//===-- ARM/ARMMCCodeEmitter.cpp - Convert ARM code to machine code -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the ARMMCCodeEmitter class. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/ARMMCTargetDesc.h" #include "MCTargetDesc/ARMAddressingModes.h" #include "MCTargetDesc/ARMBaseInfo.h" #include "MCTargetDesc/ARMFixupKinds.h" #include "MCTargetDesc/ARMMCExpr.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/Statistic.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "mccodeemitter" STATISTIC(MCNumEmitted, "Number of MC instructions emitted."); STATISTIC(MCNumCPRelocations, "Number of constant pool relocations created."); namespace { class ARMMCCodeEmitter : public MCCodeEmitter { ARMMCCodeEmitter(const ARMMCCodeEmitter &) LLVM_DELETED_FUNCTION; void operator=(const ARMMCCodeEmitter &) LLVM_DELETED_FUNCTION; const MCInstrInfo &MCII; const MCContext &CTX; bool IsLittleEndian; public: ARMMCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx, bool IsLittle) : MCII(mcii), CTX(ctx), IsLittleEndian(IsLittle) { } ~ARMMCCodeEmitter() {} bool isThumb(const MCSubtargetInfo &STI) const { return (STI.getFeatureBits() & ARM::ModeThumb) != 0; } bool isThumb2(const MCSubtargetInfo &STI) const { return isThumb(STI) && (STI.getFeatureBits() & ARM::FeatureThumb2) != 0; } bool isTargetMachO(const MCSubtargetInfo &STI) const { Triple TT(STI.getTargetTriple()); return TT.isOSBinFormatMachO(); } unsigned getMachineSoImmOpValue(unsigned SoImm) const; // getBinaryCodeForInstr - TableGen'erated function for getting the // binary encoding for an instruction. uint64_t getBinaryCodeForInstr(const MCInst &MI, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getMachineOpValue - Return binary encoding of operand. If the machine /// operand requires relocation, record the relocation and return zero. unsigned getMachineOpValue(const MCInst &MI,const MCOperand &MO, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getHiLo16ImmOpValue - Return the encoding for the hi / low 16-bit of /// the specified operand. This is used for operands with :lower16: and /// :upper16: prefixes. uint32_t getHiLo16ImmOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; bool EncodeAddrModeOpValues(const MCInst &MI, unsigned OpIdx, unsigned &Reg, unsigned &Imm, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getThumbBLTargetOpValue - Return encoding info for Thumb immediate /// BL branch target. uint32_t getThumbBLTargetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getThumbBLXTargetOpValue - Return encoding info for Thumb immediate /// BLX branch target. uint32_t getThumbBLXTargetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getThumbBRTargetOpValue - Return encoding info for Thumb branch target. uint32_t getThumbBRTargetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getThumbBCCTargetOpValue - Return encoding info for Thumb branch target. uint32_t getThumbBCCTargetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getThumbCBTargetOpValue - Return encoding info for Thumb branch target. uint32_t getThumbCBTargetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getBranchTargetOpValue - Return encoding info for 24-bit immediate /// branch target. uint32_t getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getUnconditionalBranchTargetOpValue - Return encoding info for 24-bit /// immediate Thumb2 direct branch target. uint32_t getUnconditionalBranchTargetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getARMBranchTargetOpValue - Return encoding info for 24-bit immediate /// branch target. uint32_t getARMBranchTargetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; uint32_t getARMBLTargetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; uint32_t getARMBLXTargetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getAdrLabelOpValue - Return encoding info for 12-bit immediate /// ADR label target. uint32_t getAdrLabelOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; uint32_t getThumbAdrLabelOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; uint32_t getT2AdrLabelOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getAddrModeImm12OpValue - Return encoding info for 'reg +/- imm12' /// operand. uint32_t getAddrModeImm12OpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getThumbAddrModeRegRegOpValue - Return encoding for 'reg + reg' operand. uint32_t getThumbAddrModeRegRegOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getT2AddrModeImm8s4OpValue - Return encoding info for 'reg +/- imm8<<2' /// operand. uint32_t getT2AddrModeImm8s4OpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getT2AddrModeImm0_1020s4OpValue - Return encoding info for 'reg + imm8<<2' /// operand. uint32_t getT2AddrModeImm0_1020s4OpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getT2Imm8s4OpValue - Return encoding info for '+/- imm8<<2' /// operand. uint32_t getT2Imm8s4OpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getLdStSORegOpValue - Return encoding info for 'reg +/- reg shop imm' /// operand as needed by load/store instructions. uint32_t getLdStSORegOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getLdStmModeOpValue - Return encoding for load/store multiple mode. uint32_t getLdStmModeOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { ARM_AM::AMSubMode Mode = (ARM_AM::AMSubMode)MI.getOperand(OpIdx).getImm(); switch (Mode) { default: llvm_unreachable("Unknown addressing sub-mode!"); case ARM_AM::da: return 0; case ARM_AM::ia: return 1; case ARM_AM::db: return 2; case ARM_AM::ib: return 3; } } /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value. /// unsigned getShiftOp(ARM_AM::ShiftOpc ShOpc) const { switch (ShOpc) { case ARM_AM::no_shift: case ARM_AM::lsl: return 0; case ARM_AM::lsr: return 1; case ARM_AM::asr: return 2; case ARM_AM::ror: case ARM_AM::rrx: return 3; } llvm_unreachable("Invalid ShiftOpc!"); } /// getAddrMode2OpValue - Return encoding for addrmode2 operands. uint32_t getAddrMode2OpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getAddrMode2OffsetOpValue - Return encoding for am2offset operands. uint32_t getAddrMode2OffsetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getPostIdxRegOpValue - Return encoding for postidx_reg operands. uint32_t getPostIdxRegOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getAddrMode3OffsetOpValue - Return encoding for am3offset operands. uint32_t getAddrMode3OffsetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getAddrMode3OpValue - Return encoding for addrmode3 operands. uint32_t getAddrMode3OpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getAddrModeThumbSPOpValue - Return encoding info for 'reg +/- imm12' /// operand. uint32_t getAddrModeThumbSPOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getAddrModeISOpValue - Encode the t_addrmode_is# operands. uint32_t getAddrModeISOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getAddrModePCOpValue - Return encoding for t_addrmode_pc operands. uint32_t getAddrModePCOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getAddrMode5OpValue - Return encoding info for 'reg +/- imm8' operand. uint32_t getAddrMode5OpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getCCOutOpValue - Return encoding of the 's' bit. unsigned getCCOutOpValue(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // The operand is either reg0 or CPSR. The 's' bit is encoded as '0' or // '1' respectively. return MI.getOperand(Op).getReg() == ARM::CPSR; } /// getSOImmOpValue - Return an encoded 12-bit shifted-immediate value. unsigned getSOImmOpValue(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(Op); // We expect MO to be an immediate or an expression, // if it is an immediate - that's fine, just encode the value. // Otherwise - create a Fixup. if (MO.isExpr()) { const MCExpr *Expr = MO.getExpr(); // In instruction code this value always encoded as lowest 12 bits, // so we don't have to perform any specific adjustments. // Due to requirements of relocatable records we have to use FK_Data_4. // See ARMELFObjectWriter::ExplicitRelSym and // ARMELFObjectWriter::GetRelocTypeInner for more details. MCFixupKind Kind = MCFixupKind(FK_Data_4); Fixups.push_back(MCFixup::Create(0, Expr, Kind, MI.getLoc())); return 0; } unsigned SoImm = MO.getImm(); int SoImmVal = ARM_AM::getSOImmVal(SoImm); assert(SoImmVal != -1 && "Not a valid so_imm value!"); // Encode rotate_imm. unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1) << ARMII::SoRotImmShift; // Encode immed_8. Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal); return Binary; } /// getT2SOImmOpValue - Return an encoded 12-bit shifted-immediate value. unsigned getT2SOImmOpValue(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { unsigned SoImm = MI.getOperand(Op).getImm(); unsigned Encoded = ARM_AM::getT2SOImmVal(SoImm); assert(Encoded != ~0U && "Not a Thumb2 so_imm value?"); return Encoded; } unsigned getT2AddrModeSORegOpValue(const MCInst &MI, unsigned OpNum, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getT2AddrModeImm8OpValue(const MCInst &MI, unsigned OpNum, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getT2AddrModeImm8OffsetOpValue(const MCInst &MI, unsigned OpNum, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getT2AddrModeImm12OffsetOpValue(const MCInst &MI, unsigned OpNum, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getSORegOpValue - Return an encoded so_reg shifted register value. unsigned getSORegRegOpValue(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getSORegImmOpValue(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getT2SORegOpValue(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getNEONVcvtImm32OpValue(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { return 64 - MI.getOperand(Op).getImm(); } unsigned getBitfieldInvertedMaskOpValue(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getRegisterListOpValue(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getAddrMode6AddressOpValue(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getAddrMode6OneLane32AddressOpValue(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getAddrMode6DupAddressOpValue(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getAddrMode6OffsetOpValue(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getShiftRight8Imm(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getShiftRight16Imm(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getShiftRight32Imm(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getShiftRight64Imm(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getThumbSRImmOpValue(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned NEONThumb2DataIPostEncoder(const MCInst &MI, unsigned EncodedValue, const MCSubtargetInfo &STI) const; unsigned NEONThumb2LoadStorePostEncoder(const MCInst &MI, unsigned EncodedValue, const MCSubtargetInfo &STI) const; unsigned NEONThumb2DupPostEncoder(const MCInst &MI, unsigned EncodedValue, const MCSubtargetInfo &STI) const; unsigned NEONThumb2V8PostEncoder(const MCInst &MI, unsigned EncodedValue, const MCSubtargetInfo &STI) const; unsigned VFPThumb2PostEncoder(const MCInst &MI, unsigned EncodedValue, const MCSubtargetInfo &STI) const; void EmitByte(unsigned char C, raw_ostream &OS) const { OS << (char)C; } void EmitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) const { // Output the constant in little endian byte order. for (unsigned i = 0; i != Size; ++i) { unsigned Shift = IsLittleEndian ? i * 8 : (Size - 1 - i) * 8; EmitByte((Val >> Shift) & 0xff, OS); } } void EncodeInstruction(const MCInst &MI, raw_ostream &OS, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const override; }; } // end anonymous namespace MCCodeEmitter *llvm::createARMLEMCCodeEmitter(const MCInstrInfo &MCII, const MCRegisterInfo &MRI, const MCSubtargetInfo &STI, MCContext &Ctx) { return new ARMMCCodeEmitter(MCII, Ctx, true); } MCCodeEmitter *llvm::createARMBEMCCodeEmitter(const MCInstrInfo &MCII, const MCRegisterInfo &MRI, const MCSubtargetInfo &STI, MCContext &Ctx) { return new ARMMCCodeEmitter(MCII, Ctx, false); } /// NEONThumb2DataIPostEncoder - Post-process encoded NEON data-processing /// instructions, and rewrite them to their Thumb2 form if we are currently in /// Thumb2 mode. unsigned ARMMCCodeEmitter::NEONThumb2DataIPostEncoder(const MCInst &MI, unsigned EncodedValue, const MCSubtargetInfo &STI) const { if (isThumb2(STI)) { // NEON Thumb2 data-processsing encodings are very simple: bit 24 is moved // to bit 12 of the high half-word (i.e. bit 28), and bits 27-24 are // set to 1111. unsigned Bit24 = EncodedValue & 0x01000000; unsigned Bit28 = Bit24 << 4; EncodedValue &= 0xEFFFFFFF; EncodedValue |= Bit28; EncodedValue |= 0x0F000000; } return EncodedValue; } /// NEONThumb2LoadStorePostEncoder - Post-process encoded NEON load/store /// instructions, and rewrite them to their Thumb2 form if we are currently in /// Thumb2 mode. unsigned ARMMCCodeEmitter::NEONThumb2LoadStorePostEncoder(const MCInst &MI, unsigned EncodedValue, const MCSubtargetInfo &STI) const { if (isThumb2(STI)) { EncodedValue &= 0xF0FFFFFF; EncodedValue |= 0x09000000; } return EncodedValue; } /// NEONThumb2DupPostEncoder - Post-process encoded NEON vdup /// instructions, and rewrite them to their Thumb2 form if we are currently in /// Thumb2 mode. unsigned ARMMCCodeEmitter::NEONThumb2DupPostEncoder(const MCInst &MI, unsigned EncodedValue, const MCSubtargetInfo &STI) const { if (isThumb2(STI)) { EncodedValue &= 0x00FFFFFF; EncodedValue |= 0xEE000000; } return EncodedValue; } /// Post-process encoded NEON v8 instructions, and rewrite them to Thumb2 form /// if we are in Thumb2. unsigned ARMMCCodeEmitter::NEONThumb2V8PostEncoder(const MCInst &MI, unsigned EncodedValue, const MCSubtargetInfo &STI) const { if (isThumb2(STI)) { EncodedValue |= 0xC000000; // Set bits 27-26 } return EncodedValue; } /// VFPThumb2PostEncoder - Post-process encoded VFP instructions and rewrite /// them to their Thumb2 form if we are currently in Thumb2 mode. unsigned ARMMCCodeEmitter:: VFPThumb2PostEncoder(const MCInst &MI, unsigned EncodedValue, const MCSubtargetInfo &STI) const { if (isThumb2(STI)) { EncodedValue &= 0x0FFFFFFF; EncodedValue |= 0xE0000000; } return EncodedValue; } /// getMachineOpValue - Return binary encoding of operand. If the machine /// operand requires relocation, record the relocation and return zero. unsigned ARMMCCodeEmitter:: getMachineOpValue(const MCInst &MI, const MCOperand &MO, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { if (MO.isReg()) { unsigned Reg = MO.getReg(); unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg); // Q registers are encoded as 2x their register number. switch (Reg) { default: return RegNo; case ARM::Q0: case ARM::Q1: case ARM::Q2: case ARM::Q3: case ARM::Q4: case ARM::Q5: case ARM::Q6: case ARM::Q7: case ARM::Q8: case ARM::Q9: case ARM::Q10: case ARM::Q11: case ARM::Q12: case ARM::Q13: case ARM::Q14: case ARM::Q15: return 2 * RegNo; } } else if (MO.isImm()) { return static_cast(MO.getImm()); } else if (MO.isFPImm()) { return static_cast(APFloat(MO.getFPImm()) .bitcastToAPInt().getHiBits(32).getLimitedValue()); } llvm_unreachable("Unable to encode MCOperand!"); } /// getAddrModeImmOpValue - Return encoding info for 'reg +/- imm' operand. bool ARMMCCodeEmitter:: EncodeAddrModeOpValues(const MCInst &MI, unsigned OpIdx, unsigned &Reg, unsigned &Imm, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpIdx); const MCOperand &MO1 = MI.getOperand(OpIdx + 1); Reg = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); int32_t SImm = MO1.getImm(); bool isAdd = true; // Special value for #-0 if (SImm == INT32_MIN) { SImm = 0; isAdd = false; } // Immediate is always encoded as positive. The 'U' bit controls add vs sub. if (SImm < 0) { SImm = -SImm; isAdd = false; } Imm = SImm; return isAdd; } /// getBranchTargetOpValue - Helper function to get the branch target operand, /// which is either an immediate or requires a fixup. static uint32_t getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx, unsigned FixupKind, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) { const MCOperand &MO = MI.getOperand(OpIdx); // If the destination is an immediate, we have nothing to do. if (MO.isImm()) return MO.getImm(); assert(MO.isExpr() && "Unexpected branch target type!"); const MCExpr *Expr = MO.getExpr(); MCFixupKind Kind = MCFixupKind(FixupKind); Fixups.push_back(MCFixup::Create(0, Expr, Kind, MI.getLoc())); // All of the information is in the fixup. return 0; } // Thumb BL and BLX use a strange offset encoding where bits 22 and 21 are // determined by negating them and XOR'ing them with bit 23. static int32_t encodeThumbBLOffset(int32_t offset) { offset >>= 1; uint32_t S = (offset & 0x800000) >> 23; uint32_t J1 = (offset & 0x400000) >> 22; uint32_t J2 = (offset & 0x200000) >> 21; J1 = (~J1 & 0x1); J2 = (~J2 & 0x1); J1 ^= S; J2 ^= S; offset &= ~0x600000; offset |= J1 << 22; offset |= J2 << 21; return offset; } /// getThumbBLTargetOpValue - Return encoding info for immediate branch target. uint32_t ARMMCCodeEmitter:: getThumbBLTargetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand MO = MI.getOperand(OpIdx); if (MO.isExpr()) return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_bl, Fixups, STI); return encodeThumbBLOffset(MO.getImm()); } /// getThumbBLXTargetOpValue - Return encoding info for Thumb immediate /// BLX branch target. uint32_t ARMMCCodeEmitter:: getThumbBLXTargetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand MO = MI.getOperand(OpIdx); if (MO.isExpr()) return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_blx, Fixups, STI); return encodeThumbBLOffset(MO.getImm()); } /// getThumbBRTargetOpValue - Return encoding info for Thumb branch target. uint32_t ARMMCCodeEmitter:: getThumbBRTargetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand MO = MI.getOperand(OpIdx); if (MO.isExpr()) return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_br, Fixups, STI); return (MO.getImm() >> 1); } /// getThumbBCCTargetOpValue - Return encoding info for Thumb branch target. uint32_t ARMMCCodeEmitter:: getThumbBCCTargetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand MO = MI.getOperand(OpIdx); if (MO.isExpr()) return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_bcc, Fixups, STI); return (MO.getImm() >> 1); } /// getThumbCBTargetOpValue - Return encoding info for Thumb branch target. uint32_t ARMMCCodeEmitter:: getThumbCBTargetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand MO = MI.getOperand(OpIdx); if (MO.isExpr()) return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_cb, Fixups, STI); return (MO.getImm() >> 1); } /// Return true if this branch has a non-always predication static bool HasConditionalBranch(const MCInst &MI) { int NumOp = MI.getNumOperands(); if (NumOp >= 2) { for (int i = 0; i < NumOp-1; ++i) { const MCOperand &MCOp1 = MI.getOperand(i); const MCOperand &MCOp2 = MI.getOperand(i + 1); if (MCOp1.isImm() && MCOp2.isReg() && (MCOp2.getReg() == 0 || MCOp2.getReg() == ARM::CPSR)) { if (ARMCC::CondCodes(MCOp1.getImm()) != ARMCC::AL) return true; } } } return false; } /// getBranchTargetOpValue - Return encoding info for 24-bit immediate branch /// target. uint32_t ARMMCCodeEmitter:: getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // FIXME: This really, really shouldn't use TargetMachine. We don't want // coupling between MC and TM anywhere we can help it. if (isThumb2(STI)) return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_t2_condbranch, Fixups, STI); return getARMBranchTargetOpValue(MI, OpIdx, Fixups, STI); } /// getBranchTargetOpValue - Return encoding info for 24-bit immediate branch /// target. uint32_t ARMMCCodeEmitter:: getARMBranchTargetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand MO = MI.getOperand(OpIdx); if (MO.isExpr()) { if (HasConditionalBranch(MI)) return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_condbranch, Fixups, STI); return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_uncondbranch, Fixups, STI); } return MO.getImm() >> 2; } uint32_t ARMMCCodeEmitter:: getARMBLTargetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand MO = MI.getOperand(OpIdx); if (MO.isExpr()) { if (HasConditionalBranch(MI)) return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_condbl, Fixups, STI); return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_uncondbl, Fixups, STI); } return MO.getImm() >> 2; } uint32_t ARMMCCodeEmitter:: getARMBLXTargetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand MO = MI.getOperand(OpIdx); if (MO.isExpr()) return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_blx, Fixups, STI); return MO.getImm() >> 1; } /// getUnconditionalBranchTargetOpValue - Return encoding info for 24-bit /// immediate branch target. uint32_t ARMMCCodeEmitter:: getUnconditionalBranchTargetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { unsigned Val = 0; const MCOperand MO = MI.getOperand(OpIdx); if(MO.isExpr()) return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_t2_uncondbranch, Fixups, STI); else Val = MO.getImm() >> 1; bool I = (Val & 0x800000); bool J1 = (Val & 0x400000); bool J2 = (Val & 0x200000); if (I ^ J1) Val &= ~0x400000; else Val |= 0x400000; if (I ^ J2) Val &= ~0x200000; else Val |= 0x200000; return Val; } /// getAdrLabelOpValue - Return encoding info for 12-bit shifted-immediate /// ADR label target. uint32_t ARMMCCodeEmitter:: getAdrLabelOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand MO = MI.getOperand(OpIdx); if (MO.isExpr()) return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_adr_pcrel_12, Fixups, STI); int64_t offset = MO.getImm(); uint32_t Val = 0x2000; int SoImmVal; if (offset == INT32_MIN) { Val = 0x1000; SoImmVal = 0; } else if (offset < 0) { Val = 0x1000; offset *= -1; SoImmVal = ARM_AM::getSOImmVal(offset); if(SoImmVal == -1) { Val = 0x2000; offset *= -1; SoImmVal = ARM_AM::getSOImmVal(offset); } } else { SoImmVal = ARM_AM::getSOImmVal(offset); if(SoImmVal == -1) { Val = 0x1000; offset *= -1; SoImmVal = ARM_AM::getSOImmVal(offset); } } assert(SoImmVal != -1 && "Not a valid so_imm value!"); Val |= SoImmVal; return Val; } /// getT2AdrLabelOpValue - Return encoding info for 12-bit immediate ADR label /// target. uint32_t ARMMCCodeEmitter:: getT2AdrLabelOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand MO = MI.getOperand(OpIdx); if (MO.isExpr()) return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_t2_adr_pcrel_12, Fixups, STI); int32_t Val = MO.getImm(); if (Val == INT32_MIN) Val = 0x1000; else if (Val < 0) { Val *= -1; Val |= 0x1000; } return Val; } /// getThumbAdrLabelOpValue - Return encoding info for 8-bit immediate ADR label /// target. uint32_t ARMMCCodeEmitter:: getThumbAdrLabelOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand MO = MI.getOperand(OpIdx); if (MO.isExpr()) return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_thumb_adr_pcrel_10, Fixups, STI); return MO.getImm(); } /// getThumbAddrModeRegRegOpValue - Return encoding info for 'reg + reg' /// operand. uint32_t ARMMCCodeEmitter:: getThumbAddrModeRegRegOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &, const MCSubtargetInfo &STI) const { // [Rn, Rm] // {5-3} = Rm // {2-0} = Rn const MCOperand &MO1 = MI.getOperand(OpIdx); const MCOperand &MO2 = MI.getOperand(OpIdx + 1); unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg()); unsigned Rm = CTX.getRegisterInfo()->getEncodingValue(MO2.getReg()); return (Rm << 3) | Rn; } /// getAddrModeImm12OpValue - Return encoding info for 'reg +/- imm12' operand. uint32_t ARMMCCodeEmitter:: getAddrModeImm12OpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // {17-13} = reg // {12} = (U)nsigned (add == '1', sub == '0') // {11-0} = imm12 unsigned Reg, Imm12; bool isAdd = true; // If The first operand isn't a register, we have a label reference. const MCOperand &MO = MI.getOperand(OpIdx); if (!MO.isReg()) { Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC. Imm12 = 0; if (MO.isExpr()) { const MCExpr *Expr = MO.getExpr(); isAdd = false ; // 'U' bit is set as part of the fixup. MCFixupKind Kind; if (isThumb2(STI)) Kind = MCFixupKind(ARM::fixup_t2_ldst_pcrel_12); else Kind = MCFixupKind(ARM::fixup_arm_ldst_pcrel_12); Fixups.push_back(MCFixup::Create(0, Expr, Kind, MI.getLoc())); ++MCNumCPRelocations; } else { Reg = ARM::PC; int32_t Offset = MO.getImm(); if (Offset == INT32_MIN) { Offset = 0; isAdd = false; } else if (Offset < 0) { Offset *= -1; isAdd = false; } Imm12 = Offset; } } else isAdd = EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm12, Fixups, STI); uint32_t Binary = Imm12 & 0xfff; // Immediate is always encoded as positive. The 'U' bit controls add vs sub. if (isAdd) Binary |= (1 << 12); Binary |= (Reg << 13); return Binary; } /// getT2Imm8s4OpValue - Return encoding info for /// '+/- imm8<<2' operand. uint32_t ARMMCCodeEmitter:: getT2Imm8s4OpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // FIXME: The immediate operand should have already been encoded like this // before ever getting here. The encoder method should just need to combine // the MI operands for the register and the offset into a single // representation for the complex operand in the .td file. This isn't just // style, unfortunately. As-is, we can't represent the distinct encoding // for #-0. // {8} = (U)nsigned (add == '1', sub == '0') // {7-0} = imm8 int32_t Imm8 = MI.getOperand(OpIdx).getImm(); bool isAdd = Imm8 >= 0; // Immediate is always encoded as positive. The 'U' bit controls add vs sub. if (Imm8 < 0) Imm8 = -(uint32_t)Imm8; // Scaled by 4. Imm8 /= 4; uint32_t Binary = Imm8 & 0xff; // Immediate is always encoded as positive. The 'U' bit controls add vs sub. if (isAdd) Binary |= (1 << 8); return Binary; } /// getT2AddrModeImm8s4OpValue - Return encoding info for /// 'reg +/- imm8<<2' operand. uint32_t ARMMCCodeEmitter:: getT2AddrModeImm8s4OpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // {12-9} = reg // {8} = (U)nsigned (add == '1', sub == '0') // {7-0} = imm8 unsigned Reg, Imm8; bool isAdd = true; // If The first operand isn't a register, we have a label reference. const MCOperand &MO = MI.getOperand(OpIdx); if (!MO.isReg()) { Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC. Imm8 = 0; isAdd = false ; // 'U' bit is set as part of the fixup. assert(MO.isExpr() && "Unexpected machine operand type!"); const MCExpr *Expr = MO.getExpr(); MCFixupKind Kind = MCFixupKind(ARM::fixup_t2_pcrel_10); Fixups.push_back(MCFixup::Create(0, Expr, Kind, MI.getLoc())); ++MCNumCPRelocations; } else isAdd = EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm8, Fixups, STI); // FIXME: The immediate operand should have already been encoded like this // before ever getting here. The encoder method should just need to combine // the MI operands for the register and the offset into a single // representation for the complex operand in the .td file. This isn't just // style, unfortunately. As-is, we can't represent the distinct encoding // for #-0. uint32_t Binary = (Imm8 >> 2) & 0xff; // Immediate is always encoded as positive. The 'U' bit controls add vs sub. if (isAdd) Binary |= (1 << 8); Binary |= (Reg << 9); return Binary; } /// getT2AddrModeImm0_1020s4OpValue - Return encoding info for /// 'reg + imm8<<2' operand. uint32_t ARMMCCodeEmitter:: getT2AddrModeImm0_1020s4OpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // {11-8} = reg // {7-0} = imm8 const MCOperand &MO = MI.getOperand(OpIdx); const MCOperand &MO1 = MI.getOperand(OpIdx + 1); unsigned Reg = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); unsigned Imm8 = MO1.getImm(); return (Reg << 8) | Imm8; } uint32_t ARMMCCodeEmitter::getHiLo16ImmOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // {20-16} = imm{15-12} // {11-0} = imm{11-0} const MCOperand &MO = MI.getOperand(OpIdx); if (MO.isImm()) // Hi / lo 16 bits already extracted during earlier passes. return static_cast(MO.getImm()); // Handle :upper16: and :lower16: assembly prefixes. const MCExpr *E = MO.getExpr(); MCFixupKind Kind; if (E->getKind() == MCExpr::Target) { const ARMMCExpr *ARM16Expr = cast(E); E = ARM16Expr->getSubExpr(); if (const MCConstantExpr *MCE = dyn_cast(E)) { const int64_t Value = MCE->getValue(); if (Value > UINT32_MAX) report_fatal_error("constant value truncated (limited to 32-bit)"); switch (ARM16Expr->getKind()) { case ARMMCExpr::VK_ARM_HI16: return (int32_t(Value) & 0xffff0000) >> 16; case ARMMCExpr::VK_ARM_LO16: return (int32_t(Value) & 0x0000ffff); default: llvm_unreachable("Unsupported ARMFixup"); } } switch (ARM16Expr->getKind()) { default: llvm_unreachable("Unsupported ARMFixup"); case ARMMCExpr::VK_ARM_HI16: Kind = MCFixupKind(isThumb2(STI) ? ARM::fixup_t2_movt_hi16 : ARM::fixup_arm_movt_hi16); break; case ARMMCExpr::VK_ARM_LO16: Kind = MCFixupKind(isThumb2(STI) ? ARM::fixup_t2_movw_lo16 : ARM::fixup_arm_movw_lo16); break; } Fixups.push_back(MCFixup::Create(0, E, Kind, MI.getLoc())); return 0; } // If the expression doesn't have :upper16: or :lower16: on it, // it's just a plain immediate expression, previously those evaluated to // the lower 16 bits of the expression regardless of whether // we have a movt or a movw, but that led to misleadingly results. // This is now disallowed in the the AsmParser in validateInstruction() // so this should never happen. llvm_unreachable("expression without :upper16: or :lower16:"); } uint32_t ARMMCCodeEmitter:: getLdStSORegOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpIdx); const MCOperand &MO1 = MI.getOperand(OpIdx+1); const MCOperand &MO2 = MI.getOperand(OpIdx+2); unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); unsigned Rm = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg()); unsigned ShImm = ARM_AM::getAM2Offset(MO2.getImm()); bool isAdd = ARM_AM::getAM2Op(MO2.getImm()) == ARM_AM::add; ARM_AM::ShiftOpc ShOp = ARM_AM::getAM2ShiftOpc(MO2.getImm()); unsigned SBits = getShiftOp(ShOp); // While "lsr #32" and "asr #32" exist, they are encoded with a 0 in the shift // amount. However, it would be an easy mistake to make so check here. assert((ShImm & ~0x1f) == 0 && "Out of range shift amount"); // {16-13} = Rn // {12} = isAdd // {11-0} = shifter // {3-0} = Rm // {4} = 0 // {6-5} = type // {11-7} = imm uint32_t Binary = Rm; Binary |= Rn << 13; Binary |= SBits << 5; Binary |= ShImm << 7; if (isAdd) Binary |= 1 << 12; return Binary; } uint32_t ARMMCCodeEmitter:: getAddrMode2OpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // {17-14} Rn // {13} 1 == imm12, 0 == Rm // {12} isAdd // {11-0} imm12/Rm const MCOperand &MO = MI.getOperand(OpIdx); unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); uint32_t Binary = getAddrMode2OffsetOpValue(MI, OpIdx + 1, Fixups, STI); Binary |= Rn << 14; return Binary; } uint32_t ARMMCCodeEmitter:: getAddrMode2OffsetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // {13} 1 == imm12, 0 == Rm // {12} isAdd // {11-0} imm12/Rm const MCOperand &MO = MI.getOperand(OpIdx); const MCOperand &MO1 = MI.getOperand(OpIdx+1); unsigned Imm = MO1.getImm(); bool isAdd = ARM_AM::getAM2Op(Imm) == ARM_AM::add; bool isReg = MO.getReg() != 0; uint32_t Binary = ARM_AM::getAM2Offset(Imm); // if reg +/- reg, Rm will be non-zero. Otherwise, we have reg +/- imm12 if (isReg) { ARM_AM::ShiftOpc ShOp = ARM_AM::getAM2ShiftOpc(Imm); Binary <<= 7; // Shift amount is bits [11:7] Binary |= getShiftOp(ShOp) << 5; // Shift type is bits [6:5] Binary |= CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); // Rm is bits [3:0] } return Binary | (isAdd << 12) | (isReg << 13); } uint32_t ARMMCCodeEmitter:: getPostIdxRegOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // {4} isAdd // {3-0} Rm const MCOperand &MO = MI.getOperand(OpIdx); const MCOperand &MO1 = MI.getOperand(OpIdx+1); bool isAdd = MO1.getImm() != 0; return CTX.getRegisterInfo()->getEncodingValue(MO.getReg()) | (isAdd << 4); } uint32_t ARMMCCodeEmitter:: getAddrMode3OffsetOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // {9} 1 == imm8, 0 == Rm // {8} isAdd // {7-4} imm7_4/zero // {3-0} imm3_0/Rm const MCOperand &MO = MI.getOperand(OpIdx); const MCOperand &MO1 = MI.getOperand(OpIdx+1); unsigned Imm = MO1.getImm(); bool isAdd = ARM_AM::getAM3Op(Imm) == ARM_AM::add; bool isImm = MO.getReg() == 0; uint32_t Imm8 = ARM_AM::getAM3Offset(Imm); // if reg +/- reg, Rm will be non-zero. Otherwise, we have reg +/- imm8 if (!isImm) Imm8 = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); return Imm8 | (isAdd << 8) | (isImm << 9); } uint32_t ARMMCCodeEmitter:: getAddrMode3OpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // {13} 1 == imm8, 0 == Rm // {12-9} Rn // {8} isAdd // {7-4} imm7_4/zero // {3-0} imm3_0/Rm const MCOperand &MO = MI.getOperand(OpIdx); const MCOperand &MO1 = MI.getOperand(OpIdx+1); const MCOperand &MO2 = MI.getOperand(OpIdx+2); // If The first operand isn't a register, we have a label reference. if (!MO.isReg()) { unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC. assert(MO.isExpr() && "Unexpected machine operand type!"); const MCExpr *Expr = MO.getExpr(); MCFixupKind Kind = MCFixupKind(ARM::fixup_arm_pcrel_10_unscaled); Fixups.push_back(MCFixup::Create(0, Expr, Kind, MI.getLoc())); ++MCNumCPRelocations; return (Rn << 9) | (1 << 13); } unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); unsigned Imm = MO2.getImm(); bool isAdd = ARM_AM::getAM3Op(Imm) == ARM_AM::add; bool isImm = MO1.getReg() == 0; uint32_t Imm8 = ARM_AM::getAM3Offset(Imm); // if reg +/- reg, Rm will be non-zero. Otherwise, we have reg +/- imm8 if (!isImm) Imm8 = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg()); return (Rn << 9) | Imm8 | (isAdd << 8) | (isImm << 13); } /// getAddrModeThumbSPOpValue - Encode the t_addrmode_sp operands. uint32_t ARMMCCodeEmitter:: getAddrModeThumbSPOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // [SP, #imm] // {7-0} = imm8 const MCOperand &MO1 = MI.getOperand(OpIdx + 1); assert(MI.getOperand(OpIdx).getReg() == ARM::SP && "Unexpected base register!"); // The immediate is already shifted for the implicit zeroes, so no change // here. return MO1.getImm() & 0xff; } /// getAddrModeISOpValue - Encode the t_addrmode_is# operands. uint32_t ARMMCCodeEmitter:: getAddrModeISOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // [Rn, #imm] // {7-3} = imm5 // {2-0} = Rn const MCOperand &MO = MI.getOperand(OpIdx); const MCOperand &MO1 = MI.getOperand(OpIdx + 1); unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); unsigned Imm5 = MO1.getImm(); return ((Imm5 & 0x1f) << 3) | Rn; } /// getAddrModePCOpValue - Return encoding for t_addrmode_pc operands. uint32_t ARMMCCodeEmitter:: getAddrModePCOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand MO = MI.getOperand(OpIdx); if (MO.isExpr()) return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_cp, Fixups, STI); return (MO.getImm() >> 2); } /// getAddrMode5OpValue - Return encoding info for 'reg +/- imm10' operand. uint32_t ARMMCCodeEmitter:: getAddrMode5OpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // {12-9} = reg // {8} = (U)nsigned (add == '1', sub == '0') // {7-0} = imm8 unsigned Reg, Imm8; bool isAdd; // If The first operand isn't a register, we have a label reference. const MCOperand &MO = MI.getOperand(OpIdx); if (!MO.isReg()) { Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC); // Rn is PC. Imm8 = 0; isAdd = false; // 'U' bit is handled as part of the fixup. assert(MO.isExpr() && "Unexpected machine operand type!"); const MCExpr *Expr = MO.getExpr(); MCFixupKind Kind; if (isThumb2(STI)) Kind = MCFixupKind(ARM::fixup_t2_pcrel_10); else Kind = MCFixupKind(ARM::fixup_arm_pcrel_10); Fixups.push_back(MCFixup::Create(0, Expr, Kind, MI.getLoc())); ++MCNumCPRelocations; } else { EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm8, Fixups, STI); isAdd = ARM_AM::getAM5Op(Imm8) == ARM_AM::add; } uint32_t Binary = ARM_AM::getAM5Offset(Imm8); // Immediate is always encoded as positive. The 'U' bit controls add vs sub. if (isAdd) Binary |= (1 << 8); Binary |= (Reg << 9); return Binary; } unsigned ARMMCCodeEmitter:: getSORegRegOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Sub-operands are [reg, reg, imm]. The first register is Rm, the reg to be // shifted. The second is Rs, the amount to shift by, and the third specifies // the type of the shift. // // {3-0} = Rm. // {4} = 1 // {6-5} = type // {11-8} = Rs // {7} = 0 const MCOperand &MO = MI.getOperand(OpIdx); const MCOperand &MO1 = MI.getOperand(OpIdx + 1); const MCOperand &MO2 = MI.getOperand(OpIdx + 2); ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm()); // Encode Rm. unsigned Binary = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); // Encode the shift opcode. unsigned SBits = 0; unsigned Rs = MO1.getReg(); if (Rs) { // Set shift operand (bit[7:4]). // LSL - 0001 // LSR - 0011 // ASR - 0101 // ROR - 0111 switch (SOpc) { default: llvm_unreachable("Unknown shift opc!"); case ARM_AM::lsl: SBits = 0x1; break; case ARM_AM::lsr: SBits = 0x3; break; case ARM_AM::asr: SBits = 0x5; break; case ARM_AM::ror: SBits = 0x7; break; } } Binary |= SBits << 4; // Encode the shift operation Rs. // Encode Rs bit[11:8]. assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0); return Binary | (CTX.getRegisterInfo()->getEncodingValue(Rs) << ARMII::RegRsShift); } unsigned ARMMCCodeEmitter:: getSORegImmOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Sub-operands are [reg, imm]. The first register is Rm, the reg to be // shifted. The second is the amount to shift by. // // {3-0} = Rm. // {4} = 0 // {6-5} = type // {11-7} = imm const MCOperand &MO = MI.getOperand(OpIdx); const MCOperand &MO1 = MI.getOperand(OpIdx + 1); ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO1.getImm()); // Encode Rm. unsigned Binary = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); // Encode the shift opcode. unsigned SBits = 0; // Set shift operand (bit[6:4]). // LSL - 000 // LSR - 010 // ASR - 100 // ROR - 110 // RRX - 110 and bit[11:8] clear. switch (SOpc) { default: llvm_unreachable("Unknown shift opc!"); case ARM_AM::lsl: SBits = 0x0; break; case ARM_AM::lsr: SBits = 0x2; break; case ARM_AM::asr: SBits = 0x4; break; case ARM_AM::ror: SBits = 0x6; break; case ARM_AM::rrx: Binary |= 0x60; return Binary; } // Encode shift_imm bit[11:7]. Binary |= SBits << 4; unsigned Offset = ARM_AM::getSORegOffset(MO1.getImm()); assert(Offset < 32 && "Offset must be in range 0-31!"); return Binary | (Offset << 7); } unsigned ARMMCCodeEmitter:: getT2AddrModeSORegOpValue(const MCInst &MI, unsigned OpNum, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO1 = MI.getOperand(OpNum); const MCOperand &MO2 = MI.getOperand(OpNum+1); const MCOperand &MO3 = MI.getOperand(OpNum+2); // Encoded as [Rn, Rm, imm]. // FIXME: Needs fixup support. unsigned Value = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg()); Value <<= 4; Value |= CTX.getRegisterInfo()->getEncodingValue(MO2.getReg()); Value <<= 2; Value |= MO3.getImm(); return Value; } unsigned ARMMCCodeEmitter:: getT2AddrModeImm8OpValue(const MCInst &MI, unsigned OpNum, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO1 = MI.getOperand(OpNum); const MCOperand &MO2 = MI.getOperand(OpNum+1); // FIXME: Needs fixup support. unsigned Value = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg()); // Even though the immediate is 8 bits long, we need 9 bits in order // to represent the (inverse of the) sign bit. Value <<= 9; int32_t tmp = (int32_t)MO2.getImm(); if (tmp < 0) tmp = abs(tmp); else Value |= 256; // Set the ADD bit Value |= tmp & 255; return Value; } unsigned ARMMCCodeEmitter:: getT2AddrModeImm8OffsetOpValue(const MCInst &MI, unsigned OpNum, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO1 = MI.getOperand(OpNum); // FIXME: Needs fixup support. unsigned Value = 0; int32_t tmp = (int32_t)MO1.getImm(); if (tmp < 0) tmp = abs(tmp); else Value |= 256; // Set the ADD bit Value |= tmp & 255; return Value; } unsigned ARMMCCodeEmitter:: getT2AddrModeImm12OffsetOpValue(const MCInst &MI, unsigned OpNum, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO1 = MI.getOperand(OpNum); // FIXME: Needs fixup support. unsigned Value = 0; int32_t tmp = (int32_t)MO1.getImm(); if (tmp < 0) tmp = abs(tmp); else Value |= 4096; // Set the ADD bit Value |= tmp & 4095; return Value; } unsigned ARMMCCodeEmitter:: getT2SORegOpValue(const MCInst &MI, unsigned OpIdx, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Sub-operands are [reg, imm]. The first register is Rm, the reg to be // shifted. The second is the amount to shift by. // // {3-0} = Rm. // {4} = 0 // {6-5} = type // {11-7} = imm const MCOperand &MO = MI.getOperand(OpIdx); const MCOperand &MO1 = MI.getOperand(OpIdx + 1); ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO1.getImm()); // Encode Rm. unsigned Binary = CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); // Encode the shift opcode. unsigned SBits = 0; // Set shift operand (bit[6:4]). // LSL - 000 // LSR - 010 // ASR - 100 // ROR - 110 switch (SOpc) { default: llvm_unreachable("Unknown shift opc!"); case ARM_AM::lsl: SBits = 0x0; break; case ARM_AM::lsr: SBits = 0x2; break; case ARM_AM::asr: SBits = 0x4; break; case ARM_AM::rrx: // FALLTHROUGH case ARM_AM::ror: SBits = 0x6; break; } Binary |= SBits << 4; if (SOpc == ARM_AM::rrx) return Binary; // Encode shift_imm bit[11:7]. return Binary | ARM_AM::getSORegOffset(MO1.getImm()) << 7; } unsigned ARMMCCodeEmitter:: getBitfieldInvertedMaskOpValue(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // 10 bits. lower 5 bits are are the lsb of the mask, high five bits are the // msb of the mask. const MCOperand &MO = MI.getOperand(Op); uint32_t v = ~MO.getImm(); uint32_t lsb = countTrailingZeros(v); uint32_t msb = (32 - countLeadingZeros (v)) - 1; assert (v != 0 && lsb < 32 && msb < 32 && "Illegal bitfield mask!"); return lsb | (msb << 5); } unsigned ARMMCCodeEmitter:: getRegisterListOpValue(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // VLDM/VSTM: // {12-8} = Vd // {7-0} = Number of registers // // LDM/STM: // {15-0} = Bitfield of GPRs. unsigned Reg = MI.getOperand(Op).getReg(); bool SPRRegs = ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg); bool DPRRegs = ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg); unsigned Binary = 0; if (SPRRegs || DPRRegs) { // VLDM/VSTM unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg); unsigned NumRegs = (MI.getNumOperands() - Op) & 0xff; Binary |= (RegNo & 0x1f) << 8; if (SPRRegs) Binary |= NumRegs; else Binary |= NumRegs * 2; } else { for (unsigned I = Op, E = MI.getNumOperands(); I < E; ++I) { unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(MI.getOperand(I).getReg()); Binary |= 1 << RegNo; } } return Binary; } /// getAddrMode6AddressOpValue - Encode an addrmode6 register number along /// with the alignment operand. unsigned ARMMCCodeEmitter:: getAddrMode6AddressOpValue(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &Reg = MI.getOperand(Op); const MCOperand &Imm = MI.getOperand(Op + 1); unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg.getReg()); unsigned Align = 0; switch (Imm.getImm()) { default: break; case 2: case 4: case 8: Align = 0x01; break; case 16: Align = 0x02; break; case 32: Align = 0x03; break; } return RegNo | (Align << 4); } /// getAddrMode6OneLane32AddressOpValue - Encode an addrmode6 register number /// along with the alignment operand for use in VST1 and VLD1 with size 32. unsigned ARMMCCodeEmitter:: getAddrMode6OneLane32AddressOpValue(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &Reg = MI.getOperand(Op); const MCOperand &Imm = MI.getOperand(Op + 1); unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg.getReg()); unsigned Align = 0; switch (Imm.getImm()) { default: break; case 8: case 16: case 32: // Default '0' value for invalid alignments of 8, 16, 32 bytes. case 2: Align = 0x00; break; case 4: Align = 0x03; break; } return RegNo | (Align << 4); } /// getAddrMode6DupAddressOpValue - Encode an addrmode6 register number and /// alignment operand for use in VLD-dup instructions. This is the same as /// getAddrMode6AddressOpValue except for the alignment encoding, which is /// different for VLD4-dup. unsigned ARMMCCodeEmitter:: getAddrMode6DupAddressOpValue(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &Reg = MI.getOperand(Op); const MCOperand &Imm = MI.getOperand(Op + 1); unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg.getReg()); unsigned Align = 0; switch (Imm.getImm()) { default: break; case 2: case 4: case 8: Align = 0x01; break; case 16: Align = 0x03; break; } return RegNo | (Align << 4); } unsigned ARMMCCodeEmitter:: getAddrMode6OffsetOpValue(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(Op); if (MO.getReg() == 0) return 0x0D; return CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); } unsigned ARMMCCodeEmitter:: getShiftRight8Imm(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { return 8 - MI.getOperand(Op).getImm(); } unsigned ARMMCCodeEmitter:: getShiftRight16Imm(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { return 16 - MI.getOperand(Op).getImm(); } unsigned ARMMCCodeEmitter:: getShiftRight32Imm(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { return 32 - MI.getOperand(Op).getImm(); } unsigned ARMMCCodeEmitter:: getShiftRight64Imm(const MCInst &MI, unsigned Op, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { return 64 - MI.getOperand(Op).getImm(); } void ARMMCCodeEmitter:: EncodeInstruction(const MCInst &MI, raw_ostream &OS, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Pseudo instructions don't get encoded. const MCInstrDesc &Desc = MCII.get(MI.getOpcode()); uint64_t TSFlags = Desc.TSFlags; if ((TSFlags & ARMII::FormMask) == ARMII::Pseudo) return; int Size; if (Desc.getSize() == 2 || Desc.getSize() == 4) Size = Desc.getSize(); else llvm_unreachable("Unexpected instruction size!"); uint32_t Binary = getBinaryCodeForInstr(MI, Fixups, STI); // Thumb 32-bit wide instructions need to emit the high order halfword // first. if (isThumb(STI) && Size == 4) { EmitConstant(Binary >> 16, 2, OS); EmitConstant(Binary & 0xffff, 2, OS); } else EmitConstant(Binary, Size, OS); ++MCNumEmitted; // Keep track of the # of mi's emitted. } #include "ARMGenMCCodeEmitter.inc"