI, Desc, Binary); } abort(); return 0; } #include "ARMGenCodeEmitter.inc"