//===- ARMScheduleV7.td - ARM v7 Scheduling Definitions ----*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the itinerary class data for the ARM v7 processors. // //===----------------------------------------------------------------------===// // // Scheduling information derived from "Cortex-A8 Technical Reference Manual". // // Dual issue pipeline represented by FU_Pipe0 | FU_Pipe1 // def CortexA8Itineraries : ProcessorItineraries<[ // Two fully-pipelined integer ALU pipelines // // No operand cycles InstrItinData]>, // // Binary Instructions that produce a result InstrItinData], [2, 2]>, InstrItinData], [2, 2, 2]>, InstrItinData], [2, 2, 1]>, InstrItinData], [2, 2, 1, 1]>, // // Unary Instructions that produce a result InstrItinData], [2, 2]>, InstrItinData], [2, 1]>, InstrItinData], [2, 1, 1]>, // // Compare instructions InstrItinData], [2]>, InstrItinData], [2, 2]>, InstrItinData], [2, 1]>, InstrItinData], [2, 1, 1]>, // // Move instructions, unconditional InstrItinData], [1]>, InstrItinData], [1, 1]>, InstrItinData], [1, 1]>, InstrItinData], [1, 1, 1]>, // // Move instructions, conditional InstrItinData], [2]>, InstrItinData], [2, 1]>, InstrItinData], [2, 1]>, InstrItinData], [2, 1, 1]>, // Integer multiply pipeline // Result written in E5, but that is relative to the last cycle of multicycle, // so we use 6 for those cases // InstrItinData], [5, 1, 1]>, InstrItinData, InstrStage<2, [FU_Pipe0]>], [6, 1, 1, 4]>, InstrItinData, InstrStage<2, [FU_Pipe0]>], [6, 1, 1]>, InstrItinData, InstrStage<2, [FU_Pipe0]>], [6, 1, 1, 4]>, InstrItinData, InstrStage<3, [FU_Pipe0]>], [6, 6, 1, 1]>, InstrItinData, InstrStage<3, [FU_Pipe0]>], [6, 6, 1, 1]>, // Integer load pipeline // // loads have an extra cycle of latency, but are fully pipelined // use FU_Issue to enforce the 1 load/store per cycle limit // // Immediate offset InstrItinData, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0]>], [3, 1]>, // // Register offset InstrItinData, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0]>], [3, 1, 1]>, // // Scaled register offset, issues over 2 cycles InstrItinData, InstrStage<1, [FU_Pipe0], 0>, InstrStage<1, [FU_Pipe1]>, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0]>], [4, 1, 1]>, // // Immediate offset with update InstrItinData, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0]>], [3, 2, 1]>, // // Register offset with update InstrItinData, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0]>], [3, 2, 1, 1]>, // // Scaled register offset with update, issues over 2 cycles InstrItinData, InstrStage<1, [FU_Pipe0], 0>, InstrStage<1, [FU_Pipe1]>, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0]>], [4, 3, 1, 1]>, // // Load multiple InstrItinData, InstrStage<2, [FU_Pipe0], 0>, InstrStage<2, [FU_Pipe1]>, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0]>]>, // Integer store pipeline // // use FU_Issue to enforce the 1 load/store per cycle limit // // Immediate offset InstrItinData, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0]>], [3, 1]>, // // Register offset InstrItinData, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0]>], [3, 1, 1]>, // // Scaled register offset, issues over 2 cycles InstrItinData, InstrStage<1, [FU_Pipe0], 0>, InstrStage<1, [FU_Pipe1]>, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0]>], [3, 1, 1]>, // // Immediate offset with update InstrItinData, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0]>], [2, 3, 1]>, // // Register offset with update InstrItinData, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0]>], [2, 3, 1, 1]>, // // Scaled register offset with update, issues over 2 cycles InstrItinData, InstrStage<1, [FU_Pipe0], 0>, InstrStage<1, [FU_Pipe1]>, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0]>], [3, 3, 1, 1]>, // // Store multiple InstrItinData, InstrStage<2, [FU_Pipe0], 0>, InstrStage<2, [FU_Pipe1]>, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0]>]>, // Branch // // no delay slots, so the latency of a branch is unimportant InstrItinData]>, // VFP // Issue through integer pipeline, and execute in NEON unit. We assume // RunFast mode so that NFP pipeline is used for single-precision when // possible. // // FP Special Register to Integer Register File Move InstrItinData, InstrStage<1, [FU_NLSPipe]>]>, // // Single-precision FP Unary InstrItinData, InstrStage<1, [FU_NPipe]>], [7, 1]>, // // Double-precision FP Unary InstrItinData, InstrStage<4, [FU_NPipe], 0>, InstrStage<4, [FU_NLSPipe]>], [4, 1]>, // // Single-precision FP Compare InstrItinData, InstrStage<1, [FU_NPipe]>], [1, 1]>, // // Double-precision FP Compare InstrItinData, InstrStage<4, [FU_NPipe], 0>, InstrStage<4, [FU_NLSPipe]>], [4, 1]>, // // Single to Double FP Convert InstrItinData, InstrStage<7, [FU_NPipe], 0>, InstrStage<7, [FU_NLSPipe]>], [7, 1]>, // // Double to Single FP Convert InstrItinData, InstrStage<5, [FU_NPipe], 0>, InstrStage<5, [FU_NLSPipe]>], [5, 1]>, // // Single-Precision FP to Integer Convert InstrItinData, InstrStage<1, [FU_NPipe]>], [7, 1]>, // // Double-Precision FP to Integer Convert InstrItinData, InstrStage<8, [FU_NPipe], 0>, InstrStage<8, [FU_NLSPipe]>], [8, 1]>, // // Integer to Single-Precision FP Convert InstrItinData, InstrStage<1, [FU_NPipe]>], [7, 1]>, // // Integer to Double-Precision FP Convert InstrItinData, InstrStage<8, [FU_NPipe], 0>, InstrStage<8, [FU_NLSPipe]>], [8, 1]>, // // Single-precision FP ALU InstrItinData, InstrStage<1, [FU_NPipe]>], [7, 1, 1]>, // // Double-precision FP ALU InstrItinData, InstrStage<9, [FU_NPipe], 0>, InstrStage<9, [FU_NLSPipe]>], [9, 1, 1]>, // // Single-precision FP Multiply InstrItinData, InstrStage<1, [FU_NPipe]>], [7, 1, 1]>, // // Double-precision FP Multiply InstrItinData, InstrStage<11, [FU_NPipe], 0>, InstrStage<11, [FU_NLSPipe]>], [11, 1, 1]>, // // Single-precision FP MAC InstrItinData, InstrStage<1, [FU_NPipe]>], [7, 2, 1, 1]>, // // Double-precision FP MAC InstrItinData, InstrStage<19, [FU_NPipe], 0>, InstrStage<19, [FU_NLSPipe]>], [19, 2, 1, 1]>, // // Single-precision FP DIV InstrItinData, InstrStage<20, [FU_NPipe], 0>, InstrStage<20, [FU_NLSPipe]>], [20, 1, 1]>, // // Double-precision FP DIV InstrItinData, InstrStage<29, [FU_NPipe], 0>, InstrStage<29, [FU_NLSPipe]>], [29, 1, 1]>, // // Single-precision FP SQRT InstrItinData, InstrStage<19, [FU_NPipe], 0>, InstrStage<19, [FU_NLSPipe]>], [19, 1]>, // // Double-precision FP SQRT InstrItinData, InstrStage<29, [FU_NPipe], 0>, InstrStage<29, [FU_NLSPipe]>], [29, 1]>, // // Single-precision FP Load // use FU_Issue to enforce the 1 load/store per cycle limit InstrItinData, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0], 0>, InstrStage<1, [FU_NLSPipe]>]>, // // Double-precision FP Load // use FU_Issue to enforce the 1 load/store per cycle limit InstrItinData, InstrStage<1, [FU_Pipe0], 0>, InstrStage<1, [FU_Pipe1]>, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0], 0>, InstrStage<1, [FU_NLSPipe]>]>, // // FP Load Multiple // use FU_Issue to enforce the 1 load/store per cycle limit InstrItinData, InstrStage<2, [FU_Pipe0], 0>, InstrStage<2, [FU_Pipe1]>, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0], 0>, InstrStage<1, [FU_NLSPipe]>]>, // // Single-precision FP Store // use FU_Issue to enforce the 1 load/store per cycle limit InstrItinData, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0], 0>, InstrStage<1, [FU_NLSPipe]>]>, // // Double-precision FP Store // use FU_Issue to enforce the 1 load/store per cycle limit InstrItinData, InstrStage<1, [FU_Pipe0], 0>, InstrStage<1, [FU_Pipe1]>, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0], 0>, InstrStage<1, [FU_NLSPipe]>]>, // // FP Store Multiple // use FU_Issue to enforce the 1 load/store per cycle limit InstrItinData, InstrStage<2, [FU_Pipe0], 0>, InstrStage<2, [FU_Pipe1]>, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0], 0>, InstrStage<1, [FU_NLSPipe]>]>, // NEON // Issue through integer pipeline, and execute in NEON unit. // // VLD1 InstrItinData, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0], 0>, InstrStage<1, [FU_NLSPipe]>]>, // // VLD2 InstrItinData, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0], 0>, InstrStage<1, [FU_NLSPipe]>], [2, 2, 1]>, // // VLD3 InstrItinData, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0], 0>, InstrStage<1, [FU_NLSPipe]>], [2, 2, 2, 1]>, // // VLD4 InstrItinData, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0], 0>, InstrStage<1, [FU_NLSPipe]>], [2, 2, 2, 2, 1]>, // // VST InstrItinData, InstrStage<1, [FU_Pipe0, FU_Pipe1]>, InstrStage<1, [FU_LdSt0], 0>, InstrStage<1, [FU_NLSPipe]>]>, // // Double-register FP Unary InstrItinData, InstrStage<1, [FU_NPipe]>], [5, 2]>, // // Quad-register FP Unary // Result written in N5, but that is relative to the last cycle of multicycle, // so we use 6 for those cases InstrItinData, InstrStage<2, [FU_NPipe]>], [6, 2]>, // // Double-register FP Binary InstrItinData, InstrStage<1, [FU_NPipe]>], [5, 2, 2]>, // // Quad-register FP Binary // Result written in N5, but that is relative to the last cycle of multicycle, // so we use 6 for those cases InstrItinData, InstrStage<2, [FU_NPipe]>], [6, 2, 2]>, // // Move Immediate InstrItinData, InstrStage<1, [FU_NPipe]>], [3]>, // // Double-register Permute Move InstrItinData, InstrStage<1, [FU_NLSPipe]>], [2, 1]>, // // Quad-register Permute Move // Result written in N2, but that is relative to the last cycle of multicycle, // so we use 3 for those cases InstrItinData, InstrStage<2, [FU_NLSPipe]>], [3, 1]>, // // Integer to Single-precision Move InstrItinData, InstrStage<1, [FU_NLSPipe]>], [2, 1]>, // // Integer to Double-precision Move InstrItinData, InstrStage<1, [FU_NLSPipe]>], [2, 1, 1]>, // // Single-precision to Integer Move InstrItinData, InstrStage<1, [FU_NLSPipe]>], [20, 1]>, // // Double-precision to Integer Move InstrItinData, InstrStage<1, [FU_NLSPipe]>], [20, 20, 1]>, // // Integer to Lane Move InstrItinData, InstrStage<2, [FU_NLSPipe]>], [3, 1, 1]>, // // Double-register Permute InstrItinData, InstrStage<1, [FU_NLSPipe]>], [2, 2, 1, 1]>, // // Quad-register Permute // Result written in N2, but that is relative to the last cycle of multicycle, // so we use 3 for those cases InstrItinData, InstrStage<2, [FU_NLSPipe]>], [3, 3, 1, 1]>, // // Quad-register Permute (3 cycle issue) // Result written in N2, but that is relative to the last cycle of multicycle, // so we use 4 for those cases InstrItinData, InstrStage<1, [FU_NLSPipe]>, InstrStage<1, [FU_NPipe], 0>, InstrStage<2, [FU_NLSPipe]>], [4, 4, 1, 1]>, // // Double-register FP Multiple-Accumulate InstrItinData, InstrStage<1, [FU_NPipe]>], [9, 2, 2, 3]>, // // Quad-register FP Multiple-Accumulate // Result written in N9, but that is relative to the last cycle of multicycle, // so we use 10 for those cases InstrItinData, InstrStage<2, [FU_NPipe]>], [10, 2, 2, 3]>, // // Double-register Reciprical Step InstrItinData, InstrStage<1, [FU_NPipe]>], [9, 2, 2]>, // // Quad-register Reciprical Step InstrItinData, InstrStage<2, [FU_NPipe]>], [10, 2, 2]>, // // Double-register Integer Count InstrItinData, InstrStage<1, [FU_NPipe]>], [3, 2, 2]>, // // Quad-register Integer Count // Result written in N3, but that is relative to the last cycle of multicycle, // so we use 4 for those cases InstrItinData, InstrStage<2, [FU_NPipe]>], [4, 2, 2]>, // // Double-register Integer Unary InstrItinData, InstrStage<1, [FU_NPipe]>], [4, 2]>, // // Quad-register Integer Unary InstrItinData, InstrStage<1, [FU_NPipe]>], [4, 2]>, // // Double-register Integer Q-Unary InstrItinData, InstrStage<1, [FU_NPipe]>], [4, 1]>, // // Quad-register Integer CountQ-Unary InstrItinData, InstrStage<1, [FU_NPipe]>], [4, 1]>, // // Double-register Integer Binary InstrItinData, InstrStage<1, [FU_NPipe]>], [3, 2, 2]>, // // Quad-register Integer Binary InstrItinData, InstrStage<1, [FU_NPipe]>], [3, 2, 2]>, // // Double-register Integer Binary (4 cycle) InstrItinData, InstrStage<1, [FU_NPipe]>], [4, 2, 1]>, // // Quad-register Integer Binary (4 cycle) InstrItinData, InstrStage<1, [FU_NPipe]>], [4, 2, 1]>, // // Double-register Integer Subtract InstrItinData, InstrStage<1, [FU_NPipe]>], [3, 2, 1]>, // // Quad-register Integer Subtract InstrItinData, InstrStage<1, [FU_NPipe]>], [3, 2, 1]>, // // Double-register Integer Shift InstrItinData, InstrStage<1, [FU_NPipe]>], [3, 1, 1]>, // // Quad-register Integer Shift InstrItinData, InstrStage<2, [FU_NPipe]>], [4, 1, 1]>, // // Double-register Integer Shift (4 cycle) InstrItinData, InstrStage<1, [FU_NPipe]>], [4, 1, 1]>, // // Quad-register Integer Shift (4 cycle) InstrItinData, InstrStage<2, [FU_NPipe]>], [5, 1, 1]>, // // Double-register Integer Pair Add Long InstrItinData, InstrStage<1, [FU_NPipe]>], [6, 3, 2, 1]>, // // Quad-register Integer Pair Add Long InstrItinData, InstrStage<2, [FU_NPipe]>], [7, 3, 2, 1]>, // // Double-register Integer Multiply (.8, .16) InstrItinData, InstrStage<1, [FU_NPipe]>], [6, 2, 2]>, // // Double-register Integer Multiply (.32) InstrItinData, InstrStage<2, [FU_NPipe]>], [7, 2, 1]>, // // Quad-register Integer Multiply (.8, .16) InstrItinData, InstrStage<2, [FU_NPipe]>], [7, 2, 2]>, // // Quad-register Integer Multiply (.32) InstrItinData, InstrStage<1, [FU_NPipe]>, InstrStage<2, [FU_NLSPipe], 0>, InstrStage<3, [FU_NPipe]>], [9, 2, 1]>, // // Double-register Integer Multiply-Accumulate (.8, .16) InstrItinData, InstrStage<1, [FU_NPipe]>], [6, 2, 2, 3]>, // // Double-register Integer Multiply-Accumulate (.32) InstrItinData, InstrStage<2, [FU_NPipe]>], [7, 2, 1, 3]>, // // Quad-register Integer Multiply-Accumulate (.8, .16) InstrItinData, InstrStage<2, [FU_NPipe]>], [7, 2, 2, 3]>, // // Quad-register Integer Multiply-Accumulate (.32) InstrItinData, InstrStage<1, [FU_NPipe]>, InstrStage<2, [FU_NLSPipe], 0>, InstrStage<3, [FU_NPipe]>], [9, 2, 1, 3]>, // // Double-register VEXT InstrItinData, InstrStage<1, [FU_NLSPipe]>], [2, 1, 1]>, // // Quad-register VEXT InstrItinData, InstrStage<2, [FU_NLSPipe]>], [3, 1, 1]>, // // VTB InstrItinData, InstrStage<2, [FU_NLSPipe]>], [3, 2, 1]>, InstrItinData, InstrStage<2, [FU_NLSPipe]>], [3, 2, 2, 1]>, InstrItinData, InstrStage<1, [FU_NLSPipe]>, InstrStage<1, [FU_NPipe], 0>, InstrStage<2, [FU_NLSPipe]>], [4, 2, 2, 3, 1]>, InstrItinData, InstrStage<1, [FU_NLSPipe]>, InstrStage<1, [FU_NPipe], 0>, InstrStage<2, [FU_NLSPipe]>], [4, 2, 2, 3, 3, 1]>, // // VTBX InstrItinData, InstrStage<2, [FU_NLSPipe]>], [3, 1, 2, 1]>, InstrItinData, InstrStage<2, [FU_NLSPipe]>], [3, 1, 2, 2, 1]>, InstrItinData, InstrStage<1, [FU_NLSPipe]>, InstrStage<1, [FU_NPipe], 0>, InstrStage<2, [FU_NLSPipe]>], [4, 1, 2, 2, 3, 1]>, InstrItinData, InstrStage<1, [FU_NLSPipe]>, InstrStage<1, [FU_NPipe], 0>, InstrStage<2, [FU_NLSPipe]>], [4, 1, 2, 2, 3, 3, 1]> ]>;