//===- ARMRegisterInfo.cpp - ARM Register Information -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the "Instituto Nokia de Tecnologia" and // is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the ARM implementation of the MRegisterInfo class. // //===----------------------------------------------------------------------===// #include "ARM.h" #include "ARMAddressingModes.h" #include "ARMInstrInfo.h" #include "ARMMachineFunctionInfo.h" #include "ARMRegisterInfo.h" #include "ARMSubtarget.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLocation.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/CommandLine.h" #include using namespace llvm; static cl::opt ThumbRegScavenging("enable-thumb-reg-scavenging", cl::Hidden, cl::desc("Enable register scavenging on Thumb")); unsigned ARMRegisterInfo::getRegisterNumbering(unsigned RegEnum) { using namespace ARM; switch (RegEnum) { case R0: case S0: case D0: return 0; case R1: case S1: case D1: return 1; case R2: case S2: case D2: return 2; case R3: case S3: case D3: return 3; case R4: case S4: case D4: return 4; case R5: case S5: case D5: return 5; case R6: case S6: case D6: return 6; case R7: case S7: case D7: return 7; case R8: case S8: case D8: return 8; case R9: case S9: case D9: return 9; case R10: case S10: case D10: return 10; case R11: case S11: case D11: return 11; case R12: case S12: case D12: return 12; case SP: case S13: case D13: return 13; case LR: case S14: case D14: return 14; case PC: case S15: case D15: return 15; case S16: return 16; case S17: return 17; case S18: return 18; case S19: return 19; case S20: return 20; case S21: return 21; case S22: return 22; case S23: return 23; case S24: return 24; case S25: return 25; case S26: return 26; case S27: return 27; case S28: return 28; case S29: return 29; case S30: return 30; case S31: return 31; default: assert(0 && "Unknown ARM register!"); abort(); } } ARMRegisterInfo::ARMRegisterInfo(const TargetInstrInfo &tii, const ARMSubtarget &sti) : ARMGenRegisterInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), TII(tii), STI(sti), FramePtr(STI.useThumbBacktraces() ? ARM::R7 : ARM::R11) { } bool ARMRegisterInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector &CSI) const { MachineFunction &MF = *MBB.getParent(); ARMFunctionInfo *AFI = MF.getInfo(); if (!AFI->isThumbFunction() || CSI.empty()) return false; MachineInstrBuilder MIB = BuildMI(MBB, MI, TII.get(ARM::tPUSH)); for (unsigned i = CSI.size(); i != 0; --i) { unsigned Reg = CSI[i-1].getReg(); // Add the callee-saved register as live-in. It's killed at the spill. MBB.addLiveIn(Reg); MIB.addReg(Reg, false/*isDef*/,false/*isImp*/,true/*isKill*/); } return true; } bool ARMRegisterInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector &CSI) const { MachineFunction &MF = *MBB.getParent(); ARMFunctionInfo *AFI = MF.getInfo(); if (!AFI->isThumbFunction() || CSI.empty()) return false; bool isVarArg = AFI->getVarArgsRegSaveSize() > 0; MachineInstr *PopMI = new MachineInstr(TII.get(ARM::tPOP)); MBB.insert(MI, PopMI); for (unsigned i = CSI.size(); i != 0; --i) { unsigned Reg = CSI[i-1].getReg(); if (Reg == ARM::LR) { // Special epilogue for vararg functions. See emitEpilogue if (isVarArg) continue; Reg = ARM::PC; PopMI->setInstrDescriptor(TII.get(ARM::tPOP_RET)); MBB.erase(MI); } PopMI->addRegOperand(Reg, true); } return true; } void ARMRegisterInfo:: storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned SrcReg, int FI, const TargetRegisterClass *RC) const { if (RC == ARM::GPRRegisterClass) { MachineFunction &MF = *MBB.getParent(); ARMFunctionInfo *AFI = MF.getInfo(); if (AFI->isThumbFunction()) BuildMI(MBB, I, TII.get(ARM::tSpill)).addReg(SrcReg, false, false, true) .addFrameIndex(FI).addImm(0); else BuildMI(MBB, I, TII.get(ARM::STR)).addReg(SrcReg, false, false, true) .addFrameIndex(FI).addReg(0).addImm(0); } else if (RC == ARM::DPRRegisterClass) { BuildMI(MBB, I, TII.get(ARM::FSTD)).addReg(SrcReg, false, false, true) .addFrameIndex(FI).addImm(0); } else { assert(RC == ARM::SPRRegisterClass && "Unknown regclass!"); BuildMI(MBB, I, TII.get(ARM::FSTS)).addReg(SrcReg, false, false, true) .addFrameIndex(FI).addImm(0); } } void ARMRegisterInfo:: loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, int FI, const TargetRegisterClass *RC) const { if (RC == ARM::GPRRegisterClass) { MachineFunction &MF = *MBB.getParent(); ARMFunctionInfo *AFI = MF.getInfo(); if (AFI->isThumbFunction()) BuildMI(MBB, I, TII.get(ARM::tRestore), DestReg) .addFrameIndex(FI).addImm(0); else BuildMI(MBB, I, TII.get(ARM::LDR), DestReg) .addFrameIndex(FI).addReg(0).addImm(0); } else if (RC == ARM::DPRRegisterClass) { BuildMI(MBB, I, TII.get(ARM::FLDD), DestReg) .addFrameIndex(FI).addImm(0); } else { assert(RC == ARM::SPRRegisterClass && "Unknown regclass!"); BuildMI(MBB, I, TII.get(ARM::FLDS), DestReg) .addFrameIndex(FI).addImm(0); } } void ARMRegisterInfo::copyRegToReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, unsigned SrcReg, const TargetRegisterClass *RC) const { if (RC == ARM::GPRRegisterClass) { MachineFunction &MF = *MBB.getParent(); ARMFunctionInfo *AFI = MF.getInfo(); BuildMI(MBB, I, TII.get(AFI->isThumbFunction() ? ARM::tMOVr : ARM::MOVr), DestReg).addReg(SrcReg); } else if (RC == ARM::SPRRegisterClass) BuildMI(MBB, I, TII.get(ARM::FCPYS), DestReg).addReg(SrcReg); else if (RC == ARM::DPRRegisterClass) BuildMI(MBB, I, TII.get(ARM::FCPYD), DestReg).addReg(SrcReg); else abort(); } /// emitLoadConstPool - Emits a load from constpool to materialize the /// specified immediate. static void emitLoadConstPool(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned DestReg, int Val, const TargetInstrInfo &TII, bool isThumb) { MachineFunction &MF = *MBB.getParent(); MachineConstantPool *ConstantPool = MF.getConstantPool(); Constant *C = ConstantInt::get(Type::Int32Ty, Val); unsigned Idx = ConstantPool->getConstantPoolIndex(C, 2); if (isThumb) BuildMI(MBB, MBBI, TII.get(ARM::tLDRcp), DestReg).addConstantPoolIndex(Idx); else BuildMI(MBB, MBBI, TII.get(ARM::LDRcp), DestReg).addConstantPoolIndex(Idx) .addReg(0).addImm(0); } void ARMRegisterInfo::reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, unsigned DestReg, const MachineInstr *Orig) const { if (Orig->getOpcode() == ARM::MOVi2pieces) { emitLoadConstPool(MBB, I, DestReg, Orig->getOperand(1).getImmedValue(), TII, false); return; } MachineInstr *MI = Orig->clone(); MI->getOperand(0).setReg(DestReg); MBB.insert(I, MI); } /// isLowRegister - Returns true if the register is low register r0-r7. /// static bool isLowRegister(unsigned Reg) { using namespace ARM; switch (Reg) { case R0: case R1: case R2: case R3: case R4: case R5: case R6: case R7: return true; default: return false; } } MachineInstr *ARMRegisterInfo::foldMemoryOperand(MachineInstr *MI, unsigned OpNum, int FI) const { unsigned Opc = MI->getOpcode(); MachineInstr *NewMI = NULL; switch (Opc) { default: break; case ARM::MOVr: { if (OpNum == 0) { // move -> store unsigned SrcReg = MI->getOperand(1).getReg(); NewMI = BuildMI(TII.get(ARM::STR)).addReg(SrcReg).addFrameIndex(FI) .addReg(0).addImm(0); } else { // move -> load unsigned DstReg = MI->getOperand(0).getReg(); NewMI = BuildMI(TII.get(ARM::LDR), DstReg).addFrameIndex(FI).addReg(0) .addImm(0); } break; } case ARM::tMOVr: { if (OpNum == 0) { // move -> store unsigned SrcReg = MI->getOperand(1).getReg(); if (isPhysicalRegister(SrcReg) && !isLowRegister(SrcReg)) // tSpill cannot take a high register operand. break; NewMI = BuildMI(TII.get(ARM::tSpill)).addReg(SrcReg).addFrameIndex(FI) .addImm(0); } else { // move -> load unsigned DstReg = MI->getOperand(0).getReg(); if (isPhysicalRegister(DstReg) && !isLowRegister(DstReg)) // tRestore cannot target a high register operand. break; NewMI = BuildMI(TII.get(ARM::tRestore), DstReg).addFrameIndex(FI) .addImm(0); } break; } case ARM::FCPYS: { if (OpNum == 0) { // move -> store unsigned SrcReg = MI->getOperand(1).getReg(); NewMI = BuildMI(TII.get(ARM::FSTS)).addReg(SrcReg).addFrameIndex(FI) .addImm(0); } else { // move -> load unsigned DstReg = MI->getOperand(0).getReg(); NewMI = BuildMI(TII.get(ARM::FLDS), DstReg).addFrameIndex(FI).addImm(0); } break; } case ARM::FCPYD: { if (OpNum == 0) { // move -> store unsigned SrcReg = MI->getOperand(1).getReg(); NewMI = BuildMI(TII.get(ARM::FSTD)).addReg(SrcReg).addFrameIndex(FI) .addImm(0); } else { // move -> load unsigned DstReg = MI->getOperand(0).getReg(); NewMI = BuildMI(TII.get(ARM::FLDD), DstReg).addFrameIndex(FI).addImm(0); } break; } } if (NewMI) NewMI->copyKillDeadInfo(MI); return NewMI; } const unsigned* ARMRegisterInfo::getCalleeSavedRegs() const { static const unsigned CalleeSavedRegs[] = { ARM::LR, ARM::R11, ARM::R10, ARM::R9, ARM::R8, ARM::R7, ARM::R6, ARM::R5, ARM::R4, ARM::D15, ARM::D14, ARM::D13, ARM::D12, ARM::D11, ARM::D10, ARM::D9, ARM::D8, 0 }; static const unsigned DarwinCalleeSavedRegs[] = { ARM::LR, ARM::R7, ARM::R6, ARM::R5, ARM::R4, ARM::R11, ARM::R10, ARM::R9, ARM::R8, ARM::D15, ARM::D14, ARM::D13, ARM::D12, ARM::D11, ARM::D10, ARM::D9, ARM::D8, 0 }; return STI.isTargetDarwin() ? DarwinCalleeSavedRegs : CalleeSavedRegs; } const TargetRegisterClass* const * ARMRegisterInfo::getCalleeSavedRegClasses() const { static const TargetRegisterClass * const CalleeSavedRegClasses[] = { &ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::GPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, &ARM::DPRRegClass, 0 }; return CalleeSavedRegClasses; } BitVector ARMRegisterInfo::getReservedRegs(const MachineFunction &MF) const { // FIXME: avoid re-calculating this everytime. BitVector Reserved(getNumRegs()); Reserved.set(ARM::SP); Reserved.set(ARM::PC); if (STI.isTargetDarwin() || hasFP(MF)) Reserved.set(FramePtr); // Some targets reserve R9. if (STI.isR9Reserved()) Reserved.set(ARM::R9); // At PEI time, if LR is used, it will be spilled upon entry. if (MF.getUsedPhysregs() && !MF.isPhysRegUsed((unsigned)ARM::LR)) Reserved.set(ARM::LR); return Reserved; } bool ARMRegisterInfo::isReservedReg(const MachineFunction &MF, unsigned Reg) const { switch (Reg) { default: break; case ARM::SP: case ARM::PC: return true; case ARM::R7: case ARM::R11: if (FramePtr == Reg && (STI.isTargetDarwin() || hasFP(MF))) return true; break; case ARM::R9: return STI.isR9Reserved(); } return false; } bool ARMRegisterInfo::requiresRegisterScavenging(const MachineFunction &MF) const { const ARMFunctionInfo *AFI = MF.getInfo(); return ThumbRegScavenging || !AFI->isThumbFunction(); } /// hasFP - Return true if the specified function should have a dedicated frame /// pointer register. This is true if the function has variable sized allocas /// or if frame pointer elimination is disabled. /// bool ARMRegisterInfo::hasFP(const MachineFunction &MF) const { return NoFramePointerElim || MF.getFrameInfo()->hasVarSizedObjects(); } /// emitARMRegPlusImmediate - Emits a series of instructions to materialize /// a destreg = basereg + immediate in ARM code. static void emitARMRegPlusImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned DestReg, unsigned BaseReg, int NumBytes, const TargetInstrInfo &TII) { bool isSub = NumBytes < 0; if (isSub) NumBytes = -NumBytes; while (NumBytes) { unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); assert(ThisVal && "Didn't extract field correctly"); // We will handle these bits from offset, clear them. NumBytes &= ~ThisVal; // Get the properly encoded SOImmVal field. int SOImmVal = ARM_AM::getSOImmVal(ThisVal); assert(SOImmVal != -1 && "Bit extraction didn't work?"); // Build the new ADD / SUB. BuildMI(MBB, MBBI, TII.get(isSub ? ARM::SUBri : ARM::ADDri), DestReg) .addReg(BaseReg, false, false, true).addImm(SOImmVal); BaseReg = DestReg; } } /// calcNumMI - Returns the number of instructions required to materialize /// the specific add / sub r, c instruction. static unsigned calcNumMI(int Opc, int ExtraOpc, unsigned Bytes, unsigned NumBits, unsigned Scale) { unsigned NumMIs = 0; unsigned Chunk = ((1 << NumBits) - 1) * Scale; if (Opc == ARM::tADDrSPi) { unsigned ThisVal = (Bytes > Chunk) ? Chunk : Bytes; Bytes -= ThisVal; NumMIs++; NumBits = 8; Scale = 1; // Followed by a number of tADDi8. Chunk = ((1 << NumBits) - 1) * Scale; } NumMIs += Bytes / Chunk; if ((Bytes % Chunk) != 0) NumMIs++; if (ExtraOpc) NumMIs++; return NumMIs; } /// emitThumbRegPlusImmInReg - Emits a series of instructions to materialize /// a destreg = basereg + immediate in Thumb code. Materialize the immediate /// in a register using mov / mvn sequences or load the immediate from a /// constpool entry. static void emitThumbRegPlusImmInReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned DestReg, unsigned BaseReg, int NumBytes, bool CanChangeCC, const TargetInstrInfo &TII) { bool isHigh = !isLowRegister(DestReg) || (BaseReg != 0 && !isLowRegister(BaseReg)); bool isSub = false; // Subtract doesn't have high register version. Load the negative value // if either base or dest register is a high register. Also, if do not // issue sub as part of the sequence if condition register is to be // preserved. if (NumBytes < 0 && !isHigh && CanChangeCC) { isSub = true; NumBytes = -NumBytes; } unsigned LdReg = DestReg; if (DestReg == ARM::SP) { assert(BaseReg == ARM::SP && "Unexpected!"); LdReg = ARM::R3; BuildMI(MBB, MBBI, TII.get(ARM::tMOVr), ARM::R12) .addReg(ARM::R3, false, false, true); } if (NumBytes <= 255 && NumBytes >= 0) BuildMI(MBB, MBBI, TII.get(ARM::tMOVi8), LdReg).addImm(NumBytes); else if (NumBytes < 0 && NumBytes >= -255) { BuildMI(MBB, MBBI, TII.get(ARM::tMOVi8), LdReg).addImm(NumBytes); BuildMI(MBB, MBBI, TII.get(ARM::tNEG), LdReg) .addReg(LdReg, false, false, true); } else emitLoadConstPool(MBB, MBBI, LdReg, NumBytes, TII, true); // Emit add / sub. int Opc = (isSub) ? ARM::tSUBrr : (isHigh ? ARM::tADDhirr : ARM::tADDrr); const MachineInstrBuilder MIB = BuildMI(MBB, MBBI, TII.get(Opc), DestReg); if (DestReg == ARM::SP || isSub) MIB.addReg(BaseReg).addReg(LdReg, false, false, true); else MIB.addReg(LdReg).addReg(BaseReg, false, false, true); if (DestReg == ARM::SP) BuildMI(MBB, MBBI, TII.get(ARM::tMOVr), ARM::R3) .addReg(ARM::R12, false, false, true); } /// emitThumbRegPlusImmediate - Emits a series of instructions to materialize /// a destreg = basereg + immediate in Thumb code. static void emitThumbRegPlusImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned DestReg, unsigned BaseReg, int NumBytes, const TargetInstrInfo &TII) { bool isSub = NumBytes < 0; unsigned Bytes = (unsigned)NumBytes; if (isSub) Bytes = -NumBytes; bool isMul4 = (Bytes & 3) == 0; bool isTwoAddr = false; bool DstNotEqBase = false; unsigned NumBits = 1; unsigned Scale = 1; int Opc = 0; int ExtraOpc = 0; if (DestReg == BaseReg && BaseReg == ARM::SP) { assert(isMul4 && "Thumb sp inc / dec size must be multiple of 4!"); NumBits = 7; Scale = 4; Opc = isSub ? ARM::tSUBspi : ARM::tADDspi; isTwoAddr = true; } else if (!isSub && BaseReg == ARM::SP) { // r1 = add sp, 403 // => // r1 = add sp, 100 * 4 // r1 = add r1, 3 if (!isMul4) { Bytes &= ~3; ExtraOpc = ARM::tADDi3; } NumBits = 8; Scale = 4; Opc = ARM::tADDrSPi; } else { // sp = sub sp, c // r1 = sub sp, c // r8 = sub sp, c if (DestReg != BaseReg) DstNotEqBase = true; NumBits = 8; Opc = isSub ? ARM::tSUBi8 : ARM::tADDi8; isTwoAddr = true; } unsigned NumMIs = calcNumMI(Opc, ExtraOpc, Bytes, NumBits, Scale); unsigned Threshold = (DestReg == ARM::SP) ? 3 : 2; if (NumMIs > Threshold) { // This will expand into too many instructions. Load the immediate from a // constpool entry. emitThumbRegPlusImmInReg(MBB, MBBI, DestReg, BaseReg, NumBytes, true, TII); return; } if (DstNotEqBase) { if (isLowRegister(DestReg) && isLowRegister(BaseReg)) { // If both are low registers, emit DestReg = add BaseReg, max(Imm, 7) unsigned Chunk = (1 << 3) - 1; unsigned ThisVal = (Bytes > Chunk) ? Chunk : Bytes; Bytes -= ThisVal; BuildMI(MBB, MBBI, TII.get(isSub ? ARM::tSUBi3 : ARM::tADDi3), DestReg) .addReg(BaseReg, false, false, true).addImm(ThisVal); } else { BuildMI(MBB, MBBI, TII.get(ARM::tMOVr), DestReg) .addReg(BaseReg, false, false, true); } BaseReg = DestReg; } unsigned Chunk = ((1 << NumBits) - 1) * Scale; while (Bytes) { unsigned ThisVal = (Bytes > Chunk) ? Chunk : Bytes; Bytes -= ThisVal; ThisVal /= Scale; // Build the new tADD / tSUB. if (isTwoAddr) BuildMI(MBB, MBBI, TII.get(Opc), DestReg).addReg(DestReg).addImm(ThisVal); else { bool isKill = BaseReg != ARM::SP; BuildMI(MBB, MBBI, TII.get(Opc), DestReg) .addReg(BaseReg, false, false, isKill).addImm(ThisVal); BaseReg = DestReg; if (Opc == ARM::tADDrSPi) { // r4 = add sp, imm // r4 = add r4, imm // ... NumBits = 8; Scale = 1; Chunk = ((1 << NumBits) - 1) * Scale; Opc = isSub ? ARM::tSUBi8 : ARM::tADDi8; isTwoAddr = true; } } } if (ExtraOpc) BuildMI(MBB, MBBI, TII.get(ExtraOpc), DestReg) .addReg(DestReg, false, false, true) .addImm(((unsigned)NumBytes) & 3); } static void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, int NumBytes, bool isThumb, const TargetInstrInfo &TII) { if (isThumb) emitThumbRegPlusImmediate(MBB, MBBI, ARM::SP, ARM::SP, NumBytes, TII); else emitARMRegPlusImmediate(MBB, MBBI, ARM::SP, ARM::SP, NumBytes, TII); } void ARMRegisterInfo:: eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { if (hasFP(MF)) { // If we have alloca, convert as follows: // ADJCALLSTACKDOWN -> sub, sp, sp, amount // ADJCALLSTACKUP -> add, sp, sp, amount MachineInstr *Old = I; unsigned Amount = Old->getOperand(0).getImmedValue(); if (Amount != 0) { ARMFunctionInfo *AFI = MF.getInfo(); // We need to keep the stack aligned properly. To do this, we round the // amount of space needed for the outgoing arguments up to the next // alignment boundary. unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment(); Amount = (Amount+Align-1)/Align*Align; // Replace the pseudo instruction with a new instruction... if (Old->getOpcode() == ARM::ADJCALLSTACKDOWN) { emitSPUpdate(MBB, I, -Amount, AFI->isThumbFunction(), TII); } else { assert(Old->getOpcode() == ARM::ADJCALLSTACKUP); emitSPUpdate(MBB, I, Amount, AFI->isThumbFunction(), TII); } } } MBB.erase(I); } /// emitThumbConstant - Emit a series of instructions to materialize a /// constant. static void emitThumbConstant(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, unsigned DestReg, int Imm, const TargetInstrInfo &TII) { bool isSub = Imm < 0; if (isSub) Imm = -Imm; int Chunk = (1 << 8) - 1; int ThisVal = (Imm > Chunk) ? Chunk : Imm; Imm -= ThisVal; BuildMI(MBB, MBBI, TII.get(ARM::tMOVi8), DestReg).addImm(ThisVal); if (Imm > 0) emitThumbRegPlusImmediate(MBB, MBBI, DestReg, DestReg, Imm, TII); if (isSub) BuildMI(MBB, MBBI, TII.get(ARM::tNEG), DestReg) .addReg(DestReg, false, false, true); } /// findScratchRegister - Find a 'free' ARM register. If register scavenger /// is not being used, R12 is available. Otherwise, try for a call-clobbered /// register first and then a spilled callee-saved register if that fails. static unsigned findScratchRegister(RegScavenger *RS, const TargetRegisterClass *RC, ARMFunctionInfo *AFI) { unsigned Reg = RS ? RS->FindUnusedReg(RC, true) : (unsigned) ARM::R12; if (Reg == 0) // Try a already spilled CS register. Reg = RS->FindUnusedReg(RC, AFI->getSpilledCSRegisters()); return Reg; } void ARMRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, RegScavenger *RS) const{ unsigned i = 0; MachineInstr &MI = *II; MachineBasicBlock &MBB = *MI.getParent(); MachineFunction &MF = *MBB.getParent(); ARMFunctionInfo *AFI = MF.getInfo(); bool isThumb = AFI->isThumbFunction(); while (!MI.getOperand(i).isFrameIndex()) { ++i; assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); } unsigned FrameReg = ARM::SP; int FrameIndex = MI.getOperand(i).getFrameIndex(); int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) + MF.getFrameInfo()->getStackSize(); if (AFI->isGPRCalleeSavedArea1Frame(FrameIndex)) Offset -= AFI->getGPRCalleeSavedArea1Offset(); else if (AFI->isGPRCalleeSavedArea2Frame(FrameIndex)) Offset -= AFI->getGPRCalleeSavedArea2Offset(); else if (AFI->isDPRCalleeSavedAreaFrame(FrameIndex)) Offset -= AFI->getDPRCalleeSavedAreaOffset(); else if (hasFP(MF)) { // There is alloca()'s in this function, must reference off the frame // pointer instead. FrameReg = getFrameRegister(MF); Offset -= AFI->getFramePtrSpillOffset(); } unsigned Opcode = MI.getOpcode(); const TargetInstrDescriptor &Desc = TII.get(Opcode); unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); bool isSub = false; if (Opcode == ARM::ADDri) { Offset += MI.getOperand(i+1).getImm(); if (Offset == 0) { // Turn it into a move. MI.setInstrDescriptor(TII.get(ARM::MOVr)); MI.getOperand(i).ChangeToRegister(FrameReg, false); MI.RemoveOperand(i+1); return; } else if (Offset < 0) { Offset = -Offset; isSub = true; MI.setInstrDescriptor(TII.get(ARM::SUBri)); } // Common case: small offset, fits into instruction. int ImmedOffset = ARM_AM::getSOImmVal(Offset); if (ImmedOffset != -1) { // Replace the FrameIndex with sp / fp MI.getOperand(i).ChangeToRegister(FrameReg, false); MI.getOperand(i+1).ChangeToImmediate(ImmedOffset); return; } // Otherwise, we fallback to common code below to form the imm offset with // a sequence of ADDri instructions. First though, pull as much of the imm // into this ADDri as possible. unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt); // We will handle these bits from offset, clear them. Offset &= ~ThisImmVal; // Get the properly encoded SOImmVal field. int ThisSOImmVal = ARM_AM::getSOImmVal(ThisImmVal); assert(ThisSOImmVal != -1 && "Bit extraction didn't work?"); MI.getOperand(i+1).ChangeToImmediate(ThisSOImmVal); } else if (Opcode == ARM::tADDrSPi) { Offset += MI.getOperand(i+1).getImm(); // Can't use tADDrSPi if it's based off the frame pointer. unsigned NumBits = 0; unsigned Scale = 1; if (FrameReg != ARM::SP) { Opcode = ARM::tADDi3; MI.setInstrDescriptor(TII.get(ARM::tADDi3)); NumBits = 3; } else { NumBits = 8; Scale = 4; assert((Offset & 3) == 0 && "Thumb add/sub sp, #imm immediate must be multiple of 4!"); } if (Offset == 0) { // Turn it into a move. MI.setInstrDescriptor(TII.get(ARM::tMOVr)); MI.getOperand(i).ChangeToRegister(FrameReg, false); MI.RemoveOperand(i+1); return; } // Common case: small offset, fits into instruction. unsigned Mask = (1 << NumBits) - 1; if (((Offset / Scale) & ~Mask) == 0) { // Replace the FrameIndex with sp / fp MI.getOperand(i).ChangeToRegister(FrameReg, false); MI.getOperand(i+1).ChangeToImmediate(Offset / Scale); return; } unsigned DestReg = MI.getOperand(0).getReg(); unsigned Bytes = (Offset > 0) ? Offset : -Offset; unsigned NumMIs = calcNumMI(Opcode, 0, Bytes, NumBits, Scale); // MI would expand into a large number of instructions. Don't try to // simplify the immediate. if (NumMIs > 2) { emitThumbRegPlusImmediate(MBB, II, DestReg, FrameReg, Offset, TII); MBB.erase(II); return; } if (Offset > 0) { // Translate r0 = add sp, imm to // r0 = add sp, 255*4 // r0 = add r0, (imm - 255*4) MI.getOperand(i).ChangeToRegister(FrameReg, false); MI.getOperand(i+1).ChangeToImmediate(Mask); Offset = (Offset - Mask * Scale); MachineBasicBlock::iterator NII = next(II); emitThumbRegPlusImmediate(MBB, NII, DestReg, DestReg, Offset, TII); } else { // Translate r0 = add sp, -imm to // r0 = -imm (this is then translated into a series of instructons) // r0 = add r0, sp emitThumbConstant(MBB, II, DestReg, Offset, TII); MI.setInstrDescriptor(TII.get(ARM::tADDhirr)); MI.getOperand(i).ChangeToRegister(DestReg, false, false, true); MI.getOperand(i+1).ChangeToRegister(FrameReg, false); } return; } else { unsigned ImmIdx = 0; int InstrOffs = 0; unsigned NumBits = 0; unsigned Scale = 1; switch (AddrMode) { case ARMII::AddrMode2: { ImmIdx = i+2; InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) InstrOffs *= -1; NumBits = 12; break; } case ARMII::AddrMode3: { ImmIdx = i+2; InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) InstrOffs *= -1; NumBits = 8; break; } case ARMII::AddrMode5: { ImmIdx = i+1; InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) InstrOffs *= -1; NumBits = 8; Scale = 4; break; } case ARMII::AddrModeTs: { ImmIdx = i+1; InstrOffs = MI.getOperand(ImmIdx).getImm(); NumBits = (FrameReg == ARM::SP) ? 8 : 5; Scale = 4; break; } default: assert(0 && "Unsupported addressing mode!"); abort(); break; } Offset += InstrOffs * Scale; assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); if (Offset < 0 && !isThumb) { Offset = -Offset; isSub = true; } // Common case: small offset, fits into instruction. MachineOperand &ImmOp = MI.getOperand(ImmIdx); int ImmedOffset = Offset / Scale; unsigned Mask = (1 << NumBits) - 1; if ((unsigned)Offset <= Mask * Scale) { // Replace the FrameIndex with sp MI.getOperand(i).ChangeToRegister(FrameReg, false); if (isSub) ImmedOffset |= 1 << NumBits; ImmOp.ChangeToImmediate(ImmedOffset); return; } bool isThumSpillRestore = Opcode == ARM::tRestore || Opcode == ARM::tSpill; if (AddrMode == ARMII::AddrModeTs) { // Thumb tLDRspi, tSTRspi. These will change to instructions that use // a different base register. NumBits = 5; Mask = (1 << NumBits) - 1; } // If this is a thumb spill / restore, we will be using a constpool load to // materialize the offset. if (AddrMode == ARMII::AddrModeTs && isThumSpillRestore) ImmOp.ChangeToImmediate(0); else { // Otherwise, it didn't fit. Pull in what we can to simplify the immed. ImmedOffset = ImmedOffset & Mask; if (isSub) ImmedOffset |= 1 << NumBits; ImmOp.ChangeToImmediate(ImmedOffset); Offset &= ~(Mask*Scale); } } // If we get here, the immediate doesn't fit into the instruction. We folded // as much as possible above, handle the rest, providing a register that is // SP+LargeImm. assert(Offset && "This code isn't needed if offset already handled!"); if (isThumb) { if (TII.isLoad(Opcode)) { // Use the destination register to materialize sp + offset. unsigned TmpReg = MI.getOperand(0).getReg(); bool UseRR = false; if (Opcode == ARM::tRestore) { if (FrameReg == ARM::SP) emitThumbRegPlusImmInReg(MBB, II, TmpReg, FrameReg,Offset,false,TII); else { emitLoadConstPool(MBB, II, TmpReg, Offset, TII, true); UseRR = true; } } else emitThumbRegPlusImmediate(MBB, II, TmpReg, FrameReg, Offset, TII); MI.setInstrDescriptor(TII.get(ARM::tLDR)); MI.getOperand(i).ChangeToRegister(TmpReg, false, false, true); if (UseRR) MI.addRegOperand(FrameReg, false); // Use [reg, reg] addrmode. else MI.addRegOperand(0, false); // tLDR has an extra register operand. } else if (TII.isStore(Opcode)) { // FIXME! This is horrific!!! We need register scavenging. // Our temporary workaround has marked r3 unavailable. Of course, r3 is // also a ABI register so it's possible that is is the register that is // being storing here. If that's the case, we do the following: // r12 = r2 // Use r2 to materialize sp + offset // str r3, r2 // r2 = r12 unsigned ValReg = MI.getOperand(0).getReg(); unsigned TmpReg = ARM::R3; bool UseRR = false; if (ValReg == ARM::R3) { BuildMI(MBB, II, TII.get(ARM::tMOVr), ARM::R12) .addReg(ARM::R2, false, false, true); TmpReg = ARM::R2; } if (TmpReg == ARM::R3 && AFI->isR3LiveIn()) BuildMI(MBB, II, TII.get(ARM::tMOVr), ARM::R12) .addReg(ARM::R3, false, false, true); if (Opcode == ARM::tSpill) { if (FrameReg == ARM::SP) emitThumbRegPlusImmInReg(MBB, II, TmpReg, FrameReg,Offset,false,TII); else { emitLoadConstPool(MBB, II, TmpReg, Offset, TII, true); UseRR = true; } } else emitThumbRegPlusImmediate(MBB, II, TmpReg, FrameReg, Offset, TII); MI.setInstrDescriptor(TII.get(ARM::tSTR)); MI.getOperand(i).ChangeToRegister(TmpReg, false, false, true); if (UseRR) MI.addRegOperand(FrameReg, false); // Use [reg, reg] addrmode. else MI.addRegOperand(0, false); // tSTR has an extra register operand. MachineBasicBlock::iterator NII = next(II); if (ValReg == ARM::R3) BuildMI(MBB, NII, TII.get(ARM::tMOVr), ARM::R2) .addReg(ARM::R12, false, false, true); if (TmpReg == ARM::R3 && AFI->isR3LiveIn()) BuildMI(MBB, NII, TII.get(ARM::tMOVr), ARM::R3) .addReg(ARM::R12, false, false, true); } else assert(false && "Unexpected opcode!"); } else { // Insert a set of r12 with the full address: r12 = sp + offset // If the offset we have is too large to fit into the instruction, we need // to form it with a series of ADDri's. Do this by taking 8-bit chunks // out of 'Offset'. unsigned ScratchReg = findScratchRegister(RS, &ARM::GPRRegClass, AFI); if (ScratchReg == 0) // No register is "free". Scavenge a register. ScratchReg = RS->scavengeRegister(&ARM::GPRRegClass, II); emitARMRegPlusImmediate(MBB, II, ScratchReg, FrameReg, isSub ? -Offset : Offset, TII); MI.getOperand(i).ChangeToRegister(ScratchReg, false, false, true); } } static unsigned estimateStackSize(MachineFunction &MF, MachineFrameInfo *MFI) { const MachineFrameInfo *FFI = MF.getFrameInfo(); int Offset = 0; for (int i = FFI->getObjectIndexBegin(); i != 0; ++i) { int FixedOff = -FFI->getObjectOffset(i); if (FixedOff > Offset) Offset = FixedOff; } for (unsigned i = 0, e = FFI->getObjectIndexEnd(); i != e; ++i) { Offset += FFI->getObjectSize(i); unsigned Align = FFI->getObjectAlignment(i); // Adjust to alignment boundary Offset = (Offset+Align-1)/Align*Align; } return (unsigned)Offset; } void ARMRegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF, RegScavenger *RS) const { // This tells PEI to spill the FP as if it is any other callee-save register // to take advantage the eliminateFrameIndex machinery. This also ensures it // is spilled in the order specified by getCalleeSavedRegs() to make it easier // to combine multiple loads / stores. bool CanEliminateFrame = true; bool CS1Spilled = false; bool LRSpilled = false; unsigned NumGPRSpills = 0; SmallVector UnspilledCS1GPRs; SmallVector UnspilledCS2GPRs; ARMFunctionInfo *AFI = MF.getInfo(); // Don't spill FP if the frame can be eliminated. This is determined // by scanning the callee-save registers to see if any is used. const unsigned *CSRegs = getCalleeSavedRegs(); const TargetRegisterClass* const *CSRegClasses = getCalleeSavedRegClasses(); for (unsigned i = 0; CSRegs[i]; ++i) { unsigned Reg = CSRegs[i]; bool Spilled = false; if (MF.isPhysRegUsed(Reg)) { AFI->setCSRegisterIsSpilled(Reg); Spilled = true; CanEliminateFrame = false; } else { // Check alias registers too. for (const unsigned *Aliases = getAliasSet(Reg); *Aliases; ++Aliases) { if (MF.isPhysRegUsed(*Aliases)) { Spilled = true; CanEliminateFrame = false; } } } if (CSRegClasses[i] == &ARM::GPRRegClass) { if (Spilled) { NumGPRSpills++; if (!STI.isTargetDarwin()) { if (Reg == ARM::LR) LRSpilled = true; else CS1Spilled = true; continue; } // Keep track if LR and any of R4, R5, R6, and R7 is spilled. switch (Reg) { case ARM::LR: LRSpilled = true; // Fallthrough case ARM::R4: case ARM::R5: case ARM::R6: case ARM::R7: CS1Spilled = true; break; default: break; } } else { if (!STI.isTargetDarwin()) { UnspilledCS1GPRs.push_back(Reg); continue; } switch (Reg) { case ARM::R4: case ARM::R5: case ARM::R6: case ARM::R7: case ARM::LR: UnspilledCS1GPRs.push_back(Reg); break; default: UnspilledCS2GPRs.push_back(Reg); break; } } } } bool ForceLRSpill = false; if (!LRSpilled && AFI->isThumbFunction()) { unsigned FnSize = ARM::GetFunctionSize(MF); // Force LR to be spilled if the Thumb function size is > 2048. This enables // use of BL to implement far jump. If it turns out that it's not needed // then the branch fix up path will undo it. if (FnSize >= (1 << 11)) { CanEliminateFrame = false; ForceLRSpill = true; } } bool ExtraCSSpill = false; if (!CanEliminateFrame || hasFP(MF)) { AFI->setHasStackFrame(true); // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. // Spill LR as well so we can fold BX_RET to the registers restore (LDM). if (!LRSpilled && CS1Spilled) { MF.changePhyRegUsed(ARM::LR, true); AFI->setCSRegisterIsSpilled(ARM::LR); NumGPRSpills++; UnspilledCS1GPRs.erase(std::find(UnspilledCS1GPRs.begin(), UnspilledCS1GPRs.end(), (unsigned)ARM::LR)); ForceLRSpill = false; ExtraCSSpill = true; } // Darwin ABI requires FP to point to the stack slot that contains the // previous FP. if (STI.isTargetDarwin() || hasFP(MF)) { MF.changePhyRegUsed(FramePtr, true); NumGPRSpills++; } // If stack and double are 8-byte aligned and we are spilling an odd number // of GPRs. Spill one extra callee save GPR so we won't have to pad between // the integer and double callee save areas. unsigned TargetAlign = MF.getTarget().getFrameInfo()->getStackAlignment(); if (TargetAlign == 8 && (NumGPRSpills & 1)) { if (CS1Spilled && !UnspilledCS1GPRs.empty()) { unsigned Reg = UnspilledCS1GPRs.front(); MF.changePhyRegUsed(Reg, true); AFI->setCSRegisterIsSpilled(Reg); if (!isReservedReg(MF, Reg)) ExtraCSSpill = true; } else if (!UnspilledCS2GPRs.empty()) { unsigned Reg = UnspilledCS2GPRs.front(); MF.changePhyRegUsed(Reg, true); AFI->setCSRegisterIsSpilled(Reg); if (!isReservedReg(MF, Reg)) ExtraCSSpill = true; } } // Estimate if we might need to scavenge a register at some point in order // to materialize a stack offset. If so, either spill one additiona // callee-saved register or reserve a special spill slot to facilitate // register scavenging. if (RS && !ExtraCSSpill && !AFI->isThumbFunction()) { MachineFrameInfo *MFI = MF.getFrameInfo(); unsigned Size = estimateStackSize(MF, MFI); unsigned Limit = (1 << 12) - 1; for (MachineFunction::iterator BB = MF.begin(),E = MF.end();BB != E; ++BB) for (MachineBasicBlock::iterator I= BB->begin(); I != BB->end(); ++I) { for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) if (I->getOperand(i).isFrameIndex()) { unsigned Opcode = I->getOpcode(); const TargetInstrDescriptor &Desc = TII.get(Opcode); unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); if (AddrMode == ARMII::AddrMode3) { Limit = (1 << 8) - 1; goto DoneEstimating; } else if (AddrMode == ARMII::AddrMode5) { Limit = ((1 << 8) - 1) * 4; goto DoneEstimating; } } } DoneEstimating: if (Size >= Limit) { // If any non-reserved CS register isn't spilled, just spill one or two // extra. That should take care of it! unsigned NumExtras = TargetAlign / 4; SmallVector Extras; while (NumExtras && !UnspilledCS1GPRs.empty()) { unsigned Reg = UnspilledCS1GPRs.back(); UnspilledCS1GPRs.pop_back(); if (!isReservedReg(MF, Reg)) { Extras.push_back(Reg); NumExtras--; } } while (NumExtras && !UnspilledCS2GPRs.empty()) { unsigned Reg = UnspilledCS2GPRs.back(); UnspilledCS2GPRs.pop_back(); if (!isReservedReg(MF, Reg)) { Extras.push_back(Reg); NumExtras--; } } if (Extras.size() && NumExtras == 0) { for (unsigned i = 0, e = Extras.size(); i != e; ++i) { MF.changePhyRegUsed(Extras[i], true); AFI->setCSRegisterIsSpilled(Extras[i]); } } else { // Reserve a slot closest to SP or frame pointer. const TargetRegisterClass *RC = &ARM::GPRRegClass; RS->setScavengingFrameIndex(MFI->CreateStackObject(RC->getSize(), RC->getAlignment())); } } } } if (ForceLRSpill) { MF.changePhyRegUsed(ARM::LR, true); AFI->setCSRegisterIsSpilled(ARM::LR); AFI->setLRIsSpilledForFarJump(true); } } /// Move iterator pass the next bunch of callee save load / store ops for /// the particular spill area (1: integer area 1, 2: integer area 2, /// 3: fp area, 0: don't care). static void movePastCSLoadStoreOps(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, int Opc, unsigned Area, const ARMSubtarget &STI) { while (MBBI != MBB.end() && MBBI->getOpcode() == Opc && MBBI->getOperand(1).isFrameIndex()) { if (Area != 0) { bool Done = false; unsigned Category = 0; switch (MBBI->getOperand(0).getReg()) { case ARM::R4: case ARM::R5: case ARM::R6: case ARM::R7: case ARM::LR: Category = 1; break; case ARM::R8: case ARM::R9: case ARM::R10: case ARM::R11: Category = STI.isTargetDarwin() ? 2 : 1; break; case ARM::D8: case ARM::D9: case ARM::D10: case ARM::D11: case ARM::D12: case ARM::D13: case ARM::D14: case ARM::D15: Category = 3; break; default: Done = true; break; } if (Done || Category != Area) break; } ++MBBI; } } void ARMRegisterInfo::emitPrologue(MachineFunction &MF) const { MachineBasicBlock &MBB = MF.front(); MachineBasicBlock::iterator MBBI = MBB.begin(); MachineFrameInfo *MFI = MF.getFrameInfo(); ARMFunctionInfo *AFI = MF.getInfo(); bool isThumb = AFI->isThumbFunction(); unsigned VARegSaveSize = AFI->getVarArgsRegSaveSize(); unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment(); unsigned NumBytes = MFI->getStackSize(); const std::vector &CSI = MFI->getCalleeSavedInfo(); if (isThumb) { // Check if R3 is live in. It might have to be used as a scratch register. for (MachineFunction::livein_iterator I=MF.livein_begin(),E=MF.livein_end(); I != E; ++I) { if ((*I).first == ARM::R3) { AFI->setR3IsLiveIn(true); break; } } // Thumb add/sub sp, imm8 instructions implicitly multiply the offset by 4. NumBytes = (NumBytes + 3) & ~3; MFI->setStackSize(NumBytes); } // Determine the sizes of each callee-save spill areas and record which frame // belongs to which callee-save spill areas. unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; int FramePtrSpillFI = 0; if (VARegSaveSize) emitSPUpdate(MBB, MBBI, -VARegSaveSize, isThumb, TII); if (!AFI->hasStackFrame()) { if (NumBytes != 0) emitSPUpdate(MBB, MBBI, -NumBytes, isThumb, TII); return; } for (unsigned i = 0, e = CSI.size(); i != e; ++i) { unsigned Reg = CSI[i].getReg(); int FI = CSI[i].getFrameIdx(); switch (Reg) { case ARM::R4: case ARM::R5: case ARM::R6: case ARM::R7: case ARM::LR: if (Reg == FramePtr) FramePtrSpillFI = FI; AFI->addGPRCalleeSavedArea1Frame(FI); GPRCS1Size += 4; break; case ARM::R8: case ARM::R9: case ARM::R10: case ARM::R11: if (Reg == FramePtr) FramePtrSpillFI = FI; if (STI.isTargetDarwin()) { AFI->addGPRCalleeSavedArea2Frame(FI); GPRCS2Size += 4; } else { AFI->addGPRCalleeSavedArea1Frame(FI); GPRCS1Size += 4; } break; default: AFI->addDPRCalleeSavedAreaFrame(FI); DPRCSSize += 8; } } if (Align == 8 && (GPRCS1Size & 7) != 0) // Pad CS1 to ensure proper alignment. GPRCS1Size += 4; if (!isThumb) { // Build the new SUBri to adjust SP for integer callee-save spill area 1. emitSPUpdate(MBB, MBBI, -GPRCS1Size, isThumb, TII); movePastCSLoadStoreOps(MBB, MBBI, ARM::STR, 1, STI); } else if (MBBI != MBB.end() && MBBI->getOpcode() == ARM::tPUSH) ++MBBI; // Darwin ABI requires FP to point to the stack slot that contains the // previous FP. if (STI.isTargetDarwin() || hasFP(MF)) BuildMI(MBB, MBBI, TII.get(isThumb ? ARM::tADDrSPi : ARM::ADDri), FramePtr) .addFrameIndex(FramePtrSpillFI).addImm(0); if (!isThumb) { // Build the new SUBri to adjust SP for integer callee-save spill area 2. emitSPUpdate(MBB, MBBI, -GPRCS2Size, false, TII); // Build the new SUBri to adjust SP for FP callee-save spill area. movePastCSLoadStoreOps(MBB, MBBI, ARM::STR, 2, STI); emitSPUpdate(MBB, MBBI, -DPRCSSize, false, TII); } // Determine starting offsets of spill areas. unsigned DPRCSOffset = NumBytes - (GPRCS1Size + GPRCS2Size + DPRCSSize); unsigned GPRCS2Offset = DPRCSOffset + DPRCSSize; unsigned GPRCS1Offset = GPRCS2Offset + GPRCS2Size; AFI->setFramePtrSpillOffset(MFI->getObjectOffset(FramePtrSpillFI) + NumBytes); AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); NumBytes = DPRCSOffset; if (NumBytes) { // Insert it after all the callee-save spills. if (!isThumb) movePastCSLoadStoreOps(MBB, MBBI, ARM::FSTD, 3, STI); emitSPUpdate(MBB, MBBI, -NumBytes, isThumb, TII); } AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); AFI->setDPRCalleeSavedAreaSize(DPRCSSize); } static bool isCalleeSavedRegister(unsigned Reg, const unsigned *CSRegs) { for (unsigned i = 0; CSRegs[i]; ++i) if (Reg == CSRegs[i]) return true; return false; } static bool isCSRestore(MachineInstr *MI, const unsigned *CSRegs) { return ((MI->getOpcode() == ARM::FLDD || MI->getOpcode() == ARM::LDR || MI->getOpcode() == ARM::tRestore) && MI->getOperand(1).isFrameIndex() && isCalleeSavedRegister(MI->getOperand(0).getReg(), CSRegs)); } void ARMRegisterInfo::emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const { MachineBasicBlock::iterator MBBI = prior(MBB.end()); assert((MBBI->getOpcode() == ARM::BX_RET || MBBI->getOpcode() == ARM::tBX_RET || MBBI->getOpcode() == ARM::tPOP_RET) && "Can only insert epilog into returning blocks"); MachineFrameInfo *MFI = MF.getFrameInfo(); ARMFunctionInfo *AFI = MF.getInfo(); bool isThumb = AFI->isThumbFunction(); unsigned VARegSaveSize = AFI->getVarArgsRegSaveSize(); int NumBytes = (int)MFI->getStackSize(); if (!AFI->hasStackFrame()) { if (NumBytes != 0) emitSPUpdate(MBB, MBBI, NumBytes, isThumb, TII); } else { // Unwind MBBI to point to first LDR / FLDD. const unsigned *CSRegs = getCalleeSavedRegs(); if (MBBI != MBB.begin()) { do --MBBI; while (MBBI != MBB.begin() && isCSRestore(MBBI, CSRegs)); if (!isCSRestore(MBBI, CSRegs)) ++MBBI; } // Move SP to start of FP callee save spill area. NumBytes -= (AFI->getGPRCalleeSavedArea1Size() + AFI->getGPRCalleeSavedArea2Size() + AFI->getDPRCalleeSavedAreaSize()); if (isThumb) { if (hasFP(MF)) { NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; // Reset SP based on frame pointer only if the stack frame extends beyond // frame pointer stack slot or target is ELF and the function has FP. if (NumBytes) emitThumbRegPlusImmediate(MBB, MBBI, ARM::SP, FramePtr, -NumBytes, TII); else BuildMI(MBB, MBBI, TII.get(ARM::tMOVr), ARM::SP).addReg(FramePtr); } else { if (MBBI->getOpcode() == ARM::tBX_RET && &MBB.front() != MBBI && prior(MBBI)->getOpcode() == ARM::tPOP) { MachineBasicBlock::iterator PMBBI = prior(MBBI); emitSPUpdate(MBB, PMBBI, NumBytes, isThumb, TII); } else emitSPUpdate(MBB, MBBI, NumBytes, isThumb, TII); } } else { // Darwin ABI requires FP to point to the stack slot that contains the // previous FP. if ((STI.isTargetDarwin() && NumBytes) || hasFP(MF)) { NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; // Reset SP based on frame pointer only if the stack frame extends beyond // frame pointer stack slot or target is ELF and the function has FP. if (AFI->getGPRCalleeSavedArea2Size() || AFI->getDPRCalleeSavedAreaSize() || AFI->getDPRCalleeSavedAreaOffset()|| hasFP(MF)) if (NumBytes) BuildMI(MBB, MBBI, TII.get(ARM::SUBri), ARM::SP).addReg(FramePtr) .addImm(NumBytes); else BuildMI(MBB, MBBI, TII.get(ARM::MOVr), ARM::SP).addReg(FramePtr); } else if (NumBytes) { emitSPUpdate(MBB, MBBI, NumBytes, false, TII); } // Move SP to start of integer callee save spill area 2. movePastCSLoadStoreOps(MBB, MBBI, ARM::FLDD, 3, STI); emitSPUpdate(MBB, MBBI, AFI->getDPRCalleeSavedAreaSize(), false, TII); // Move SP to start of integer callee save spill area 1. movePastCSLoadStoreOps(MBB, MBBI, ARM::LDR, 2, STI); emitSPUpdate(MBB, MBBI, AFI->getGPRCalleeSavedArea2Size(), false, TII); // Move SP to SP upon entry to the function. movePastCSLoadStoreOps(MBB, MBBI, ARM::LDR, 1, STI); emitSPUpdate(MBB, MBBI, AFI->getGPRCalleeSavedArea1Size(), false, TII); } } if (VARegSaveSize) { if (isThumb) // Epilogue for vararg functions: pop LR to R3 and branch off it. // FIXME: Verify this is still ok when R3 is no longer being reserved. BuildMI(MBB, MBBI, TII.get(ARM::tPOP)).addReg(ARM::R3); emitSPUpdate(MBB, MBBI, VARegSaveSize, isThumb, TII); if (isThumb) { BuildMI(MBB, MBBI, TII.get(ARM::tBX_RET_vararg)).addReg(ARM::R3); MBB.erase(MBBI); } } } unsigned ARMRegisterInfo::getRARegister() const { return ARM::LR; } unsigned ARMRegisterInfo::getFrameRegister(MachineFunction &MF) const { return STI.useThumbBacktraces() ? ARM::R7 : ARM::R11; } unsigned ARMRegisterInfo::getEHExceptionRegister() const { assert(0 && "What is the exception register"); return 0; } unsigned ARMRegisterInfo::getEHHandlerRegister() const { assert(0 && "What is the exception handler register"); return 0; } #include "ARMGenRegisterInfo.inc"