//===- ARMInstrThumb.td - Thumb support for ARM ---------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the Thumb instruction set. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Thumb specific DAG Nodes. // def ARMtcall : SDNode<"ARMISD::tCALL", SDT_ARMcall, [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag, SDNPVariadic]>; def imm_neg_XFORM : SDNodeXFormgetTargetConstant(-(int)N->getZExtValue(), MVT::i32); }]>; def imm_comp_XFORM : SDNodeXFormgetTargetConstant(~((uint32_t)N->getZExtValue()), MVT::i32); }]>; /// imm0_7 predicate - True if the 32-bit immediate is in the range [0,7]. def imm0_7 : PatLeaf<(i32 imm), [{ return (uint32_t)N->getZExtValue() < 8; }]>; def imm0_7_neg : PatLeaf<(i32 imm), [{ return (uint32_t)-N->getZExtValue() < 8; }], imm_neg_XFORM>; def imm0_255 : PatLeaf<(i32 imm), [{ return (uint32_t)N->getZExtValue() < 256; }]>; def imm0_255_comp : PatLeaf<(i32 imm), [{ return ~((uint32_t)N->getZExtValue()) < 256; }]>; def imm8_255 : PatLeaf<(i32 imm), [{ return (uint32_t)N->getZExtValue() >= 8 && (uint32_t)N->getZExtValue() < 256; }]>; def imm8_255_neg : PatLeaf<(i32 imm), [{ unsigned Val = -N->getZExtValue(); return Val >= 8 && Val < 256; }], imm_neg_XFORM>; // Break imm's up into two pieces: an immediate + a left shift. // This uses thumb_immshifted to match and thumb_immshifted_val and // thumb_immshifted_shamt to get the val/shift pieces. def thumb_immshifted : PatLeaf<(imm), [{ return ARM_AM::isThumbImmShiftedVal((unsigned)N->getZExtValue()); }]>; def thumb_immshifted_val : SDNodeXFormgetZExtValue()); return CurDAG->getTargetConstant(V, MVT::i32); }]>; def thumb_immshifted_shamt : SDNodeXFormgetZExtValue()); return CurDAG->getTargetConstant(V, MVT::i32); }]>; // Scaled 4 immediate. def t_imm_s4 : Operand { let PrintMethod = "printThumbS4ImmOperand"; } // Define Thumb specific addressing modes. // t_addrmode_rr := reg + reg // def t_addrmode_rr : Operand, ComplexPattern { let PrintMethod = "printThumbAddrModeRROperand"; let MIOperandInfo = (ops tGPR:$base, tGPR:$offsreg); } // t_addrmode_s4 := reg + reg // reg + imm5 * 4 // def t_addrmode_s4 : Operand, ComplexPattern { let PrintMethod = "printThumbAddrModeS4Operand"; let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm, tGPR:$offsreg); } // t_addrmode_s2 := reg + reg // reg + imm5 * 2 // def t_addrmode_s2 : Operand, ComplexPattern { let PrintMethod = "printThumbAddrModeS2Operand"; let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm, tGPR:$offsreg); } // t_addrmode_s1 := reg + reg // reg + imm5 // def t_addrmode_s1 : Operand, ComplexPattern { let PrintMethod = "printThumbAddrModeS1Operand"; let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm, tGPR:$offsreg); } // t_addrmode_sp := sp + imm8 * 4 // def t_addrmode_sp : Operand, ComplexPattern { let PrintMethod = "printThumbAddrModeSPOperand"; let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm); } //===----------------------------------------------------------------------===// // Miscellaneous Instructions. // // FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE // from removing one half of the matched pairs. That breaks PEI, which assumes // these will always be in pairs, and asserts if it finds otherwise. Better way? let Defs = [SP], Uses = [SP], hasSideEffects = 1 in { def tADJCALLSTACKUP : PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), NoItinerary, [(ARMcallseq_end imm:$amt1, imm:$amt2)]>, Requires<[IsThumb, IsThumb1Only]>; def tADJCALLSTACKDOWN : PseudoInst<(outs), (ins i32imm:$amt), NoItinerary, [(ARMcallseq_start imm:$amt)]>, Requires<[IsThumb, IsThumb1Only]>; } def tNOP : T1pI<(outs), (ins), NoItinerary, "nop", "", [/* For disassembly only; pattern left blank */]>, T1Encoding<0b101111> { // A8.6.110 let Inst{9-8} = 0b11; let Inst{7-0} = 0x00; } def tYIELD : T1pI<(outs), (ins), NoItinerary, "yield", "", [/* For disassembly only; pattern left blank */]>, T1Encoding<0b101111> { // A8.6.410 let Inst{9-8} = 0b11; let Inst{7-0} = 0x10; } def tWFE : T1pI<(outs), (ins), NoItinerary, "wfe", "", [/* For disassembly only; pattern left blank */]>, T1Encoding<0b101111> { // A8.6.408 let Inst{9-8} = 0b11; let Inst{7-0} = 0x20; } def tWFI : T1pI<(outs), (ins), NoItinerary, "wfi", "", [/* For disassembly only; pattern left blank */]>, T1Encoding<0b101111> { // A8.6.409 let Inst{9-8} = 0b11; let Inst{7-0} = 0x30; } def tSEV : T1pI<(outs), (ins), NoItinerary, "sev", "", [/* For disassembly only; pattern left blank */]>, T1Encoding<0b101111> { // A8.6.157 let Inst{9-8} = 0b11; let Inst{7-0} = 0x40; } def tSETENDBE : T1I<(outs), (ins), NoItinerary, "setend\tbe", [/* For disassembly only; pattern left blank */]>, T1Encoding<0b101101> { // A8.6.156 let Inst{9-5} = 0b10010; let Inst{4} = 1; let Inst{3} = 1; // Big-Endian let Inst{2-0} = 0b000; } def tSETENDLE : T1I<(outs), (ins), NoItinerary, "setend\tle", [/* For disassembly only; pattern left blank */]>, T1Encoding<0b101101> { // A8.6.156 let Inst{9-5} = 0b10010; let Inst{4} = 1; let Inst{3} = 0; // Little-Endian let Inst{2-0} = 0b000; } // The i32imm operand $val can be used by a debugger to store more information // about the breakpoint. def tBKPT : T1I<(outs), (ins i32imm:$val), NoItinerary, "bkpt\t$val", [/* For disassembly only; pattern left blank */]>, T1Encoding<0b101111> { // A8.6.22 bits<8> val; let Inst{9-8} = 0b10; let Inst{7-0} = val; } // Change Processor State is a system instruction -- for disassembly only. // The singleton $opt operand contains the following information: // opt{4-0} = mode ==> don't care // opt{5} = changemode ==> 0 (false for 16-bit Thumb instr) // opt{8-6} = AIF from Inst{2-0} // opt{10-9} = 1:imod from Inst{4} with 0b10 as enable and 0b11 as disable // // The opt{4-0} and opt{5} sub-fields are to accommodate 32-bit Thumb and ARM // CPS which has more options. def tCPS : T1I<(outs), (ins cps_opt:$opt), NoItinerary, "cps$opt", [/* For disassembly only; pattern left blank */]>, T1Misc<0b0110011> { // A8.6.38 & B6.1.1 let Inst{3} = 0; // FIXME: Finish encoding. } // For both thumb1 and thumb2. let isNotDuplicable = 1, isCodeGenOnly = 1 in def tPICADD : TIt<(outs GPR:$dst), (ins GPR:$lhs, pclabel:$cp), IIC_iALUr, "", [(set GPR:$dst, (ARMpic_add GPR:$lhs, imm:$cp))]>, T1Special<{0,0,?,?}> { // A8.6.6 Rm = pc bits<3> dst; let Inst{6-3} = 0b1111; let Inst{2-0} = dst; } // PC relative add. def tADDrPCi : T1I<(outs tGPR:$dst), (ins t_imm_s4:$rhs), IIC_iALUi, "add\t$dst, pc, $rhs", []>, T1Encoding<{1,0,1,0,0,?}> { // A6.2 & A8.6.10 bits<3> dst; bits<8> rhs; let Inst{10-8} = dst; let Inst{7-0} = rhs; } // ADD , sp, # // This is rematerializable, which is particularly useful for taking the // address of locals. let isReMaterializable = 1 in def tADDrSPi : T1I<(outs tGPR:$dst), (ins GPR:$sp, t_imm_s4:$rhs), IIC_iALUi, "add\t$dst, $sp, $rhs", []>, T1Encoding<{1,0,1,0,1,?}> { // A6.2 & A8.6.8 bits<3> dst; bits<8> rhs; let Inst{10-8} = dst; let Inst{7-0} = rhs; } // ADD sp, sp, # def tADDspi : TIt<(outs GPR:$dst), (ins GPR:$lhs, t_imm_s4:$rhs), IIC_iALUi, "add\t$dst, $rhs", []>, T1Misc<{0,0,0,0,0,?,?}> { // A6.2.5 & A8.6.8 bits<7> rhs; let Inst{6-0} = rhs; } // SUB sp, sp, # // FIXME: The encoding and the ASM string don't match up. def tSUBspi : TIt<(outs GPR:$dst), (ins GPR:$lhs, t_imm_s4:$rhs), IIC_iALUi, "sub\t$dst, $rhs", []>, T1Misc<{0,0,0,0,1,?,?}> { // A6.2.5 & A8.6.214 bits<7> rhs; let Inst{6-0} = rhs; } // ADD , sp def tADDrSP : TIt<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALUr, "add\t$dst, $rhs", []>, T1Special<{0,0,?,?}> { // A8.6.9 Encoding T1 bits<4> dst; let Inst{7} = dst{3}; let Inst{6-3} = 0b1101; let Inst{2-0} = dst{2-0}; } // ADD sp, def tADDspr : TIt<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALUr, "add\t$dst, $rhs", []>, T1Special<{0,0,?,?}> { // A8.6.9 Encoding T2 bits<4> dst; let Inst{7} = 1; let Inst{6-3} = dst; let Inst{2-0} = 0b101; } //===----------------------------------------------------------------------===// // Control Flow Instructions. // let isReturn = 1, isTerminator = 1, isBarrier = 1 in { def tBX_RET : TI<(outs), (ins), IIC_Br, "bx\tlr", [(ARMretflag)]>, T1Special<{1,1,0,?}> { // A6.2.3 & A8.6.25 let Inst{6-3} = 0b1110; // Rm = lr let Inst{2-0} = 0b000; } // Alternative return instruction used by vararg functions. def tBX_RET_vararg : TI<(outs), (ins tGPR:$Rm), IIC_Br, "bx\t$Rm", []>, T1Special<{1,1,0,?}> { // A6.2.3 & A8.6.25 bits<4> Rm; let Inst{6-3} = Rm; let Inst{2-0} = 0b000; } } // Indirect branches let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { def tBRIND : TI<(outs), (ins GPR:$Rm), IIC_Br, "mov\tpc, $Rm", [(brind GPR:$Rm)]>, T1Special<{1,0,?,?}> { // A8.6.97 bits<4> Rm; let Inst{7} = 1; // = Inst{7:2-0} = pc let Inst{6-3} = Rm; let Inst{2-0} = 0b111; } } // FIXME: remove when we have a way to marking a MI with these properties. let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1, hasExtraDefRegAllocReq = 1 in def tPOP_RET : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops), IIC_iPop_Br, "pop${p}\t$regs", []>, T1Misc<{1,1,0,?,?,?,?}> { // A8.6.121 bits<16> regs; let Inst{8} = regs{15}; // registers = P:'0000000':register_list let Inst{7-0} = regs{7-0}; } let isCall = 1, Defs = [R0, R1, R2, R3, R12, LR, D0, D1, D2, D3, D4, D5, D6, D7, D16, D17, D18, D19, D20, D21, D22, D23, D24, D25, D26, D27, D28, D29, D30, D31, CPSR, FPSCR] in { // Also used for Thumb2 def tBL : TIx2<0b11110, 0b11, 1, (outs), (ins i32imm:$func, variable_ops), IIC_Br, "bl\t$func", [(ARMtcall tglobaladdr:$func)]>, Requires<[IsThumb, IsNotDarwin]>; // ARMv5T and above, also used for Thumb2 def tBLXi : TIx2<0b11110, 0b11, 0, (outs), (ins i32imm:$func, variable_ops), IIC_Br, "blx\t$func", [(ARMcall tglobaladdr:$func)]>, Requires<[IsThumb, HasV5T, IsNotDarwin]>; // Also used for Thumb2 def tBLXr : TI<(outs), (ins GPR:$func, variable_ops), IIC_Br, "blx\t$func", [(ARMtcall GPR:$func)]>, Requires<[IsThumb, HasV5T, IsNotDarwin]>, T1Special<{1,1,1,?}>; // A6.2.3 & A8.6.24; // ARMv4T let isCodeGenOnly = 1 in def tBX : TIx2<{?,?,?,?,?}, {?,?}, ?, (outs), (ins tGPR:$func, variable_ops), IIC_Br, "mov\tlr, pc\n\tbx\t$func", [(ARMcall_nolink tGPR:$func)]>, Requires<[IsThumb, IsThumb1Only, IsNotDarwin]>; } // On Darwin R9 is call-clobbered. let isCall = 1, Defs = [R0, R1, R2, R3, R9, R12, LR, D0, D1, D2, D3, D4, D5, D6, D7, D16, D17, D18, D19, D20, D21, D22, D23, D24, D25, D26, D27, D28, D29, D30, D31, CPSR, FPSCR] in { // Also used for Thumb2 def tBLr9 : TIx2<0b11110, 0b11, 1, (outs), (ins pred:$p, i32imm:$func, variable_ops), IIC_Br, "bl${p}\t$func", [(ARMtcall tglobaladdr:$func)]>, Requires<[IsThumb, IsDarwin]>; // ARMv5T and above, also used for Thumb2 def tBLXi_r9 : TIx2<0b11110, 0b11, 0, (outs), (ins pred:$p, i32imm:$func, variable_ops), IIC_Br, "blx${p}\t$func", [(ARMcall tglobaladdr:$func)]>, Requires<[IsThumb, HasV5T, IsDarwin]>; // Also used for Thumb2 def tBLXr_r9 : TI<(outs), (ins pred:$p, GPR:$func, variable_ops), IIC_Br, "blx${p}\t$func", [(ARMtcall GPR:$func)]>, Requires<[IsThumb, HasV5T, IsDarwin]>, T1Special<{1,1,1,?}> { // A6.2.3 & A8.6.24 bits<4> func; let Inst{6-3} = func; let Inst{2-0} = 0b000; } // ARMv4T let isCodeGenOnly = 1 in def tBXr9 : TIx2<{?,?,?,?,?}, {?,?}, ?, (outs), (ins tGPR:$func, variable_ops), IIC_Br, "mov\tlr, pc\n\tbx\t$func", [(ARMcall_nolink tGPR:$func)]>, Requires<[IsThumb, IsThumb1Only, IsDarwin]>; } let isBranch = 1, isTerminator = 1 in { let isBarrier = 1 in { let isPredicable = 1 in def tB : T1I<(outs), (ins brtarget:$target), IIC_Br, "b\t$target", [(br bb:$target)]>, T1Encoding<{1,1,1,0,0,?}>; // Far jump let Defs = [LR] in def tBfar : TIx2<0b11110, 0b11, 1, (outs), (ins brtarget:$target), IIC_Br, "bl\t$target",[]>; let isCodeGenOnly = 1 in def tBR_JTr : T1JTI<(outs), (ins tGPR:$target, jtblock_operand:$jt, i32imm:$id), IIC_Br, "mov\tpc, $target\n\t.align\t2$jt", [(ARMbrjt tGPR:$target, tjumptable:$jt, imm:$id)]>, Encoding16 { let Inst{15-7} = 0b010001101; let Inst{2-0} = 0b111; } } } // FIXME: should be able to write a pattern for ARMBrcond, but can't use // a two-value operand where a dag node expects two operands. :( let isBranch = 1, isTerminator = 1 in def tBcc : T1I<(outs), (ins brtarget:$target, pred:$cc), IIC_Br, "b$cc\t$target", [/*(ARMbrcond bb:$target, imm:$cc)*/]>, T1Encoding<{1,1,0,1,?,?}>; // Compare and branch on zero / non-zero let isBranch = 1, isTerminator = 1 in { def tCBZ : T1I<(outs), (ins tGPR:$Rn, brtarget:$target), IIC_Br, "cbz\t$Rn, $target", []>, T1Misc<{0,0,?,1,?,?,?}> { // A8.6.27 bits<6> target; bits<3> Rn; let Inst{9} = target{5}; let Inst{7-3} = target{4-0}; let Inst{2-0} = Rn; } def tCBNZ : T1I<(outs), (ins tGPR:$cmp, brtarget:$target), IIC_Br, "cbnz\t$cmp, $target", []>, T1Misc<{1,0,?,1,?,?,?}> { // A8.6.27 bits<6> target; bits<3> Rn; let Inst{9} = target{5}; let Inst{7-3} = target{4-0}; let Inst{2-0} = Rn; } } // A8.6.218 Supervisor Call (Software Interrupt) -- for disassembly only // A8.6.16 B: Encoding T1 // If Inst{11-8} == 0b1111 then SEE SVC let isCall = 1 in def tSVC : T1pI<(outs), (ins i32imm:$imm), IIC_Br, "svc", "\t$imm", []>, Encoding16 { bits<8> imm; let Inst{15-12} = 0b1101; let Inst{11-8} = 0b1111; let Inst{7-0} = imm; } // A8.6.16 B: Encoding T1 // If Inst{11-8} == 0b1110 then UNDEFINED let isBarrier = 1, isTerminator = 1 in def tTRAP : TI<(outs), (ins), IIC_Br, "trap", [(trap)]>, Encoding16 { let Inst = 0xdefe; } //===----------------------------------------------------------------------===// // Load Store Instructions. // let canFoldAsLoad = 1, isReMaterializable = 1 in def tLDR : T1pI4<(outs tGPR:$Rt), (ins t_addrmode_s4:$addr), IIC_iLoad_r, "ldr", "\t$Rt, $addr", [(set tGPR:$Rt, (load t_addrmode_s4:$addr))]>, T1LdSt<0b100>; def tLDRi: T1pI4<(outs tGPR:$dst), (ins t_addrmode_s4:$addr), IIC_iLoad_r, "ldr", "\t$dst, $addr", []>, T1LdSt4Imm<{1,?,?}>; def tLDRB : T1pI1<(outs tGPR:$dst), (ins t_addrmode_s1:$addr), IIC_iLoad_bh_r, "ldrb", "\t$dst, $addr", [(set tGPR:$dst, (zextloadi8 t_addrmode_s1:$addr))]>, T1LdSt<0b110>; def tLDRBi: T1pI1<(outs tGPR:$dst), (ins t_addrmode_s1:$addr), IIC_iLoad_bh_r, "ldrb", "\t$dst, $addr", []>, T1LdSt1Imm<{1,?,?}>; def tLDRH : T1pI2<(outs tGPR:$dst), (ins t_addrmode_s2:$addr), IIC_iLoad_bh_r, "ldrh", "\t$dst, $addr", [(set tGPR:$dst, (zextloadi16 t_addrmode_s2:$addr))]>, T1LdSt<0b101>; def tLDRHi: T1pI2<(outs tGPR:$dst), (ins t_addrmode_s2:$addr), IIC_iLoad_bh_r, "ldrh", "\t$dst, $addr", []>, T1LdSt2Imm<{1,?,?}>; let AddedComplexity = 10 in def tLDRSB : T1pI1<(outs tGPR:$dst), (ins t_addrmode_rr:$addr), IIC_iLoad_bh_r, "ldrsb", "\t$dst, $addr", [(set tGPR:$dst, (sextloadi8 t_addrmode_rr:$addr))]>, T1LdSt<0b011>; let AddedComplexity = 10 in def tLDRSH : T1pI2<(outs tGPR:$dst), (ins t_addrmode_rr:$addr), IIC_iLoad_bh_r, "ldrsh", "\t$dst, $addr", [(set tGPR:$dst, (sextloadi16 t_addrmode_rr:$addr))]>, T1LdSt<0b111>; let canFoldAsLoad = 1 in def tLDRspi : T1pIs<(outs tGPR:$dst), (ins t_addrmode_sp:$addr), IIC_iLoad_i, "ldr", "\t$dst, $addr", [(set tGPR:$dst, (load t_addrmode_sp:$addr))]>, T1LdStSP<{1,?,?}>; // Special instruction for restore. It cannot clobber condition register // when it's expanded by eliminateCallFramePseudoInstr(). let canFoldAsLoad = 1, mayLoad = 1, neverHasSideEffects = 1 in def tRestore : T1pIs<(outs tGPR:$dst), (ins t_addrmode_sp:$addr), IIC_iLoad_i, "ldr", "\t$dst, $addr", []>, T1LdStSP<{1,?,?}>; // Load tconstpool // FIXME: Use ldr.n to work around a Darwin assembler bug. let canFoldAsLoad = 1, isReMaterializable = 1 in def tLDRpci : T1pIs<(outs tGPR:$dst), (ins i32imm:$addr), IIC_iLoad_i, "ldr", ".n\t$dst, $addr", [(set tGPR:$dst, (load (ARMWrapper tconstpool:$addr)))]>, T1Encoding<{0,1,0,0,1,?}>; // A6.2 & A8.6.59 // Special LDR for loads from non-pc-relative constpools. let canFoldAsLoad = 1, mayLoad = 1, neverHasSideEffects = 1, isReMaterializable = 1 in def tLDRcp : T1pIs<(outs tGPR:$dst), (ins i32imm:$addr), IIC_iLoad_i, "ldr", "\t$dst, $addr", []>, T1LdStSP<{1,?,?}>; def tSTR : T1pI4<(outs), (ins tGPR:$src, t_addrmode_s4:$addr), IIC_iStore_r, "str", "\t$src, $addr", [(store tGPR:$src, t_addrmode_s4:$addr)]>, T1LdSt<0b000>; def tSTRi: T1pI4<(outs), (ins tGPR:$src, t_addrmode_s4:$addr), IIC_iStore_r, "str", "\t$src, $addr", []>, T1LdSt4Imm<{0,?,?}>; def tSTRB : T1pI1<(outs), (ins tGPR:$src, t_addrmode_s1:$addr), IIC_iStore_bh_r, "strb", "\t$src, $addr", [(truncstorei8 tGPR:$src, t_addrmode_s1:$addr)]>, T1LdSt<0b010>; def tSTRBi: T1pI1<(outs), (ins tGPR:$src, t_addrmode_s1:$addr), IIC_iStore_bh_r, "strb", "\t$src, $addr", []>, T1LdSt1Imm<{0,?,?}>; def tSTRH : T1pI2<(outs), (ins tGPR:$src, t_addrmode_s2:$addr), IIC_iStore_bh_r, "strh", "\t$src, $addr", [(truncstorei16 tGPR:$src, t_addrmode_s2:$addr)]>, T1LdSt<0b001>; def tSTRHi: T1pI2<(outs), (ins tGPR:$src, t_addrmode_s2:$addr), IIC_iStore_bh_r, "strh", "\t$src, $addr", []>, T1LdSt2Imm<{0,?,?}>; def tSTRspi : T1pIs<(outs), (ins tGPR:$src, t_addrmode_sp:$addr), IIC_iStore_i, "str", "\t$src, $addr", [(store tGPR:$src, t_addrmode_sp:$addr)]>, T1LdStSP<{0,?,?}>; let mayStore = 1, neverHasSideEffects = 1 in { // Special instruction for spill. It cannot clobber condition register // when it's expanded by eliminateCallFramePseudoInstr(). def tSpill : T1pIs<(outs), (ins tGPR:$src, t_addrmode_sp:$addr), IIC_iStore_i, "str", "\t$src, $addr", []>, T1LdStSP<{0,?,?}>; } //===----------------------------------------------------------------------===// // Load / store multiple Instructions. // multiclass thumb_ldst_mult T1Enc, bit L_bit> { def IA : T1I<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), itin, !strconcat(asm, "ia${p}\t$Rn, $regs"), []>, T1Encoding { bits<3> Rn; bits<8> regs; let Inst{10-8} = Rn; let Inst{7-0} = regs; } def IA_UPD : T1It<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops), itin_upd, !strconcat(asm, "ia${p}\t$Rn!, $regs"), "$Rn = $wb", []>, T1Encoding { bits<3> Rn; bits<8> regs; let Inst{10-8} = Rn; let Inst{7-0} = regs; } } // These require base address to be written back or one of the loaded regs. let neverHasSideEffects = 1 in { let mayLoad = 1, hasExtraDefRegAllocReq = 1 in defm tLDM : thumb_ldst_mult<"ldm", IIC_iLoad_m, IIC_iLoad_mu, {1,1,0,0,1,?}, 1>; let mayStore = 1, hasExtraSrcRegAllocReq = 1 in defm tSTM : thumb_ldst_mult<"stm", IIC_iStore_m, IIC_iStore_mu, {1,1,0,0,0,?}, 0>; } // neverHasSideEffects let mayLoad = 1, Uses = [SP], Defs = [SP], hasExtraDefRegAllocReq = 1 in def tPOP : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops), IIC_iPop, "pop${p}\t$regs", []>, T1Misc<{1,1,0,?,?,?,?}> { bits<16> regs; let Inst{8} = regs{15}; let Inst{7-0} = regs{7-0}; } let mayStore = 1, Uses = [SP], Defs = [SP], hasExtraSrcRegAllocReq = 1 in def tPUSH : T1I<(outs), (ins pred:$p, reglist:$regs, variable_ops), IIC_iStore_m, "push${p}\t$regs", []>, T1Misc<{0,1,0,?,?,?,?}> { bits<16> regs; let Inst{8} = regs{14}; let Inst{7-0} = regs{7-0}; } //===----------------------------------------------------------------------===// // Arithmetic Instructions. // // Add with carry register let isCommutable = 1, Uses = [CPSR] in def tADC : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iALUr, "adc", "\t$dst, $rhs", [(set tGPR:$dst, (adde tGPR:$lhs, tGPR:$rhs))]>, T1DataProcessing<0b0101> { // A8.6.2 bits<3> lhs; bits<3> rhs; let Inst{5-3} = lhs; let Inst{2-0} = rhs; } // Add immediate def tADDi3 : T1sI<(outs tGPR:$Rd), (ins tGPR:$Rn, i32imm:$imm3), IIC_iALUi, "add", "\t$Rd, $Rn, $imm3", [(set tGPR:$Rd, (add tGPR:$Rn, imm0_7:$imm3))]>, T1General<0b01110> { // A8.6.4 T1 bits<3> Rd; bits<3> Rn; bits<3> imm3; let Inst{8-6} = imm3; let Inst{5-3} = Rn; let Inst{2-0} = Rd; } def tADDi8 : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs), IIC_iALUi, "add", "\t$dst, $rhs", [(set tGPR:$dst, (add tGPR:$lhs, imm8_255:$rhs))]>, T1General<{1,1,0,?,?}> { // A8.6.4 T2 bits<3> lhs; bits<8> rhs; let Inst{10-8} = lhs; let Inst{7-0} = rhs; } // Add register let isCommutable = 1 in def tADDrr : T1sI<(outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), IIC_iALUr, "add", "\t$Rd, $Rn, $Rm", [(set tGPR:$Rd, (add tGPR:$Rn, tGPR:$Rm))]>, T1General<0b01100> { // A8.6.6 T1 bits<3> Rm; bits<3> Rn; bits<3> Rd; let Inst{8-6} = Rm; let Inst{5-3} = Rn; let Inst{2-0} = Rd; } let neverHasSideEffects = 1 in def tADDhirr : T1pIt<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iALUr, "add", "\t$dst, $rhs", []>, T1Special<{0,0,?,?}> { // A8.6.6 T2 bits<4> dst; bits<4> rhs; let Inst{6-3} = rhs; let Inst{7} = dst{3}; let Inst{2-0} = dst{2-0}; } // AND register let isCommutable = 1 in def tAND : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iBITr, "and", "\t$dst, $rhs", [(set tGPR:$dst, (and tGPR:$lhs, tGPR:$rhs))]>, T1DataProcessing<0b0000> { // A8.6.12 bits<3> rhs; bits<3> dst; let Inst{5-3} = rhs; let Inst{2-0} = dst; } // ASR immediate def tASRri : T1sI<(outs tGPR:$Rd), (ins tGPR:$Rm, i32imm:$imm5), IIC_iMOVsi, "asr", "\t$Rd, $Rm, $imm5", [(set tGPR:$Rd, (sra tGPR:$Rm, (i32 imm:$imm5)))]>, T1General<{0,1,0,?,?}> { // A8.6.14 bits<3> Rd; bits<3> Rm; bits<5> imm5; let Inst{10-6} = imm5; let Inst{5-3} = Rm; let Inst{2-0} = Rd; } // ASR register def tASRrr : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iMOVsr, "asr", "\t$dst, $rhs", [(set tGPR:$dst, (sra tGPR:$lhs, tGPR:$rhs))]>, T1DataProcessing<0b0100> { // A8.6.15 bits<3> rhs; bits<3> dst; let Inst{5-3} = rhs; let Inst{2-0} = dst; } // BIC register def tBIC : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iBITr, "bic", "\t$dst, $rhs", [(set tGPR:$dst, (and tGPR:$lhs, (not tGPR:$rhs)))]>, T1DataProcessing<0b1110> { // A8.6.20 bits<3> dst; bits<3> rhs; let Inst{5-3} = rhs; let Inst{2-0} = dst; } // CMN register let isCompare = 1, Defs = [CPSR] in { //FIXME: Disable CMN, as CCodes are backwards from compare expectations // Compare-to-zero still works out, just not the relationals //def tCMN : T1pI<(outs), (ins tGPR:$lhs, tGPR:$rhs), IIC_iCMPr, // "cmn", "\t$lhs, $rhs", // [(ARMcmp tGPR:$lhs, (ineg tGPR:$rhs))]>, // T1DataProcessing<0b1011>; def tCMNz : T1pI<(outs), (ins tGPR:$Rn, tGPR:$Rm), IIC_iCMPr, "cmn", "\t$Rn, $Rm", [(ARMcmpZ tGPR:$Rn, (ineg tGPR:$Rm))]>, T1DataProcessing<0b1011> { // A8.6.33 bits<3> Rm; bits<3> Rn; let Inst{5-3} = Rm; let Inst{2-0} = Rn; } } // CMP immediate let isCompare = 1, Defs = [CPSR] in { def tCMPi8 : T1pI<(outs), (ins tGPR:$Rn, i32imm:$imm8), IIC_iCMPi, "cmp", "\t$Rn, $imm8", [(ARMcmp tGPR:$Rn, imm0_255:$imm8)]>, T1General<{1,0,1,?,?}> { // A8.6.35 bits<3> Rn; bits<8> imm8; let Inst{10-8} = Rn; let Inst{7-0} = imm8; } def tCMPzi8 : T1pI<(outs), (ins tGPR:$Rn, i32imm:$imm8), IIC_iCMPi, "cmp", "\t$Rn, $imm8", [(ARMcmpZ tGPR:$Rn, imm0_255:$imm8)]>, T1General<{1,0,1,?,?}> { // A8.6.35 bits<3> Rn; let Inst{10-8} = Rn; let Inst{7-0} = 0x00; } // CMP register def tCMPr : T1pI<(outs), (ins tGPR:$Rn, tGPR:$Rm), IIC_iCMPr, "cmp", "\t$Rn, $Rm", [(ARMcmp tGPR:$Rn, tGPR:$Rm)]>, T1DataProcessing<0b1010> { // A8.6.36 T1 bits<3> Rm; bits<3> Rn; let Inst{5-3} = Rm; let Inst{2-0} = Rn; } def tCMPzr : T1pI<(outs), (ins tGPR:$Rn, tGPR:$Rm), IIC_iCMPr, "cmp", "\t$Rn, $Rm", [(ARMcmpZ tGPR:$Rn, tGPR:$Rm)]>, T1DataProcessing<0b1010> { // A8.6.36 T1 bits<3> Rm; bits<3> Rn; let Inst{5-3} = Rm; let Inst{2-0} = Rn; } def tCMPhir : T1pI<(outs), (ins GPR:$Rn, GPR:$Rm), IIC_iCMPr, "cmp", "\t$Rn, $Rm", []>, T1Special<{0,1,?,?}> { // A8.6.36 T2 bits<4> Rm; bits<4> Rn; let Inst{7} = Rn{3}; let Inst{6-3} = Rm; let Inst{2-0} = Rn{2-0}; } def tCMPzhir : T1pI<(outs), (ins GPR:$lhs, GPR:$rhs), IIC_iCMPr, "cmp", "\t$lhs, $rhs", []>, T1Special<{0,1,?,?}> { // A8.6.36 T2 bits<4> Rm; bits<4> Rn; let Inst{7} = Rn{3}; let Inst{6-3} = Rm; let Inst{2-0} = Rn{2-0}; } } // isCompare = 1, Defs = [CPSR] // XOR register let isCommutable = 1 in def tEOR : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iBITr, "eor", "\t$dst, $rhs", [(set tGPR:$dst, (xor tGPR:$lhs, tGPR:$rhs))]>, T1DataProcessing<0b0001> { // A8.6.45 bits<3> dst; bits<3> rhs; let Inst{5-3} = rhs; let Inst{2-0} = dst; } // LSL immediate def tLSLri : T1sI<(outs tGPR:$Rd), (ins tGPR:$Rm, i32imm:$imm5), IIC_iMOVsi, "lsl", "\t$Rd, $Rm, $imm5", [(set tGPR:$Rd, (shl tGPR:$Rm, (i32 imm:$imm5)))]>, T1General<{0,0,0,?,?}> { // A8.6.88 bits<3> Rd; bits<3> Rm; bits<5> imm5; let Inst{10-6} = imm5; let Inst{5-3} = Rm; let Inst{2-0} = Rd; } // LSL register def tLSLrr : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iMOVsr, "lsl", "\t$dst, $rhs", [(set tGPR:$dst, (shl tGPR:$lhs, tGPR:$rhs))]>, T1DataProcessing<0b0010> { // A8.6.89 bits<3> dst; bits<3> rhs; let Inst{5-3} = rhs; let Inst{2-0} = dst; } // LSR immediate def tLSRri : T1sI<(outs tGPR:$Rd), (ins tGPR:$Rm, i32imm:$imm5), IIC_iMOVsi, "lsr", "\t$Rd, $Rm, $imm5", [(set tGPR:$Rd, (srl tGPR:$Rm, (i32 imm:$imm5)))]>, T1General<{0,0,1,?,?}> { // A8.6.90 bits<3> Rd; bits<3> Rm; bits<5> imm5; let Inst{10-6} = imm5; let Inst{5-3} = Rm; let Inst{2-0} = Rd; } // LSR register def tLSRrr : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iMOVsr, "lsr", "\t$dst, $rhs", [(set tGPR:$dst, (srl tGPR:$lhs, tGPR:$rhs))]>, T1DataProcessing<0b0011> { // A8.6.91 bits<3> dst; bits<3> rhs; let Inst{5-3} = rhs; let Inst{2-0} = dst; } // Move register let isMoveImm = 1 in def tMOVi8 : T1sI<(outs tGPR:$Rd), (ins i32imm:$imm8), IIC_iMOVi, "mov", "\t$Rd, $imm8", [(set tGPR:$Rd, imm0_255:$imm8)]>, T1General<{1,0,0,?,?}> { // A8.6.96 bits<3> Rd; bits<8> imm8; let Inst{10-8} = Rd; let Inst{7-0} = imm8; } // TODO: A7-73: MOV(2) - mov setting flag. let neverHasSideEffects = 1 in { // FIXME: Make this predicable. def tMOVr : T1I<(outs tGPR:$dst), (ins tGPR:$src), IIC_iMOVr, "mov\t$dst, $src", []>, T1Special<0b1000>; let Defs = [CPSR] in def tMOVSr : T1I<(outs tGPR:$dst), (ins tGPR:$src), IIC_iMOVr, "movs\t$dst, $src", []>, Encoding16 { let Inst{15-6} = 0b0000000000; } // FIXME: Make these predicable. def tMOVgpr2tgpr : T1I<(outs tGPR:$dst), (ins GPR:$src), IIC_iMOVr, "mov\t$dst, $src", []>, T1Special<{1,0,0,?}>; def tMOVtgpr2gpr : T1I<(outs GPR:$dst), (ins tGPR:$src), IIC_iMOVr, "mov\t$dst, $src", []>, T1Special<{1,0,?,0}>; def tMOVgpr2gpr : T1I<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVr, "mov\t$dst, $src", []>, T1Special<{1,0,?,?}>; } // neverHasSideEffects // multiply register let isCommutable = 1 in def tMUL : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iMUL32, "mul", "\t$dst, $rhs, $dst", /* A8.6.105 MUL Encoding T1 */ [(set tGPR:$dst, (mul tGPR:$lhs, tGPR:$rhs))]>, T1DataProcessing<0b1101> { // A8.6.105 bits<3> dst; bits<3> rhs; let Inst{5-3} = rhs; let Inst{2-0} = dst; } // move inverse register def tMVN : T1sI<(outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iMVNr, "mvn", "\t$Rd, $Rm", [(set tGPR:$Rd, (not tGPR:$Rm))]>, T1DataProcessing<0b1111> { // A8.6.107 bits<3> Rd; bits<3> Rm; let Inst{5-3} = Rm; let Inst{2-0} = Rd; } // Bitwise or register let isCommutable = 1 in def tORR : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iBITr, "orr", "\t$dst, $rhs", [(set tGPR:$dst, (or tGPR:$lhs, tGPR:$rhs))]>, T1DataProcessing<0b1100> { // A8.6.114 bits<3> dst; bits<3> rhs; let Inst{5-3} = rhs; let Inst{2-0} = dst; } // Swaps def tREV : T1pI<(outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iUNAr, "rev", "\t$Rd, $Rm", [(set tGPR:$Rd, (bswap tGPR:$Rm))]>, Requires<[IsThumb, IsThumb1Only, HasV6]>, T1Misc<{1,0,1,0,0,0,?}> { // A8.6.134 bits<3> Rm; bits<3> Rd; let Inst{5-3} = Rm; let Inst{2-0} = Rd; } def tREV16 : T1pI<(outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iUNAr, "rev16", "\t$Rd, $Rm", [(set tGPR:$Rd, (or (and (srl tGPR:$Rm, (i32 8)), 0xFF), (or (and (shl tGPR:$Rm, (i32 8)), 0xFF00), (or (and (srl tGPR:$Rm, (i32 8)), 0xFF0000), (and (shl tGPR:$Rm, (i32 8)), 0xFF000000)))))]>, Requires<[IsThumb, IsThumb1Only, HasV6]>, T1Misc<{1,0,1,0,0,1,?}> { // A8.6.135 bits<3> Rm; bits<3> Rd; let Inst{5-3} = Rm; let Inst{2-0} = Rd; } def tREVSH : T1pI<(outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iUNAr, "revsh", "\t$Rd, $Rm", [(set tGPR:$Rd, (sext_inreg (or (srl (and tGPR:$Rm, 0xFF00), (i32 8)), (shl tGPR:$Rm, (i32 8))), i16))]>, Requires<[IsThumb, IsThumb1Only, HasV6]>, T1Misc<{1,0,1,0,1,1,?}> { // A8.6.136 bits<3> Rm; bits<3> Rd; let Inst{5-3} = Rm; let Inst{2-0} = Rd; } // rotate right register def tROR : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iMOVsr, "ror", "\t$dst, $rhs", [(set tGPR:$dst, (rotr tGPR:$lhs, tGPR:$rhs))]>, T1DataProcessing<0b0111> { // A8.6.139 bits<3> rhs; bits<3> dst; let Inst{5-3} = rhs; let Inst{2-0} = dst; } // negate register def tRSB : T1sI<(outs tGPR:$Rd), (ins tGPR:$Rn), IIC_iALUi, "rsb", "\t$Rd, $Rn, #0", [(set tGPR:$Rd, (ineg tGPR:$Rn))]>, T1DataProcessing<0b1001> { // A8.6.141 bits<3> Rn; bits<3> Rd; let Inst{5-3} = Rn; let Inst{2-0} = Rd; } // Subtract with carry register let Uses = [CPSR] in def tSBC : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, tGPR:$rhs), IIC_iALUr, "sbc", "\t$dst, $rhs", [(set tGPR:$dst, (sube tGPR:$lhs, tGPR:$rhs))]>, T1DataProcessing<0b0110> { // A8.6.151 bits<3> rhs; bits<3> dst; let Inst{5-3} = rhs; let Inst{2-0} = dst; } // Subtract immediate def tSUBi3 : T1sI<(outs tGPR:$Rd), (ins tGPR:$Rn, i32imm:$imm3), IIC_iALUi, "sub", "\t$Rd, $Rn, $imm3", [(set tGPR:$Rd, (add tGPR:$Rn, imm0_7_neg:$imm3))]>, T1General<0b01111> { // A8.6.210 T1 bits<3> imm3; bits<3> Rn; bits<3> Rd; let Inst{8-6} = imm3; let Inst{5-3} = Rn; let Inst{2-0} = Rd; } def tSUBi8 : T1sIt<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs), IIC_iALUi, "sub", "\t$dst, $rhs", [(set tGPR:$dst, (add tGPR:$lhs, imm8_255_neg:$rhs))]>, T1General<{1,1,1,?,?}> { // A8.6.210 T2 bits<8> rhs; bits<3> dst; let Inst{10-8} = dst; let Inst{7-0} = rhs; } // subtract register def tSUBrr : T1sI<(outs tGPR:$Rd), (ins tGPR:$Rn, tGPR:$Rm), IIC_iALUr, "sub", "\t$Rd, $Rn, $Rm", [(set tGPR:$Rd, (sub tGPR:$Rn, tGPR:$Rm))]>, T1General<0b01101> { // A8.6.212 bits<3> Rm; bits<3> Rn; bits<3> Rd; let Inst{8-6} = Rm; let Inst{5-3} = Rn; let Inst{2-0} = Rd; } // TODO: A7-96: STMIA - store multiple. // sign-extend byte def tSXTB : T1pI<(outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iUNAr, "sxtb", "\t$Rd, $Rm", [(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i8))]>, Requires<[IsThumb, IsThumb1Only, HasV6]>, T1Misc<{0,0,1,0,0,1,?}> { // A8.6.222 bits<3> Rm; bits<3> Rd; let Inst{5-3} = Rm; let Inst{2-0} = Rd; } // sign-extend short def tSXTH : T1pI<(outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iUNAr, "sxth", "\t$Rd, $Rm", [(set tGPR:$Rd, (sext_inreg tGPR:$Rm, i16))]>, Requires<[IsThumb, IsThumb1Only, HasV6]>, T1Misc<{0,0,1,0,0,0,?}> { // A8.6.224 bits<3> Rm; bits<3> Rd; let Inst{5-3} = Rm; let Inst{2-0} = Rd; } // test let isCompare = 1, isCommutable = 1, Defs = [CPSR] in def tTST : T1pI<(outs), (ins tGPR:$Rn, tGPR:$Rm), IIC_iTSTr, "tst", "\t$Rn, $Rm", [(ARMcmpZ (and_su tGPR:$Rn, tGPR:$Rm), 0)]>, T1DataProcessing<0b1000> { // A8.6.230 bits<3> Rm; bits<3> Rn; let Inst{5-3} = Rm; let Inst{2-0} = Rn; } // zero-extend byte def tUXTB : T1pI<(outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iUNAr, "uxtb", "\t$Rd, $Rm", [(set tGPR:$Rd, (and tGPR:$Rm, 0xFF))]>, Requires<[IsThumb, IsThumb1Only, HasV6]>, T1Misc<{0,0,1,0,1,1,?}> { // A8.6.262 bits<3> Rm; bits<3> Rd; let Inst{5-3} = Rm; let Inst{2-0} = Rd; } // zero-extend short def tUXTH : T1pI<(outs tGPR:$Rd), (ins tGPR:$Rm), IIC_iUNAr, "uxth", "\t$Rd, $Rm", [(set tGPR:$Rd, (and tGPR:$Rm, 0xFFFF))]>, Requires<[IsThumb, IsThumb1Only, HasV6]>, T1Misc<{0,0,1,0,1,0,?}> { // A8.6.264 bits<3> Rm; bits<3> Rd; let Inst{5-3} = Rm; let Inst{2-0} = Rd; } // Conditional move tMOVCCr - Used to implement the Thumb SELECT_CC operation. // Expanded after instruction selection into a branch sequence. let usesCustomInserter = 1 in // Expanded after instruction selection. def tMOVCCr_pseudo : PseudoInst<(outs tGPR:$dst), (ins tGPR:$false, tGPR:$true, pred:$cc), NoItinerary, [/*(set tGPR:$dst, (ARMcmov tGPR:$false, tGPR:$true, imm:$cc))*/]>; // 16-bit movcc in IT blocks for Thumb2. let neverHasSideEffects = 1 in { def tMOVCCr : T1pIt<(outs GPR:$dst), (ins GPR:$lhs, GPR:$rhs), IIC_iCMOVr, "mov", "\t$dst, $rhs", []>, T1Special<{1,0,?,?}>; let isMoveImm = 1 in def tMOVCCi : T1pIt<(outs tGPR:$dst), (ins tGPR:$lhs, i32imm:$rhs), IIC_iCMOVi, "mov", "\t$dst, $rhs", []>, T1General<{1,0,0,?,?}>; } // neverHasSideEffects // tLEApcrel - Load a pc-relative address into a register without offending the // assembler. let neverHasSideEffects = 1 in { let isReMaterializable = 1 in def tLEApcrel : T1I<(outs tGPR:$dst), (ins i32imm:$label, pred:$p), IIC_iALUi, "adr$p\t$dst, #$label", []>, T1Encoding<{1,0,1,0,0,?}>; // A6.2 & A8.6.10 } // neverHasSideEffects def tLEApcrelJT : T1I<(outs tGPR:$dst), (ins i32imm:$label, nohash_imm:$id, pred:$p), IIC_iALUi, "adr$p\t$dst, #${label}_${id}", []>, T1Encoding<{1,0,1,0,0,?}>; // A6.2 & A8.6.10 //===----------------------------------------------------------------------===// // TLS Instructions // // __aeabi_read_tp preserves the registers r1-r3. let isCall = 1, Defs = [R0, LR] in { def tTPsoft : TIx2<0b11110, 0b11, 1, (outs), (ins), IIC_Br, "bl\t__aeabi_read_tp", [(set R0, ARMthread_pointer)]>; } // SJLJ Exception handling intrinsics // eh_sjlj_setjmp() is an instruction sequence to store the return // address and save #0 in R0 for the non-longjmp case. // Since by its nature we may be coming from some other function to get // here, and we're using the stack frame for the containing function to // save/restore registers, we can't keep anything live in regs across // the eh_sjlj_setjmp(), else it will almost certainly have been tromped upon // when we get here from a longjmp(). We force everthing out of registers // except for our own input by listing the relevant registers in Defs. By // doing so, we also cause the prologue/epilogue code to actively preserve // all of the callee-saved resgisters, which is exactly what we want. // $val is a scratch register for our use. let Defs = [ R0, R1, R2, R3, R4, R5, R6, R7, R12 ], hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1 in { def tInt_eh_sjlj_setjmp : ThumbXI<(outs),(ins tGPR:$src, tGPR:$val), AddrModeNone, SizeSpecial, NoItinerary, "", "", [(set R0, (ARMeh_sjlj_setjmp tGPR:$src, tGPR:$val))]>; } // FIXME: Non-Darwin version(s) let isBarrier = 1, hasSideEffects = 1, isTerminator = 1, isCodeGenOnly = 1, Defs = [ R7, LR, SP ] in { def tInt_eh_sjlj_longjmp : XI<(outs), (ins GPR:$src, GPR:$scratch), AddrModeNone, SizeSpecial, IndexModeNone, Pseudo, NoItinerary, "", "", [(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>, Requires<[IsThumb, IsDarwin]>; } //===----------------------------------------------------------------------===// // Non-Instruction Patterns // // Add with carry def : T1Pat<(addc tGPR:$lhs, imm0_7:$rhs), (tADDi3 tGPR:$lhs, imm0_7:$rhs)>; def : T1Pat<(addc tGPR:$lhs, imm8_255:$rhs), (tADDi8 tGPR:$lhs, imm8_255:$rhs)>; def : T1Pat<(addc tGPR:$lhs, tGPR:$rhs), (tADDrr tGPR:$lhs, tGPR:$rhs)>; // Subtract with carry def : T1Pat<(addc tGPR:$lhs, imm0_7_neg:$rhs), (tSUBi3 tGPR:$lhs, imm0_7_neg:$rhs)>; def : T1Pat<(addc tGPR:$lhs, imm8_255_neg:$rhs), (tSUBi8 tGPR:$lhs, imm8_255_neg:$rhs)>; def : T1Pat<(subc tGPR:$lhs, tGPR:$rhs), (tSUBrr tGPR:$lhs, tGPR:$rhs)>; // ConstantPool, GlobalAddress def : T1Pat<(ARMWrapper tglobaladdr :$dst), (tLEApcrel tglobaladdr :$dst)>; def : T1Pat<(ARMWrapper tconstpool :$dst), (tLEApcrel tconstpool :$dst)>; // JumpTable def : T1Pat<(ARMWrapperJT tjumptable:$dst, imm:$id), (tLEApcrelJT tjumptable:$dst, imm:$id)>; // Direct calls def : T1Pat<(ARMtcall texternalsym:$func), (tBL texternalsym:$func)>, Requires<[IsThumb, IsNotDarwin]>; def : T1Pat<(ARMtcall texternalsym:$func), (tBLr9 texternalsym:$func)>, Requires<[IsThumb, IsDarwin]>; def : Tv5Pat<(ARMcall texternalsym:$func), (tBLXi texternalsym:$func)>, Requires<[IsThumb, HasV5T, IsNotDarwin]>; def : Tv5Pat<(ARMcall texternalsym:$func), (tBLXi_r9 texternalsym:$func)>, Requires<[IsThumb, HasV5T, IsDarwin]>; // Indirect calls to ARM routines def : Tv5Pat<(ARMcall GPR:$dst), (tBLXr GPR:$dst)>, Requires<[IsThumb, HasV5T, IsNotDarwin]>; def : Tv5Pat<(ARMcall GPR:$dst), (tBLXr_r9 GPR:$dst)>, Requires<[IsThumb, HasV5T, IsDarwin]>; // zextload i1 -> zextload i8 def : T1Pat<(zextloadi1 t_addrmode_s1:$addr), (tLDRB t_addrmode_s1:$addr)>; // extload -> zextload def : T1Pat<(extloadi1 t_addrmode_s1:$addr), (tLDRB t_addrmode_s1:$addr)>; def : T1Pat<(extloadi8 t_addrmode_s1:$addr), (tLDRB t_addrmode_s1:$addr)>; def : T1Pat<(extloadi16 t_addrmode_s2:$addr), (tLDRH t_addrmode_s2:$addr)>; // If it's impossible to use [r,r] address mode for sextload, select to // ldr{b|h} + sxt{b|h} instead. def : T1Pat<(sextloadi8 t_addrmode_s1:$addr), (tSXTB (tLDRB t_addrmode_s1:$addr))>, Requires<[IsThumb, IsThumb1Only, HasV6]>; def : T1Pat<(sextloadi16 t_addrmode_s2:$addr), (tSXTH (tLDRH t_addrmode_s2:$addr))>, Requires<[IsThumb, IsThumb1Only, HasV6]>; def : T1Pat<(sextloadi8 t_addrmode_s1:$addr), (tASRri (tLSLri (tLDRB t_addrmode_s1:$addr), 24), 24)>; def : T1Pat<(sextloadi16 t_addrmode_s1:$addr), (tASRri (tLSLri (tLDRH t_addrmode_s1:$addr), 16), 16)>; // Large immediate handling. // Two piece imms. def : T1Pat<(i32 thumb_immshifted:$src), (tLSLri (tMOVi8 (thumb_immshifted_val imm:$src)), (thumb_immshifted_shamt imm:$src))>; def : T1Pat<(i32 imm0_255_comp:$src), (tMVN (tMOVi8 (imm_comp_XFORM imm:$src)))>; // Pseudo instruction that combines ldr from constpool and add pc. This should // be expanded into two instructions late to allow if-conversion and // scheduling. let isReMaterializable = 1 in def tLDRpci_pic : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr, pclabel:$cp), NoItinerary, [(set GPR:$dst, (ARMpic_add (load (ARMWrapper tconstpool:$addr)), imm:$cp))]>, Requires<[IsThumb, IsThumb1Only]>;