//=- ARMScheduleSwift.td - Swift Scheduling Definitions -*- tablegen -*----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the itinerary class data for the Swift processor.. // //===----------------------------------------------------------------------===// // ===---------------------------------------------------------------------===// // This section contains legacy support for itineraries. This is // required until SD and PostRA schedulers are replaced by MachineScheduler. def SW_DIS0 : FuncUnit; def SW_DIS1 : FuncUnit; def SW_DIS2 : FuncUnit; def SW_ALU0 : FuncUnit; def SW_ALU1 : FuncUnit; def SW_LS : FuncUnit; def SW_IDIV : FuncUnit; def SW_FDIV : FuncUnit; // FIXME: Need bypasses. // FIXME: Model the multiple stages of IIC_iMOVix2, IIC_iMOVix2addpc, and // IIC_iMOVix2ld better. // FIXME: Model the special immediate shifts that are not microcoded. // FIXME: Do we need to model the fact that uses of r15 in a micro-op force it // to issue on pipe 1? // FIXME: Model the pipelined behavior of CMP / TST instructions. // FIXME: Better model the microcode stages of multiply instructions, especially // conditional variants. // FIXME: Add preload instruction when it is documented. // FIXME: Model non-pipelined nature of FP div / sqrt unit. def SwiftItineraries : ProcessorItineraries< [SW_DIS0, SW_DIS1, SW_DIS2, SW_ALU0, SW_ALU1, SW_LS, SW_IDIV, SW_FDIV], [], [ // // Move instructions, unconditional InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, InstrItinData, InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2]>, InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>, InstrStage<1, [SW_ALU0, SW_ALU1]>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [3]>, InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>, InstrStage<1, [SW_ALU0, SW_ALU1]>, InstrStage<1, [SW_LS]>], [5]>, // // MVN instructions InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, // // No operand cycles InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>]>, // // Binary Instructions that produce a result InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1]>, InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1, 1]>, InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2, 1, 1]>, InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2, 1, 1]>, InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2, 1, 1, 1]>, // // Bitwise Instructions that produce a result InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1]>, InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1, 1]>, InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2, 1, 1]>, InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2, 1, 1, 1]>, // // Unary Instructions that produce a result // CLZ, RBIT, etc. InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1]>, // BFC, BFI, UBFX, SBFX InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2, 1]>, // // Zero and sign extension instructions InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1]>, InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1, 1]>, InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1, 1, 1]>, // // Compare instructions InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1]>, InstrItinData, InstrStage<2, [SW_ALU0, SW_ALU1]>], [1, 1]>, InstrItinData, InstrStage<2, [SW_ALU0, SW_ALU1]>], [1, 1, 1]>, // // Test instructions InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1]>, InstrItinData, InstrStage<2, [SW_ALU0, SW_ALU1]>], [1, 1]>, InstrItinData, InstrStage<2, [SW_ALU0, SW_ALU1]>], [1, 1, 1]>, // // Move instructions, conditional // FIXME: Correctly model the extra input dep on the destination. InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1]>, InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1, 1]>, InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2, 1, 1]>, InstrItinData, InstrStage<1, [SW_DIS0, SW_DIS1, SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2]>, // Integer multiply pipeline // InstrItinData, InstrStage<1, [SW_ALU0]>], [3, 1, 1]>, InstrItinData, InstrStage<1, [SW_ALU0]>], [3, 1, 1, 1]>, InstrItinData, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, InstrItinData, InstrStage<1, [SW_ALU0]>], [4, 1, 1, 1]>, InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU0], 1>, InstrStage<1, [SW_ALU0], 3>, InstrStage<1, [SW_ALU0]>], [5, 5, 1, 1]>, InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU0], 1>, InstrStage<1, [SW_ALU0], 1>, InstrStage<1, [SW_ALU0, SW_ALU1], 3>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [5, 6, 1, 1]>, // // Integer divide InstrItinData, InstrStage<1, [SW_ALU0], 0>, InstrStage<14, [SW_IDIV]>], [14, 1, 1]>, // Integer load pipeline // FIXME: The timings are some rough approximations // // Immediate offset InstrItinData, InstrStage<1, [SW_LS]>], [3, 1]>, InstrItinData, InstrStage<1, [SW_LS]>], [3, 1]>, InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_LS], 1>, InstrStage<1, [SW_LS]>], [3, 4, 1]>, // // Register offset InstrItinData, InstrStage<1, [SW_LS]>], [3, 1, 1]>, InstrItinData, InstrStage<1, [SW_LS]>], [3, 1, 1]>, InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_LS], 1>, InstrStage<1, [SW_LS], 3>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [3, 4, 1, 1]>, // // Scaled register offset InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 2>, InstrStage<1, [SW_LS]>], [5, 1, 1]>, InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 2>, InstrStage<1, [SW_LS]>], [5, 1, 1]>, // // Immediate offset with update InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [3, 1, 1]>, InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [3, 1, 1]>, // // Register offset with update InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0], 1>, InstrStage<1, [SW_LS]>], [3, 1, 1, 1]>, InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0], 1>, InstrStage<1, [SW_LS]>], [3, 1, 1, 1]>, InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 0>, InstrStage<1, [SW_LS], 3>, InstrStage<1, [SW_LS], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [3, 4, 1, 1]>, // // Scaled register offset with update InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 2>, InstrStage<1, [SW_LS], 3>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [5, 3, 1, 1]>, InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 2>, InstrStage<1, [SW_LS], 0>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [5, 3, 1, 1]>, // // Load multiple, def is the 5th operand. // FIXME: This assumes 3 to 4 registers. InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [1, 1, 1, 1, 3], [], -1>, // dynamic uops // // Load multiple + update, defs are the 1st and 5th operands. InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 0>, InstrStage<1, [SW_LS], 3>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2, 1, 1, 1, 3], [], -1>, // dynamic uops // // Load multiple plus branch InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [1, 1, 1, 1, 3], [], -1>, // dynamic uops // // Pop, def is the 3rd operand. InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [1, 1, 3], [], -1>, // dynamic uops // // Pop + branch, def is the 3rd operand. InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [1, 1, 3], [], -1>, // dynamic uops // // iLoadi + iALUr for t2LDRpci_pic. InstrItinData, InstrStage<1, [SW_LS], 3>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [4, 1]>, // Integer store pipeline /// // Immediate offset InstrItinData, InstrStage<1, [SW_LS]>], [1, 1]>, InstrItinData, InstrStage<1, [SW_LS]>], [1, 1]>, InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_LS], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [1, 1]>, // // Register offset InstrItinData, InstrStage<1, [SW_LS]>], [1, 1, 1]>, InstrItinData, InstrStage<1, [SW_LS]>], [1, 1, 1]>, InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_LS], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [1, 1, 1]>, // // Scaled register offset InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 2>, InstrStage<1, [SW_LS]>], [1, 1, 1]>, InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 2>, InstrStage<1, [SW_LS]>], [1, 1, 1]>, // // Immediate offset with update InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [1, 1, 1]>, InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [1, 1, 1]>, // // Register offset with update InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [1, 1, 1, 1]>, InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [1, 1, 1, 1]>, InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [1, 1, 1, 1]>, // // Scaled register offset with update InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 2>, InstrStage<1, [SW_LS], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>], [3, 1, 1, 1]>, InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 2>, InstrStage<1, [SW_LS], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>], [3, 1, 1, 1]>, // // Store multiple InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS], 1>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS], 1>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [], [], -1>, // dynamic uops // // Store multiple + update InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS], 1>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS], 1>, InstrStage<1, [SW_ALU0, SW_ALU1], 1>, InstrStage<1, [SW_LS]>], [2], [], -1>, // dynamic uops // // Preload InstrItinData], [1, 1]>, // Branch // // no delay slots, so the latency of a branch is unimportant InstrItinData]>, // FP Special Register to Integer Register File Move InstrItinData, InstrStage<1, [SW_ALU0, SW_ALU1]>], [1]>, // // Single-precision FP Unary // // Most floating-point moves get issued on ALU0. InstrItinData, InstrStage<1, [SW_ALU0]>], [2, 1]>, // // Double-precision FP Unary InstrItinData, InstrStage<1, [SW_ALU0]>], [2, 1]>, // // Single-precision FP Compare InstrItinData, InstrStage<1, [SW_ALU0]>], [1, 1]>, // // Double-precision FP Compare InstrItinData, InstrStage<1, [SW_ALU0]>], [1, 1]>, // // Single to Double FP Convert InstrItinData, InstrStage<1, [SW_ALU1]>], [4, 1]>, // // Double to Single FP Convert InstrItinData, InstrStage<1, [SW_ALU1]>], [4, 1]>, // // Single to Half FP Convert InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU1], 4>, InstrStage<1, [SW_ALU1]>], [6, 1]>, // // Half to Single FP Convert InstrItinData, InstrStage<1, [SW_ALU1]>], [4, 1]>, // // Single-Precision FP to Integer Convert InstrItinData, InstrStage<1, [SW_ALU1]>], [4, 1]>, // // Double-Precision FP to Integer Convert InstrItinData, InstrStage<1, [SW_ALU1]>], [4, 1]>, // // Integer to Single-Precision FP Convert InstrItinData, InstrStage<1, [SW_ALU1]>], [4, 1]>, // // Integer to Double-Precision FP Convert InstrItinData, InstrStage<1, [SW_ALU1]>], [4, 1]>, // // Single-precision FP ALU InstrItinData, InstrStage<1, [SW_ALU0]>], [2, 1, 1]>, // // Double-precision FP ALU InstrItinData, InstrStage<1, [SW_ALU0]>], [2, 1, 1]>, // // Single-precision FP Multiply InstrItinData, InstrStage<1, [SW_ALU1]>], [4, 1, 1]>, // // Double-precision FP Multiply InstrItinData, InstrStage<1, [SW_ALU1]>], [6, 1, 1]>, // // Single-precision FP MAC InstrItinData, InstrStage<1, [SW_ALU1]>], [8, 1, 1]>, // // Double-precision FP MAC InstrItinData, InstrStage<1, [SW_ALU1]>], [12, 1, 1]>, // // Single-precision Fused FP MAC InstrItinData, InstrStage<1, [SW_ALU1]>], [8, 1, 1]>, // // Double-precision Fused FP MAC InstrItinData, InstrStage<1, [SW_ALU1]>], [12, 1, 1]>, // // Single-precision FP DIV InstrItinData, InstrStage<1, [SW_ALU1], 0>, InstrStage<15, [SW_FDIV]>], [17, 1, 1]>, // // Double-precision FP DIV InstrItinData, InstrStage<1, [SW_ALU1], 0>, InstrStage<30, [SW_FDIV]>], [32, 1, 1]>, // // Single-precision FP SQRT InstrItinData, InstrStage<1, [SW_ALU1], 0>, InstrStage<15, [SW_FDIV]>], [17, 1]>, // // Double-precision FP SQRT InstrItinData, InstrStage<1, [SW_ALU1], 0>, InstrStage<30, [SW_FDIV]>], [32, 1, 1]>, // // Integer to Single-precision Move InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_LS], 4>, InstrStage<1, [SW_ALU0]>], [6, 1]>, // // Integer to Double-precision Move InstrItinData, InstrStage<1, [SW_LS]>], [4, 1]>, // // Single-precision to Integer Move InstrItinData, InstrStage<1, [SW_LS]>], [3, 1]>, // // Double-precision to Integer Move InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_LS], 3>, InstrStage<1, [SW_LS]>], [3, 4, 1]>, // // Single-precision FP Load InstrItinData, InstrStage<1, [SW_LS]>], [4, 1]>, // // Double-precision FP Load InstrItinData, InstrStage<1, [SW_LS]>], [4, 1]>, // // FP Load Multiple // FIXME: Assumes a single Q register. InstrItinData, InstrStage<1, [SW_LS]>], [1, 1, 1, 4], [], -1>, // dynamic uops // // FP Load Multiple + update // FIXME: Assumes a single Q register. InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_LS], 4>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2, 1, 1, 1, 4], [], -1>, // dynamic uops // // Single-precision FP Store InstrItinData, InstrStage<1, [SW_LS]>], [1, 1]>, // // Double-precision FP Store InstrItinData, InstrStage<1, [SW_LS]>], [1, 1]>, // // FP Store Multiple // FIXME: Assumes a single Q register. InstrItinData, InstrStage<1, [SW_LS]>], [1, 1, 1], [], -1>, // dynamic uops // // FP Store Multiple + update // FIXME: Assumes a single Q register. InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_LS], 4>, InstrStage<1, [SW_ALU0, SW_ALU1]>], [2, 1, 1, 1], [], -1>, // dynamic uops // NEON // // Double-register Integer Unary InstrItinData, InstrStage<1, [SW_ALU0]>], [4, 1]>, // // Quad-register Integer Unary InstrItinData, InstrStage<1, [SW_ALU0]>], [4, 1]>, // // Double-register Integer Q-Unary InstrItinData, InstrStage<1, [SW_ALU0]>], [4, 1]>, // // Quad-register Integer CountQ-Unary InstrItinData, InstrStage<1, [SW_ALU0]>], [4, 1]>, // // Double-register Integer Binary InstrItinData, InstrStage<1, [SW_ALU0]>], [2, 1, 1]>, // // Quad-register Integer Binary InstrItinData, InstrStage<1, [SW_ALU0]>], [2, 1, 1]>, // // Double-register Integer Subtract InstrItinData, InstrStage<1, [SW_ALU0]>], [2, 1, 1]>, // // Quad-register Integer Subtract InstrItinData, InstrStage<1, [SW_ALU0]>], [2, 1, 1]>, // // Double-register Integer Shift InstrItinData, InstrStage<1, [SW_ALU0]>], [2, 1, 1]>, // // Quad-register Integer Shift InstrItinData, InstrStage<1, [SW_ALU0]>], [2, 1, 1]>, // // Double-register Integer Shift (4 cycle) InstrItinData, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, // // Quad-register Integer Shift (4 cycle) InstrItinData, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, // // Double-register Integer Binary (4 cycle) InstrItinData, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, // // Quad-register Integer Binary (4 cycle) InstrItinData, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, // // Double-register Integer Subtract (4 cycle) InstrItinData, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, // // Quad-register Integer Subtract (4 cycle) InstrItinData, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, // // Double-register Integer Count InstrItinData, InstrStage<1, [SW_ALU0]>], [2, 1, 1]>, // // Quad-register Integer Count InstrItinData, InstrStage<1, [SW_ALU0]>], [2, 1, 1]>, // // Double-register Absolute Difference and Accumulate InstrItinData, InstrStage<1, [SW_ALU0]>], [4, 1, 1, 1]>, // // Quad-register Absolute Difference and Accumulate InstrItinData, InstrStage<1, [SW_ALU0]>], [4, 1, 1, 1]>, // // Double-register Integer Pair Add Long InstrItinData, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, // // Quad-register Integer Pair Add Long InstrItinData, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, // // Double-register Integer Multiply (.8, .16) InstrItinData, InstrStage<1, [SW_ALU1]>], [4, 1, 1]>, // // Quad-register Integer Multiply (.8, .16) InstrItinData, InstrStage<1, [SW_ALU1]>], [4, 1, 1]>, // // Double-register Integer Multiply (.32) InstrItinData, InstrStage<1, [SW_ALU1]>], [4, 1, 1]>, // // Quad-register Integer Multiply (.32) InstrItinData, InstrStage<1, [SW_ALU1]>], [4, 1, 1]>, // // Double-register Integer Multiply-Accumulate (.8, .16) InstrItinData, InstrStage<1, [SW_ALU1]>], [4, 1, 1, 1]>, // // Double-register Integer Multiply-Accumulate (.32) InstrItinData, InstrStage<1, [SW_ALU1]>], [4, 1, 1, 1]>, // // Quad-register Integer Multiply-Accumulate (.8, .16) InstrItinData, InstrStage<1, [SW_ALU1]>], [4, 1, 1, 1]>, // // Quad-register Integer Multiply-Accumulate (.32) InstrItinData, InstrStage<1, [SW_ALU1]>], [4, 1, 1, 1]>, // // Move InstrItinData, InstrStage<1, [SW_ALU0]>], [2, 1]>, // // Move Immediate InstrItinData, InstrStage<1, [SW_ALU0]>], [2]>, // // Double-register Permute Move InstrItinData, InstrStage<1, [SW_ALU1]>], [2, 1]>, // // Quad-register Permute Move InstrItinData, InstrStage<1, [SW_ALU1]>], [2, 1]>, // // Integer to Single-precision Move InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_LS], 4>, InstrStage<1, [SW_ALU0]>], [6, 1]>, // // Integer to Double-precision Move InstrItinData, InstrStage<1, [SW_LS]>], [4, 1, 1]>, // // Single-precision to Integer Move InstrItinData, InstrStage<1, [SW_LS]>], [3, 1]>, // // Double-precision to Integer Move InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_LS], 3>, InstrStage<1, [SW_LS]>], [3, 4, 1]>, // // Integer to Lane Move // FIXME: I think this is correct, but it is not clear from the tuning guide. InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_LS], 4>, InstrStage<1, [SW_ALU0]>], [6, 1]>, // // Vector narrow move InstrItinData, InstrStage<1, [SW_ALU1]>], [2, 1]>, // // Double-register FP Unary // FIXME: VRECPE / VRSQRTE has a longer latency than VABS, which is used here, // and they issue on a different pipeline. InstrItinData, InstrStage<1, [SW_ALU0]>], [2, 1]>, // // Quad-register FP Unary // FIXME: VRECPE / VRSQRTE has a longer latency than VABS, which is used here, // and they issue on a different pipeline. InstrItinData, InstrStage<1, [SW_ALU0]>], [2, 1]>, // // Double-register FP Binary // FIXME: We're using this itin for many instructions. InstrItinData, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, // // VPADD, etc. InstrItinData, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, // // Double-register FP VMUL InstrItinData, InstrStage<1, [SW_ALU1]>], [4, 1, 1]>, // // Quad-register FP Binary InstrItinData, InstrStage<1, [SW_ALU0]>], [4, 1, 1]>, // // Quad-register FP VMUL InstrItinData, InstrStage<1, [SW_ALU1]>], [4, 1, 1]>, // // Double-register FP Multiple-Accumulate InstrItinData, InstrStage<1, [SW_ALU1]>], [8, 1, 1]>, // // Quad-register FP Multiple-Accumulate InstrItinData, InstrStage<1, [SW_ALU1]>], [8, 1, 1]>, // // Double-register Fused FP Multiple-Accumulate InstrItinData, InstrStage<1, [SW_ALU1]>], [8, 1, 1]>, // // Quad-register FusedF P Multiple-Accumulate InstrItinData, InstrStage<1, [SW_ALU1]>], [8, 1, 1]>, // // Double-register Reciprical Step InstrItinData, InstrStage<1, [SW_ALU1]>], [8, 1, 1]>, // // Quad-register Reciprical Step InstrItinData, InstrStage<1, [SW_ALU1]>], [8, 1, 1]>, // // Double-register Permute // FIXME: The latencies are unclear from the documentation. InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1]>], [3, 4, 3, 4]>, // // Quad-register Permute // FIXME: The latencies are unclear from the documentation. InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1]>], [3, 4, 3, 4]>, // // Quad-register Permute (3 cycle issue on A9) InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1]>], [3, 4, 3, 4]>, // // Double-register VEXT InstrItinData, InstrStage<1, [SW_ALU1]>], [2, 1, 1]>, // // Quad-register VEXT InstrItinData, InstrStage<1, [SW_ALU1]>], [2, 1, 1]>, // // VTB InstrItinData, InstrStage<1, [SW_ALU1]>], [2, 1, 1]>, InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1]>], [4, 1, 3, 3]>, InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1]>], [6, 1, 3, 5, 5]>, InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1]>], [8, 1, 3, 5, 7, 7]>, // // VTBX InstrItinData, InstrStage<1, [SW_ALU1]>], [2, 1, 1]>, InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1]>], [4, 1, 3, 3]>, InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1]>], [6, 1, 3, 5, 5]>, InstrItinData, InstrStage<1, [SW_DIS1], 0>, InstrStage<1, [SW_DIS2], 0>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1], 2>, InstrStage<1, [SW_ALU1]>], [8, 1, 3, 5, 7, 7]> ]>; // ===---------------------------------------------------------------------===// // This following definitions describe the simple machine model which // will replace itineraries. // Swift machine model for scheduling and other instruction cost heuristics. def SwiftModel : SchedMachineModel { let IssueWidth = 3; // 3 micro-ops are dispatched per cycle. let MinLatency = 0; // Data dependencies are allowed within dispatch groups. let LoadLatency = 3; let MispredictPenalty = 14; // A branch direction mispredict. let Itineraries = SwiftItineraries; } // Swift predicates. def IsFastImmShiftSwiftPred : SchedPredicate<[{TII->isSwiftFastImmShift(MI)}]>; // Swift resource mapping. let SchedModel = SwiftModel in { // Processor resources. def SwiftUnitP01 : ProcResource<2>; // ALU unit. def SwiftUnitP0 : ProcResource<1> { let Super = SwiftUnitP01; } // Mul unit. def SwiftUnitP1 : ProcResource<1> { let Super = SwiftUnitP01; } // Br unit. def SwiftUnitP2 : ProcResource<1>; // LS unit. def SwiftUnitDiv : ProcResource<1>; // Generic resource requirements. def SwiftWriteP01TwoCycle : SchedWriteRes<[SwiftUnitP01]> { let Latency = 2; } def SwiftWriteP01ThreeCycleTwoUops : SchedWriteRes<[SwiftUnitP01, SwiftUnitP01]> { let Latency = 3; let NumMicroOps = 2; } def SwiftWriteP0ThreeCycleThreeUops : SchedWriteRes<[SwiftUnitP0]> { let Latency = 3; let NumMicroOps = 3; let ResourceCycles = [3]; } // 4.2.4 Arithmetic and Logical. // ALU operation register shifted by immediate variant. def SwiftWriteALUsi : SchedWriteVariant<[ // lsl #2, lsl #1, or lsr #1. SchedVar, SchedVar ]>; def SwiftWriteALUsr : SchedWriteVariant<[ SchedVar, SchedVar ]>; def SwiftWriteALUSsr : SchedWriteVariant<[ SchedVar, SchedVar ]>; def SwiftReadAdvanceALUsr : SchedReadVariant<[ SchedVar]>, SchedVar ]>; // ADC,ADD,NEG,RSB,RSC,SBC,SUB,ADR // AND,BIC,EOR,ORN,ORR // CLZ,RBIT,REV,REV16,REVSH,PKH def : WriteRes; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : ReadAdvance; def : SchedAlias; // 4.2.5 Integer comparison def : WriteRes; def : WriteRes; def : WriteRes; }