//==- HexagonInstrInfo.td - Target Description for Hexagon -*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the Hexagon instructions in TableGen format. // //===----------------------------------------------------------------------===// include "HexagonInstrFormats.td" include "HexagonOperands.td" //===----------------------------------------------------------------------===// // Multi-class for logical operators. multiclass ALU32_rr_ri { def rr : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")), [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>; def ri : ALU32_ri<(outs IntRegs:$dst), (ins s10Imm:$b, IntRegs:$c), !strconcat("$dst = ", !strconcat(OpcStr, "(#$b, $c)")), [(set (i32 IntRegs:$dst), (OpNode s10Imm:$b, (i32 IntRegs:$c)))]>; } // Multi-class for compare ops. let isCompare = 1 in { multiclass CMP64_rr { def rr : ALU64_rr<(outs PredRegs:$dst), (ins DoubleRegs:$b, DoubleRegs:$c), !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")), [(set (i1 PredRegs:$dst), (OpNode (i64 DoubleRegs:$b), (i64 DoubleRegs:$c)))]>; } multiclass CMP32_rr_ri_s10 { let CextOpcode = CextOp in { let InputType = "reg" in def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c), !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")), [(set (i1 PredRegs:$dst), (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>; let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 10, InputType = "imm" in def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, s10Ext:$c), !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")), [(set (i1 PredRegs:$dst), (OpNode (i32 IntRegs:$b), s10ExtPred:$c))]>; } } multiclass CMP32_rr_ri_u9 { let CextOpcode = CextOp in { let InputType = "reg" in def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c), !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")), [(set (i1 PredRegs:$dst), (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>; let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, opExtentBits = 9, InputType = "imm" in def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, u9Ext:$c), !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")), [(set (i1 PredRegs:$dst), (OpNode (i32 IntRegs:$b), u9ExtPred:$c))]>; } } multiclass CMP32_ri_s8 { let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8 in def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, s8Ext:$c), !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")), [(set (i1 PredRegs:$dst), (OpNode (i32 IntRegs:$b), s8ExtPred:$c))]>; } } //===----------------------------------------------------------------------===// // ALU32/ALU (Instructions with register-register form) //===----------------------------------------------------------------------===// def SDTHexagonI64I32I32 : SDTypeProfile<1, 2, [SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>; def HexagonWrapperCombineII : SDNode<"HexagonISD::WrapperCombineII", SDTHexagonI64I32I32>; def HexagonWrapperCombineRR : SDNode<"HexagonISD::WrapperCombineRR", SDTHexagonI64I32I32>; multiclass ALU32_Pbase { let isPredicatedNew = isPredNew in def NAME : ALU32_rr<(outs RC:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs: $src3), !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ", ") $dst = ")#mnemonic#"($src2, $src3)", []>; } multiclass ALU32_Pred { let isPredicatedFalse = PredNot in { defm _c#NAME : ALU32_Pbase; // Predicate new defm _cdn#NAME : ALU32_Pbase; } } let InputType = "reg" in multiclass ALU32_base { let CextOpcode = CextOp, BaseOpcode = CextOp#_rr in { let isPredicable = 1 in def NAME : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = "#mnemonic#"($src1, $src2)", [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>; let neverHasSideEffects = 1, isPredicated = 1 in { defm Pt : ALU32_Pred; defm NotPt : ALU32_Pred; } } } let isCommutable = 1 in { defm ADD_rr : ALU32_base<"add", "ADD", add>, ImmRegRel, PredNewRel; defm AND_rr : ALU32_base<"and", "AND", and>, ImmRegRel, PredNewRel; defm XOR_rr : ALU32_base<"xor", "XOR", xor>, ImmRegRel, PredNewRel; defm OR_rr : ALU32_base<"or", "OR", or>, ImmRegRel, PredNewRel; } defm SUB_rr : ALU32_base<"sub", "SUB", sub>, ImmRegRel, PredNewRel; // Combines the two integer registers SRC1 and SRC2 into a double register. let isPredicable = 1 in class T_Combine : ALU32_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = combine($src1, $src2)", [(set (i64 DoubleRegs:$dst), (i64 (HexagonWrapperCombineRR (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>; multiclass Combine_base { let BaseOpcode = "combine" in { def NAME : T_Combine; let neverHasSideEffects = 1, isPredicated = 1 in { defm Pt : ALU32_Pred<"combine", DoubleRegs, 0>; defm NotPt : ALU32_Pred<"combine", DoubleRegs, 1>; } } } defm COMBINE_rr : Combine_base, PredNewRel; // Combines the two immediates SRC1 and SRC2 into a double register. class COMBINE_imm : ALU32_ii<(outs DoubleRegs:$dst), (ins imm1:$src1, imm2:$src2), "$dst = combine(#$src1, #$src2)", [(set (i64 DoubleRegs:$dst), (i64 (HexagonWrapperCombineII (i32 pat1:$src1), (i32 pat2:$src2))))]>; let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 8 in def COMBINE_Ii : COMBINE_imm; //===----------------------------------------------------------------------===// // ALU32/ALU (ADD with register-immediate form) //===----------------------------------------------------------------------===// multiclass ALU32ri_Pbase { let isPredicatedNew = isPredNew in def NAME : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, s8Ext: $src3), !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ", ") $dst = ")#mnemonic#"($src2, #$src3)", []>; } multiclass ALU32ri_Pred { let isPredicatedFalse = PredNot in { defm _c#NAME : ALU32ri_Pbase; // Predicate new defm _cdn#NAME : ALU32ri_Pbase; } } let isExtendable = 1, InputType = "imm" in multiclass ALU32ri_base { let CextOpcode = CextOp, BaseOpcode = CextOp#_ri in { let opExtendable = 2, isExtentSigned = 1, opExtentBits = 16, isPredicable = 1 in def NAME : ALU32_ri<(outs IntRegs:$dst), (ins IntRegs:$src1, s16Ext:$src2), "$dst = "#mnemonic#"($src1, #$src2)", [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$src1), (s16ExtPred:$src2)))]>; let opExtendable = 3, isExtentSigned = 1, opExtentBits = 8, neverHasSideEffects = 1, isPredicated = 1 in { defm Pt : ALU32ri_Pred; defm NotPt : ALU32ri_Pred; } } } defm ADD_ri : ALU32ri_base<"add", "ADD", add>, ImmRegRel, PredNewRel; let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 10, CextOpcode = "OR", InputType = "imm" in def OR_ri : ALU32_ri<(outs IntRegs:$dst), (ins IntRegs:$src1, s10Ext:$src2), "$dst = or($src1, #$src2)", [(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1), s10ExtPred:$src2))]>, ImmRegRel; let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 10, InputType = "imm", CextOpcode = "AND" in def AND_ri : ALU32_ri<(outs IntRegs:$dst), (ins IntRegs:$src1, s10Ext:$src2), "$dst = and($src1, #$src2)", [(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1), s10ExtPred:$src2))]>, ImmRegRel; // Nop. let neverHasSideEffects = 1 in def NOP : ALU32_rr<(outs), (ins), "nop", []>; // Rd32=sub(#s10,Rs32) let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 10, CextOpcode = "SUB", InputType = "imm" in def SUB_ri : ALU32_ri<(outs IntRegs:$dst), (ins s10Ext:$src1, IntRegs:$src2), "$dst = sub(#$src1, $src2)", [(set IntRegs:$dst, (sub s10ExtPred:$src1, IntRegs:$src2))]>, ImmRegRel; // Rd = not(Rs) gets mapped to Rd=sub(#-1, Rs). def : Pat<(not (i32 IntRegs:$src1)), (SUB_ri -1, (i32 IntRegs:$src1))>; // Rd = neg(Rs) gets mapped to Rd=sub(#0, Rs). // Pattern definition for 'neg' was not necessary. multiclass TFR_Pred { let isPredicatedFalse = PredNot in { def _c#NAME : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2), !if(PredNot, "if (!$src1", "if ($src1")#") $dst = $src2", []>; // Predicate new let isPredicatedNew = 1 in def _cdn#NAME : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2), !if(PredNot, "if (!$src1", "if ($src1")#".new) $dst = $src2", []>; } } let InputType = "reg", neverHasSideEffects = 1 in multiclass TFR_base { let CextOpcode = CextOp, BaseOpcode = CextOp in { let isPredicable = 1 in def NAME : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1), "$dst = $src1", []>; let isPredicated = 1 in { defm Pt : TFR_Pred<0>; defm NotPt : TFR_Pred<1>; } } } class T_TFR64_Pred : ALU32_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1, DoubleRegs:$src2), !if(PredNot, "if (!$src1", "if ($src1")# !if(isPredNew, ".new) ", ") ")#"$dst = $src2", []> { bits<5> dst; bits<2> src1; bits<5> src2; let IClass = 0b1111; let Inst{27-24} = 0b1101; let Inst{13} = isPredNew; let Inst{7} = PredNot; let Inst{4-0} = dst; let Inst{6-5} = src1; let Inst{20-17} = src2{4-1}; let Inst{16} = 0b1; let Inst{12-9} = src2{4-1}; let Inst{8} = 0b0; } multiclass TFR64_Pred { let isPredicatedFalse = PredNot in { def _c#NAME : T_TFR64_Pred; let isPredicatedNew = 1 in def _cdn#NAME : T_TFR64_Pred; // Predicate new } } let neverHasSideEffects = 1 in multiclass TFR64_base { let BaseOpcode = BaseName in { let isPredicable = 1 in def NAME : ALU32Inst <(outs DoubleRegs:$dst), (ins DoubleRegs:$src1), "$dst = $src1" > { bits<5> dst; bits<5> src1; let IClass = 0b1111; let Inst{27-23} = 0b01010; let Inst{4-0} = dst; let Inst{20-17} = src1{4-1}; let Inst{16} = 0b1; let Inst{12-9} = src1{4-1}; let Inst{8} = 0b0; } let isPredicated = 1 in { defm Pt : TFR64_Pred<0>; defm NotPt : TFR64_Pred<1>; } } } multiclass TFRI_Pred { let isMoveImm = 1, isPredicatedFalse = PredNot in { def _c#NAME : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, s12Ext:$src2), !if(PredNot, "if (!$src1", "if ($src1")#") $dst = #$src2", []>; // Predicate new let isPredicatedNew = 1 in def _cdn#NAME : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, s12Ext:$src2), !if(PredNot, "if (!$src1", "if ($src1")#".new) $dst = #$src2", []>; } } let InputType = "imm", isExtendable = 1, isExtentSigned = 1 in multiclass TFRI_base { let CextOpcode = CextOp, BaseOpcode = CextOp#I in { let isAsCheapAsAMove = 1 , opExtendable = 1, opExtentBits = 16, isMoveImm = 1, isPredicable = 1, isReMaterializable = 1 in def NAME : ALU32_ri<(outs IntRegs:$dst), (ins s16Ext:$src1), "$dst = #$src1", [(set (i32 IntRegs:$dst), s16ExtPred:$src1)]>; let opExtendable = 2, opExtentBits = 12, neverHasSideEffects = 1, isPredicated = 1 in { defm Pt : TFRI_Pred<0>; defm NotPt : TFRI_Pred<1>; } } } defm TFRI : TFRI_base<"TFR">, ImmRegRel, PredNewRel; defm TFR : TFR_base<"TFR">, ImmRegRel, PredNewRel; defm TFR64 : TFR64_base<"TFR64">, PredNewRel; // Transfer control register. let neverHasSideEffects = 1 in def TFCR : CRInst<(outs CRRegs:$dst), (ins IntRegs:$src1), "$dst = $src1", []>; //===----------------------------------------------------------------------===// // ALU32/ALU - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU32/PERM + //===----------------------------------------------------------------------===// // Mux. def VMUX_prr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1, DoubleRegs:$src2, DoubleRegs:$src3), "$dst = vmux($src1, $src2, $src3)", []>; let CextOpcode = "MUX", InputType = "reg" in def MUX_rr : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "$dst = mux($src1, $src2, $src3)", [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2), (i32 IntRegs:$src3))))]>, ImmRegRel; let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8, CextOpcode = "MUX", InputType = "imm" in def MUX_ir : ALU32_ir<(outs IntRegs:$dst), (ins PredRegs:$src1, s8Ext:$src2, IntRegs:$src3), "$dst = mux($src1, #$src2, $src3)", [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), s8ExtPred:$src2, (i32 IntRegs:$src3))))]>, ImmRegRel; let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8, CextOpcode = "MUX", InputType = "imm" in def MUX_ri : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, s8Ext:$src3), "$dst = mux($src1, $src2, #$src3)", [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2), s8ExtPred:$src3)))]>, ImmRegRel; let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 8 in def MUX_ii : ALU32_ii<(outs IntRegs:$dst), (ins PredRegs:$src1, s8Ext:$src2, s8Imm:$src3), "$dst = mux($src1, #$src2, #$src3)", [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), s8ExtPred:$src2, s8ImmPred:$src3)))]>; // ALU32 - aslh, asrh, sxtb, sxth, zxtb, zxth multiclass ALU32_2op_Pbase { let isPredicatedNew = isPredNew in def NAME : ALU32Inst<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2), !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew,".new) $dst = ", ") $dst = ")#mnemonic#"($src2)">, Requires<[HasV4T]>; } multiclass ALU32_2op_Pred { let isPredicatedFalse = PredNot in { defm _c#NAME : ALU32_2op_Pbase; // Predicate new defm _cdn#NAME : ALU32_2op_Pbase; } } multiclass ALU32_2op_base { let BaseOpcode = mnemonic in { let isPredicable = 1, neverHasSideEffects = 1 in def NAME : ALU32Inst<(outs IntRegs:$dst), (ins IntRegs:$src1), "$dst = "#mnemonic#"($src1)">; let Predicates = [HasV4T], validSubTargets = HasV4SubT, isPredicated = 1, neverHasSideEffects = 1 in { defm Pt_V4 : ALU32_2op_Pred; defm NotPt_V4 : ALU32_2op_Pred; } } } defm ASLH : ALU32_2op_base<"aslh">, PredNewRel; defm ASRH : ALU32_2op_base<"asrh">, PredNewRel; defm SXTB : ALU32_2op_base<"sxtb">, PredNewRel; defm SXTH : ALU32_2op_base<"sxth">, PredNewRel; defm ZXTB : ALU32_2op_base<"zxtb">, PredNewRel; defm ZXTH : ALU32_2op_base<"zxth">, PredNewRel; def : Pat <(shl (i32 IntRegs:$src1), (i32 16)), (ASLH IntRegs:$src1)>; def : Pat <(sra (i32 IntRegs:$src1), (i32 16)), (ASRH IntRegs:$src1)>; def : Pat <(sext_inreg (i32 IntRegs:$src1), i8), (SXTB IntRegs:$src1)>; def : Pat <(sext_inreg (i32 IntRegs:$src1), i16), (SXTH IntRegs:$src1)>; //===----------------------------------------------------------------------===// // ALU32/PERM - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU32/PRED + //===----------------------------------------------------------------------===// // Compare. defm CMPGTU : CMP32_rr_ri_u9<"cmp.gtu", "CMPGTU", setugt>, ImmRegRel; defm CMPGT : CMP32_rr_ri_s10<"cmp.gt", "CMPGT", setgt>, ImmRegRel; defm CMPEQ : CMP32_rr_ri_s10<"cmp.eq", "CMPEQ", seteq>, ImmRegRel; // SDNode for converting immediate C to C-1. def DEC_CONST_SIGNED : SDNodeXFormgetSExtValue(); return XformSToSM1Imm(imm); }]>; // SDNode for converting immediate C to C-1. def DEC_CONST_UNSIGNED : SDNodeXFormgetZExtValue(); return XformUToUM1Imm(imm); }]>; def CTLZ_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1), "$dst = cl0($src1)", [(set (i32 IntRegs:$dst), (ctlz (i32 IntRegs:$src1)))]>; def CTTZ_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1), "$dst = ct0($src1)", [(set (i32 IntRegs:$dst), (cttz (i32 IntRegs:$src1)))]>; def CTLZ64_rr : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1), "$dst = cl0($src1)", [(set (i32 IntRegs:$dst), (i32 (trunc (ctlz (i64 DoubleRegs:$src1)))))]>; def CTTZ64_rr : SInst<(outs IntRegs:$dst), (ins DoubleRegs:$src1), "$dst = ct0($src1)", [(set (i32 IntRegs:$dst), (i32 (trunc (cttz (i64 DoubleRegs:$src1)))))]>; def TSTBIT_rr : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = tstbit($src1, $src2)", [(set (i1 PredRegs:$dst), (setne (and (shl 1, (i32 IntRegs:$src2)), (i32 IntRegs:$src1)), 0))]>; def TSTBIT_ri : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), "$dst = tstbit($src1, $src2)", [(set (i1 PredRegs:$dst), (setne (and (shl 1, (u5ImmPred:$src2)), (i32 IntRegs:$src1)), 0))]>; //===----------------------------------------------------------------------===// // ALU32/PRED - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU64/ALU + //===----------------------------------------------------------------------===// // Add. def ADD64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2), "$dst = add($src1, $src2)", [(set (i64 DoubleRegs:$dst), (add (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)))]>; // Add halfword. // Compare. defm CMPEHexagon4 : CMP64_rr<"cmp.eq", seteq>; defm CMPGT64 : CMP64_rr<"cmp.gt", setgt>; defm CMPGTU64 : CMP64_rr<"cmp.gtu", setugt>; // Logical operations. def AND_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2), "$dst = and($src1, $src2)", [(set (i64 DoubleRegs:$dst), (and (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)))]>; def OR_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2), "$dst = or($src1, $src2)", [(set (i64 DoubleRegs:$dst), (or (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)))]>; def XOR_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2), "$dst = xor($src1, $src2)", [(set (i64 DoubleRegs:$dst), (xor (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)))]>; // Maximum. def MAXw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = max($src2, $src1)", [(set (i32 IntRegs:$dst), (i32 (select (i1 (setlt (i32 IntRegs:$src2), (i32 IntRegs:$src1))), (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>; def MAXUw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = maxu($src2, $src1)", [(set (i32 IntRegs:$dst), (i32 (select (i1 (setult (i32 IntRegs:$src2), (i32 IntRegs:$src1))), (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>; def MAXd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2), "$dst = max($src2, $src1)", [(set (i64 DoubleRegs:$dst), (i64 (select (i1 (setlt (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1))), (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))]>; def MAXUd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2), "$dst = maxu($src2, $src1)", [(set (i64 DoubleRegs:$dst), (i64 (select (i1 (setult (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1))), (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))]>; // Minimum. def MINw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = min($src2, $src1)", [(set (i32 IntRegs:$dst), (i32 (select (i1 (setgt (i32 IntRegs:$src2), (i32 IntRegs:$src1))), (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>; def MINUw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = minu($src2, $src1)", [(set (i32 IntRegs:$dst), (i32 (select (i1 (setugt (i32 IntRegs:$src2), (i32 IntRegs:$src1))), (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>; def MINd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2), "$dst = min($src2, $src1)", [(set (i64 DoubleRegs:$dst), (i64 (select (i1 (setgt (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1))), (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))]>; def MINUd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2), "$dst = minu($src2, $src1)", [(set (i64 DoubleRegs:$dst), (i64 (select (i1 (setugt (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1))), (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))]>; // Subtract. def SUB64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2), "$dst = sub($src1, $src2)", [(set (i64 DoubleRegs:$dst), (sub (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)))]>; // Subtract halfword. //===----------------------------------------------------------------------===// // ALU64/ALU - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU64/BIT + //===----------------------------------------------------------------------===// // //===----------------------------------------------------------------------===// // ALU64/BIT - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ALU64/PERM + //===----------------------------------------------------------------------===// // //===----------------------------------------------------------------------===// // ALU64/PERM - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // CR + //===----------------------------------------------------------------------===// // Logical reductions on predicates. // Looping instructions. // Pipelined looping instructions. // Logical operations on predicates. def AND_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2), "$dst = and($src1, $src2)", [(set (i1 PredRegs:$dst), (and (i1 PredRegs:$src1), (i1 PredRegs:$src2)))]>; let neverHasSideEffects = 1 in def AND_pnotp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2), "$dst = and($src1, !$src2)", []>; def ANY_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1), "$dst = any8($src1)", []>; def ALL_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1), "$dst = all8($src1)", []>; def VITPACK_pp : SInst<(outs IntRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2), "$dst = vitpack($src1, $src2)", []>; def VALIGN_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2, PredRegs:$src3), "$dst = valignb($src1, $src2, $src3)", []>; def VSPLICE_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2, PredRegs:$src3), "$dst = vspliceb($src1, $src2, $src3)", []>; def MASK_p : SInst<(outs DoubleRegs:$dst), (ins PredRegs:$src1), "$dst = mask($src1)", []>; def NOT_p : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1), "$dst = not($src1)", [(set (i1 PredRegs:$dst), (not (i1 PredRegs:$src1)))]>; def OR_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2), "$dst = or($src1, $src2)", [(set (i1 PredRegs:$dst), (or (i1 PredRegs:$src1), (i1 PredRegs:$src2)))]>; def XOR_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2), "$dst = xor($src1, $src2)", [(set (i1 PredRegs:$dst), (xor (i1 PredRegs:$src1), (i1 PredRegs:$src2)))]>; // User control register transfer. //===----------------------------------------------------------------------===// // CR - //===----------------------------------------------------------------------===// def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone, [SDNPHasChain]>; def SDHexagonBR_JT: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; def HexagonBR_JT: SDNode<"HexagonISD::BR_JT", SDHexagonBR_JT, [SDNPHasChain]>; let InputType = "imm", isBarrier = 1, isPredicable = 1, Defs = [PC], isExtendable = 1, opExtendable = 0, isExtentSigned = 1, opExtentBits = 24 in class T_JMP JumpList = []> : JInst<(outs), InsDag, "jump $dst" , JumpList> { bits<24> dst; let IClass = 0b0101; let Inst{27-25} = 0b100; let Inst{24-16} = dst{23-15}; let Inst{13-1} = dst{14-2}; } let InputType = "imm", isExtendable = 1, opExtendable = 1, isExtentSigned = 1, Defs = [PC], isPredicated = 1, opExtentBits = 17 in class T_JMP_c : JInst<(outs ), (ins PredRegs:$src, brtarget:$dst), !if(PredNot, "if (!$src", "if ($src")# !if(isPredNew, ".new) ", ") ")#"jump"# !if(isPredNew, !if(isTaken, ":t ", ":nt "), " ")#"$dst"> { let isBrTaken = !if(isPredNew, !if(isTaken, "true", "false"), ""); let isPredicatedFalse = PredNot; let isPredicatedNew = isPredNew; bits<2> src; bits<17> dst; let IClass = 0b0101; let Inst{27-24} = 0b1100; let Inst{21} = PredNot; let Inst{12} = !if(isPredNew, isTaken, zero); let Inst{11} = isPredNew; let Inst{9-8} = src; let Inst{23-22} = dst{16-15}; let Inst{20-16} = dst{14-10}; let Inst{13} = dst{9}; let Inst{7-1} = dst{8-2}; } let isBarrier = 1, Defs = [PC], isPredicable = 1, InputType = "reg" in class T_JMPr : JRInst<(outs ), InsDag, "jumpr $dst" , []> { bits<5> dst; let IClass = 0b0101; let Inst{27-21} = 0b0010100; let Inst{20-16} = dst; } let Defs = [PC], isPredicated = 1, InputType = "reg" in class T_JMPr_c : JRInst <(outs ), (ins PredRegs:$src, IntRegs:$dst), !if(PredNot, "if (!$src", "if ($src")# !if(isPredNew, ".new) ", ") ")#"jumpr"# !if(isPredNew, !if(isTaken, ":t ", ":nt "), " ")#"$dst"> { let isBrTaken = !if(isPredNew, !if(isTaken, "true", "false"), ""); let isPredicatedFalse = PredNot; let isPredicatedNew = isPredNew; bits<2> src; bits<5> dst; let IClass = 0b0101; let Inst{27-22} = 0b001101; let Inst{21} = PredNot; let Inst{20-16} = dst; let Inst{12} = !if(isPredNew, isTaken, zero); let Inst{11} = isPredNew; let Inst{9-8} = src; let Predicates = !if(isPredNew, [HasV3T], [HasV2T]); let validSubTargets = !if(isPredNew, HasV3SubT, HasV2SubT); } multiclass JMP_Pred { def _#NAME : T_JMP_c; // Predicate new def _#NAME#new_t : T_JMP_c; // taken def _#NAME#new_nt : T_JMP_c; // not taken } multiclass JMP_base { let BaseOpcode = BaseOp in { def NAME : T_JMP<(ins brtarget:$dst), [(br bb:$dst)]>; defm t : JMP_Pred<0>; defm f : JMP_Pred<1>; } } multiclass JMPR_Pred { def NAME: T_JMPr_c; // Predicate new def NAME#new_tV3 : T_JMPr_c; // taken def NAME#new_ntV3 : T_JMPr_c; // not taken } multiclass JMPR_base { let BaseOpcode = BaseOp in { def NAME : T_JMPr; defm _t : JMPR_Pred<0>; defm _f : JMPR_Pred<1>; } } let isTerminator = 1, neverHasSideEffects = 1 in { let isBranch = 1 in defm JMP : JMP_base<"JMP">, PredNewRel; let isBranch = 1, isIndirectBranch = 1 in defm JMPR : JMPR_base<"JMPr">, PredNewRel; let isReturn = 1, isCodeGenOnly = 1 in defm JMPret : JMPR_base<"JMPret">, PredNewRel; } def : Pat<(retflag), (JMPret (i32 R31))>; def : Pat <(brcond (i1 PredRegs:$src1), bb:$offset), (JMP_t (i1 PredRegs:$src1), bb:$offset)>; // A return through builtin_eh_return. let isReturn = 1, isTerminator = 1, isBarrier = 1, neverHasSideEffects = 1, isCodeGenOnly = 1, Defs = [PC], Uses = [R28], isPredicable = 0 in def EH_RETURN_JMPR : T_JMPr; def : Pat<(eh_return), (EH_RETURN_JMPR (i32 R31))>; def : Pat<(HexagonBR_JT (i32 IntRegs:$dst)), (JMPR (i32 IntRegs:$dst))>; def : Pat<(brind (i32 IntRegs:$dst)), (JMPR (i32 IntRegs:$dst))>; //===----------------------------------------------------------------------===// // JR - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // LD + //===----------------------------------------------------------------------===// /// // Load -- MEMri operand multiclass LD_MEMri_Pbase { let isPredicatedNew = isPredNew in def NAME : LDInst2<(outs RC:$dst), (ins PredRegs:$src1, MEMri:$addr), !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", ") ")#"$dst = "#mnemonic#"($addr)", []>; } multiclass LD_MEMri_Pred { let isPredicatedFalse = PredNot in { defm _c#NAME : LD_MEMri_Pbase; // Predicate new defm _cdn#NAME : LD_MEMri_Pbase; } } let isExtendable = 1, neverHasSideEffects = 1 in multiclass LD_MEMri ImmBits, bits<5> PredImmBits> { let CextOpcode = CextOp, BaseOpcode = CextOp in { let opExtendable = 2, isExtentSigned = 1, opExtentBits = ImmBits, isPredicable = 1 in def NAME : LDInst2<(outs RC:$dst), (ins MEMri:$addr), "$dst = "#mnemonic#"($addr)", []>; let opExtendable = 3, isExtentSigned = 0, opExtentBits = PredImmBits, isPredicated = 1 in { defm Pt : LD_MEMri_Pred; defm NotPt : LD_MEMri_Pred; } } } let addrMode = BaseImmOffset, isMEMri = "true" in { let accessSize = ByteAccess in { defm LDrib: LD_MEMri < "memb", "LDrib", IntRegs, 11, 6>, AddrModeRel; defm LDriub: LD_MEMri < "memub" , "LDriub", IntRegs, 11, 6>, AddrModeRel; } let accessSize = HalfWordAccess in { defm LDrih: LD_MEMri < "memh", "LDrih", IntRegs, 12, 7>, AddrModeRel; defm LDriuh: LD_MEMri < "memuh", "LDriuh", IntRegs, 12, 7>, AddrModeRel; } let accessSize = WordAccess in defm LDriw: LD_MEMri < "memw", "LDriw", IntRegs, 13, 8>, AddrModeRel; let accessSize = DoubleWordAccess in defm LDrid: LD_MEMri < "memd", "LDrid", DoubleRegs, 14, 9>, AddrModeRel; } def : Pat < (i32 (sextloadi8 ADDRriS11_0:$addr)), (LDrib ADDRriS11_0:$addr) >; def : Pat < (i32 (zextloadi8 ADDRriS11_0:$addr)), (LDriub ADDRriS11_0:$addr) >; def : Pat < (i32 (sextloadi16 ADDRriS11_1:$addr)), (LDrih ADDRriS11_1:$addr) >; def : Pat < (i32 (zextloadi16 ADDRriS11_1:$addr)), (LDriuh ADDRriS11_1:$addr) >; def : Pat < (i32 (load ADDRriS11_2:$addr)), (LDriw ADDRriS11_2:$addr) >; def : Pat < (i64 (load ADDRriS11_3:$addr)), (LDrid ADDRriS11_3:$addr) >; // Load - Base with Immediate offset addressing mode multiclass LD_Idxd_Pbase { let isPredicatedNew = isPredNew in def NAME : LDInst2<(outs RC:$dst), (ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3), !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", ") ")#"$dst = "#mnemonic#"($src2+#$src3)", []>; } multiclass LD_Idxd_Pred { let isPredicatedFalse = PredNot in { defm _c#NAME : LD_Idxd_Pbase; // Predicate new defm _cdn#NAME : LD_Idxd_Pbase; } } let isExtendable = 1, neverHasSideEffects = 1 in multiclass LD_Idxd ImmBits, bits<5> PredImmBits> { let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in { let opExtendable = 2, isExtentSigned = 1, opExtentBits = ImmBits, isPredicable = 1, AddedComplexity = 20 in def NAME : LDInst2<(outs RC:$dst), (ins IntRegs:$src1, ImmOp:$offset), "$dst = "#mnemonic#"($src1+#$offset)", []>; let opExtendable = 3, isExtentSigned = 0, opExtentBits = PredImmBits, isPredicated = 1 in { defm Pt : LD_Idxd_Pred; defm NotPt : LD_Idxd_Pred; } } } let addrMode = BaseImmOffset in { let accessSize = ByteAccess in { defm LDrib_indexed: LD_Idxd <"memb", "LDrib", IntRegs, s11_0Ext, u6_0Ext, 11, 6>, AddrModeRel; defm LDriub_indexed: LD_Idxd <"memub" , "LDriub", IntRegs, s11_0Ext, u6_0Ext, 11, 6>, AddrModeRel; } let accessSize = HalfWordAccess in { defm LDrih_indexed: LD_Idxd <"memh", "LDrih", IntRegs, s11_1Ext, u6_1Ext, 12, 7>, AddrModeRel; defm LDriuh_indexed: LD_Idxd <"memuh", "LDriuh", IntRegs, s11_1Ext, u6_1Ext, 12, 7>, AddrModeRel; } let accessSize = WordAccess in defm LDriw_indexed: LD_Idxd <"memw", "LDriw", IntRegs, s11_2Ext, u6_2Ext, 13, 8>, AddrModeRel; let accessSize = DoubleWordAccess in defm LDrid_indexed: LD_Idxd <"memd", "LDrid", DoubleRegs, s11_3Ext, u6_3Ext, 14, 9>, AddrModeRel; } let AddedComplexity = 20 in { def : Pat < (i32 (sextloadi8 (add IntRegs:$src1, s11_0ExtPred:$offset))), (LDrib_indexed IntRegs:$src1, s11_0ExtPred:$offset) >; def : Pat < (i32 (zextloadi8 (add IntRegs:$src1, s11_0ExtPred:$offset))), (LDriub_indexed IntRegs:$src1, s11_0ExtPred:$offset) >; def : Pat < (i32 (sextloadi16 (add IntRegs:$src1, s11_1ExtPred:$offset))), (LDrih_indexed IntRegs:$src1, s11_1ExtPred:$offset) >; def : Pat < (i32 (zextloadi16 (add IntRegs:$src1, s11_1ExtPred:$offset))), (LDriuh_indexed IntRegs:$src1, s11_1ExtPred:$offset) >; def : Pat < (i32 (load (add IntRegs:$src1, s11_2ExtPred:$offset))), (LDriw_indexed IntRegs:$src1, s11_2ExtPred:$offset) >; def : Pat < (i64 (load (add IntRegs:$src1, s11_3ExtPred:$offset))), (LDrid_indexed IntRegs:$src1, s11_3ExtPred:$offset) >; } //===----------------------------------------------------------------------===// // Post increment load //===----------------------------------------------------------------------===// multiclass LD_PostInc_Pbase { let isPredicatedNew = isPredNew in def NAME : LDInst2PI<(outs RC:$dst, IntRegs:$dst2), (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset), !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", ") ")#"$dst = "#mnemonic#"($src2++#$offset)", [], "$src2 = $dst2">; } multiclass LD_PostInc_Pred { let isPredicatedFalse = PredNot in { defm _c#NAME : LD_PostInc_Pbase; // Predicate new let Predicates = [HasV4T], validSubTargets = HasV4SubT in defm _cdn#NAME#_V4 : LD_PostInc_Pbase; } } multiclass LD_PostInc { let BaseOpcode = "POST_"#BaseOp in { let isPredicable = 1 in def NAME : LDInst2PI<(outs RC:$dst, IntRegs:$dst2), (ins IntRegs:$src1, ImmOp:$offset), "$dst = "#mnemonic#"($src1++#$offset)", [], "$src1 = $dst2">; let isPredicated = 1 in { defm Pt : LD_PostInc_Pred; defm NotPt : LD_PostInc_Pred; } } } let hasCtrlDep = 1, neverHasSideEffects = 1, addrMode = PostInc in { defm POST_LDrib : LD_PostInc<"memb", "LDrib", IntRegs, s4_0Imm>, PredNewRel; defm POST_LDriub : LD_PostInc<"memub", "LDriub", IntRegs, s4_0Imm>, PredNewRel; defm POST_LDrih : LD_PostInc<"memh", "LDrih", IntRegs, s4_1Imm>, PredNewRel; defm POST_LDriuh : LD_PostInc<"memuh", "LDriuh", IntRegs, s4_1Imm>, PredNewRel; defm POST_LDriw : LD_PostInc<"memw", "LDriw", IntRegs, s4_2Imm>, PredNewRel; defm POST_LDrid : LD_PostInc<"memd", "LDrid", DoubleRegs, s4_3Imm>, PredNewRel; } def : Pat< (i32 (extloadi1 ADDRriS11_0:$addr)), (i32 (LDrib ADDRriS11_0:$addr)) >; // Load byte any-extend. def : Pat < (i32 (extloadi8 ADDRriS11_0:$addr)), (i32 (LDrib ADDRriS11_0:$addr)) >; // Indexed load byte any-extend. let AddedComplexity = 20 in def : Pat < (i32 (extloadi8 (add IntRegs:$src1, s11_0ImmPred:$offset))), (i32 (LDrib_indexed IntRegs:$src1, s11_0ImmPred:$offset)) >; def : Pat < (i32 (extloadi16 ADDRriS11_1:$addr)), (i32 (LDrih ADDRriS11_1:$addr))>; let AddedComplexity = 20 in def : Pat < (i32 (extloadi16 (add IntRegs:$src1, s11_1ImmPred:$offset))), (i32 (LDrih_indexed IntRegs:$src1, s11_1ImmPred:$offset)) >; let AddedComplexity = 10 in def : Pat < (i32 (zextloadi1 ADDRriS11_0:$addr)), (i32 (LDriub ADDRriS11_0:$addr))>; let AddedComplexity = 20 in def : Pat < (i32 (zextloadi1 (add IntRegs:$src1, s11_0ImmPred:$offset))), (i32 (LDriub_indexed IntRegs:$src1, s11_0ImmPred:$offset))>; // Load predicate. let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 13, isPseudo = 1, Defs = [R10,R11,D5], neverHasSideEffects = 1 in def LDriw_pred : LDInst2<(outs PredRegs:$dst), (ins MEMri:$addr), "Error; should not emit", []>; // Deallocate stack frame. let Defs = [R29, R30, R31], Uses = [R29], neverHasSideEffects = 1 in { def DEALLOCFRAME : LDInst2<(outs), (ins), "deallocframe", []>; } // Load and unpack bytes to halfwords. //===----------------------------------------------------------------------===// // LD - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/ALU + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/ALU - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/COMPLEX + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/COMPLEX - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/MPYH + //===----------------------------------------------------------------------===// // Multiply and use lower result. // Rd=+mpyi(Rs,#u8) let isExtendable = 1, opExtendable = 2, isExtentSigned = 0, opExtentBits = 8 in def MPYI_riu : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u8Ext:$src2), "$dst =+ mpyi($src1, #$src2)", [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1), u8ExtPred:$src2))]>; // Rd=-mpyi(Rs,#u8) def MPYI_rin : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u8Imm:$src2), "$dst =- mpyi($src1, #$src2)", [(set (i32 IntRegs:$dst), (ineg (mul (i32 IntRegs:$src1), u8ImmPred:$src2)))]>; // Rd=mpyi(Rs,#m9) // s9 is NOT the same as m9 - but it works.. so far. // Assembler maps to either Rd=+mpyi(Rs,#u8 or Rd=-mpyi(Rs,#u8) // depending on the value of m9. See Arch Spec. let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 9, CextOpcode = "MPYI", InputType = "imm" in def MPYI_ri : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s9Ext:$src2), "$dst = mpyi($src1, #$src2)", [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1), s9ExtPred:$src2))]>, ImmRegRel; // Rd=mpyi(Rs,Rt) let CextOpcode = "MPYI", InputType = "reg" in def MPYI : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = mpyi($src1, $src2)", [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>, ImmRegRel; // Rx+=mpyi(Rs,#u8) let isExtendable = 1, opExtendable = 3, isExtentSigned = 0, opExtentBits = 8, CextOpcode = "MPYI_acc", InputType = "imm" in def MPYI_acc_ri : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, u8Ext:$src3), "$dst += mpyi($src2, #$src3)", [(set (i32 IntRegs:$dst), (add (mul (i32 IntRegs:$src2), u8ExtPred:$src3), (i32 IntRegs:$src1)))], "$src1 = $dst">, ImmRegRel; // Rx+=mpyi(Rs,Rt) let CextOpcode = "MPYI_acc", InputType = "reg" in def MPYI_acc_rr : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3), "$dst += mpyi($src2, $src3)", [(set (i32 IntRegs:$dst), (add (mul (i32 IntRegs:$src2), (i32 IntRegs:$src3)), (i32 IntRegs:$src1)))], "$src1 = $dst">, ImmRegRel; // Rx-=mpyi(Rs,#u8) let isExtendable = 1, opExtendable = 3, isExtentSigned = 0, opExtentBits = 8 in def MPYI_sub_ri : MInst_acc<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, u8Ext:$src3), "$dst -= mpyi($src2, #$src3)", [(set (i32 IntRegs:$dst), (sub (i32 IntRegs:$src1), (mul (i32 IntRegs:$src2), u8ExtPred:$src3)))], "$src1 = $dst">; // Multiply and use upper result. // Rd=mpy(Rs,Rt.H):<<1:rnd:sat // Rd=mpy(Rs,Rt.L):<<1:rnd:sat // Rd=mpy(Rs,Rt) def MPY : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = mpy($src1, $src2)", [(set (i32 IntRegs:$dst), (mulhs (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>; // Rd=mpy(Rs,Rt):rnd // Rd=mpyu(Rs,Rt) def MPYU : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = mpyu($src1, $src2)", [(set (i32 IntRegs:$dst), (mulhu (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>; // Multiply and use full result. // Rdd=mpyu(Rs,Rt) def MPYU64 : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = mpyu($src1, $src2)", [(set (i64 DoubleRegs:$dst), (mul (i64 (anyext (i32 IntRegs:$src1))), (i64 (anyext (i32 IntRegs:$src2)))))]>; // Rdd=mpy(Rs,Rt) def MPY64 : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = mpy($src1, $src2)", [(set (i64 DoubleRegs:$dst), (mul (i64 (sext (i32 IntRegs:$src1))), (i64 (sext (i32 IntRegs:$src2)))))]>; // Multiply and accumulate, use full result. // Rxx[+-]=mpy(Rs,Rt) // Rxx+=mpy(Rs,Rt) def MPY64_acc : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3), "$dst += mpy($src2, $src3)", [(set (i64 DoubleRegs:$dst), (add (mul (i64 (sext (i32 IntRegs:$src2))), (i64 (sext (i32 IntRegs:$src3)))), (i64 DoubleRegs:$src1)))], "$src1 = $dst">; // Rxx-=mpy(Rs,Rt) def MPY64_sub : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3), "$dst -= mpy($src2, $src3)", [(set (i64 DoubleRegs:$dst), (sub (i64 DoubleRegs:$src1), (mul (i64 (sext (i32 IntRegs:$src2))), (i64 (sext (i32 IntRegs:$src3))))))], "$src1 = $dst">; // Rxx[+-]=mpyu(Rs,Rt) // Rxx+=mpyu(Rs,Rt) def MPYU64_acc : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3), "$dst += mpyu($src2, $src3)", [(set (i64 DoubleRegs:$dst), (add (mul (i64 (anyext (i32 IntRegs:$src2))), (i64 (anyext (i32 IntRegs:$src3)))), (i64 DoubleRegs:$src1)))], "$src1 = $dst">; // Rxx-=mpyu(Rs,Rt) def MPYU64_sub : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3), "$dst -= mpyu($src2, $src3)", [(set (i64 DoubleRegs:$dst), (sub (i64 DoubleRegs:$src1), (mul (i64 (anyext (i32 IntRegs:$src2))), (i64 (anyext (i32 IntRegs:$src3))))))], "$src1 = $dst">; let InputType = "reg", CextOpcode = "ADD_acc" in def ADDrr_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3), "$dst += add($src2, $src3)", [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2), (i32 IntRegs:$src3)), (i32 IntRegs:$src1)))], "$src1 = $dst">, ImmRegRel; let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8, InputType = "imm", CextOpcode = "ADD_acc" in def ADDri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1, IntRegs:$src2, s8Ext:$src3), "$dst += add($src2, #$src3)", [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2), s8_16ExtPred:$src3), (i32 IntRegs:$src1)))], "$src1 = $dst">, ImmRegRel; let CextOpcode = "SUB_acc", InputType = "reg" in def SUBrr_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3), "$dst -= add($src2, $src3)", [(set (i32 IntRegs:$dst), (sub (i32 IntRegs:$src1), (add (i32 IntRegs:$src2), (i32 IntRegs:$src3))))], "$src1 = $dst">, ImmRegRel; let isExtendable = 1, opExtendable = 3, isExtentSigned = 1, opExtentBits = 8, CextOpcode = "SUB_acc", InputType = "imm" in def SUBri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1, IntRegs:$src2, s8Ext:$src3), "$dst -= add($src2, #$src3)", [(set (i32 IntRegs:$dst), (sub (i32 IntRegs:$src1), (add (i32 IntRegs:$src2), s8_16ExtPred:$src3)))], "$src1 = $dst">, ImmRegRel; //===----------------------------------------------------------------------===// // MTYPE/MPYH - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/MPYS + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/MPYS - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/VB + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/VB - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/VH + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MTYPE/VH - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // ST + //===----------------------------------------------------------------------===// /// // Store doubleword. //===----------------------------------------------------------------------===// // Post increment store //===----------------------------------------------------------------------===// multiclass ST_PostInc_Pbase { let isPredicatedNew = isPredNew in def NAME : STInst2PI<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset, RC:$src3), !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", ") ")#mnemonic#"($src2++#$offset) = $src3", [], "$src2 = $dst">; } multiclass ST_PostInc_Pred { let isPredicatedFalse = PredNot in { defm _c#NAME : ST_PostInc_Pbase; // Predicate new let Predicates = [HasV4T], validSubTargets = HasV4SubT in defm _cdn#NAME#_V4 : ST_PostInc_Pbase; } } let hasCtrlDep = 1, isNVStorable = 1, neverHasSideEffects = 1 in multiclass ST_PostInc { let hasCtrlDep = 1, BaseOpcode = "POST_"#BaseOp in { let isPredicable = 1 in def NAME : STInst2PI<(outs IntRegs:$dst), (ins IntRegs:$src1, ImmOp:$offset, RC:$src2), mnemonic#"($src1++#$offset) = $src2", [], "$src1 = $dst">; let isPredicated = 1 in { defm Pt : ST_PostInc_Pred; defm NotPt : ST_PostInc_Pred; } } } defm POST_STbri: ST_PostInc <"memb", "STrib", IntRegs, s4_0Imm>, AddrModeRel; defm POST_SThri: ST_PostInc <"memh", "STrih", IntRegs, s4_1Imm>, AddrModeRel; defm POST_STwri: ST_PostInc <"memw", "STriw", IntRegs, s4_2Imm>, AddrModeRel; let isNVStorable = 0 in defm POST_STdri: ST_PostInc <"memd", "STrid", DoubleRegs, s4_3Imm>, AddrModeRel; def : Pat<(post_truncsti8 (i32 IntRegs:$src1), IntRegs:$src2, s4_3ImmPred:$offset), (POST_STbri IntRegs:$src2, s4_0ImmPred:$offset, IntRegs:$src1)>; def : Pat<(post_truncsti16 (i32 IntRegs:$src1), IntRegs:$src2, s4_3ImmPred:$offset), (POST_SThri IntRegs:$src2, s4_1ImmPred:$offset, IntRegs:$src1)>; def : Pat<(post_store (i32 IntRegs:$src1), IntRegs:$src2, s4_2ImmPred:$offset), (POST_STwri IntRegs:$src2, s4_1ImmPred:$offset, IntRegs:$src1)>; def : Pat<(post_store (i64 DoubleRegs:$src1), IntRegs:$src2, s4_3ImmPred:$offset), (POST_STdri IntRegs:$src2, s4_3ImmPred:$offset, DoubleRegs:$src1)>; //===----------------------------------------------------------------------===// // multiclass for the store instructions with MEMri operand. //===----------------------------------------------------------------------===// multiclass ST_MEMri_Pbase { let isPredicatedNew = isPredNew in def NAME : STInst2<(outs), (ins PredRegs:$src1, MEMri:$addr, RC: $src2), !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", ") ")#mnemonic#"($addr) = $src2", []>; } multiclass ST_MEMri_Pred { let isPredicatedFalse = PredNot in { defm _c#NAME : ST_MEMri_Pbase; // Predicate new let validSubTargets = HasV4SubT, Predicates = [HasV4T] in defm _cdn#NAME#_V4 : ST_MEMri_Pbase; } } let isExtendable = 1, isNVStorable = 1, neverHasSideEffects = 1 in multiclass ST_MEMri ImmBits, bits<5> PredImmBits> { let CextOpcode = CextOp, BaseOpcode = CextOp in { let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits, isPredicable = 1 in def NAME : STInst2<(outs), (ins MEMri:$addr, RC:$src), mnemonic#"($addr) = $src", []>; let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits, isPredicated = 1 in { defm Pt : ST_MEMri_Pred; defm NotPt : ST_MEMri_Pred; } } } let addrMode = BaseImmOffset, isMEMri = "true" in { let accessSize = ByteAccess in defm STrib: ST_MEMri < "memb", "STrib", IntRegs, 11, 6>, AddrModeRel; let accessSize = HalfWordAccess in defm STrih: ST_MEMri < "memh", "STrih", IntRegs, 12, 7>, AddrModeRel; let accessSize = WordAccess in defm STriw: ST_MEMri < "memw", "STriw", IntRegs, 13, 8>, AddrModeRel; let accessSize = DoubleWordAccess, isNVStorable = 0 in defm STrid: ST_MEMri < "memd", "STrid", DoubleRegs, 14, 9>, AddrModeRel; } def : Pat<(truncstorei8 (i32 IntRegs:$src1), ADDRriS11_0:$addr), (STrib ADDRriS11_0:$addr, (i32 IntRegs:$src1))>; def : Pat<(truncstorei16 (i32 IntRegs:$src1), ADDRriS11_1:$addr), (STrih ADDRriS11_1:$addr, (i32 IntRegs:$src1))>; def : Pat<(store (i32 IntRegs:$src1), ADDRriS11_2:$addr), (STriw ADDRriS11_2:$addr, (i32 IntRegs:$src1))>; def : Pat<(store (i64 DoubleRegs:$src1), ADDRriS11_3:$addr), (STrid ADDRriS11_3:$addr, (i64 DoubleRegs:$src1))>; //===----------------------------------------------------------------------===// // multiclass for the store instructions with base+immediate offset // addressing mode //===----------------------------------------------------------------------===// multiclass ST_Idxd_Pbase { let isPredicatedNew = isPredNew in def NAME : STInst2<(outs), (ins PredRegs:$src1, IntRegs:$src2, predImmOp:$src3, RC: $src4), !if(isNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ", ") ")#mnemonic#"($src2+#$src3) = $src4", []>; } multiclass ST_Idxd_Pred { let isPredicatedFalse = PredNot, isPredicated = 1 in { defm _c#NAME : ST_Idxd_Pbase; // Predicate new let validSubTargets = HasV4SubT, Predicates = [HasV4T] in defm _cdn#NAME#_V4 : ST_Idxd_Pbase; } } let isExtendable = 1, isNVStorable = 1, neverHasSideEffects = 1 in multiclass ST_Idxd ImmBits, bits<5> PredImmBits> { let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in { let opExtendable = 1, isExtentSigned = 1, opExtentBits = ImmBits, isPredicable = 1 in def NAME : STInst2<(outs), (ins IntRegs:$src1, ImmOp:$src2, RC:$src3), mnemonic#"($src1+#$src2) = $src3", []>; let opExtendable = 2, isExtentSigned = 0, opExtentBits = PredImmBits in { defm Pt : ST_Idxd_Pred; defm NotPt : ST_Idxd_Pred; } } } let addrMode = BaseImmOffset, InputType = "reg" in { let accessSize = ByteAccess in defm STrib_indexed: ST_Idxd < "memb", "STrib", IntRegs, s11_0Ext, u6_0Ext, 11, 6>, AddrModeRel, ImmRegRel; let accessSize = HalfWordAccess in defm STrih_indexed: ST_Idxd < "memh", "STrih", IntRegs, s11_1Ext, u6_1Ext, 12, 7>, AddrModeRel, ImmRegRel; let accessSize = WordAccess in defm STriw_indexed: ST_Idxd < "memw", "STriw", IntRegs, s11_2Ext, u6_2Ext, 13, 8>, AddrModeRel, ImmRegRel; let accessSize = DoubleWordAccess, isNVStorable = 0 in defm STrid_indexed: ST_Idxd < "memd", "STrid", DoubleRegs, s11_3Ext, u6_3Ext, 14, 9>, AddrModeRel; } let AddedComplexity = 10 in { def : Pat<(truncstorei8 (i32 IntRegs:$src1), (add IntRegs:$src2, s11_0ExtPred:$offset)), (STrib_indexed IntRegs:$src2, s11_0ImmPred:$offset, (i32 IntRegs:$src1))>; def : Pat<(truncstorei16 (i32 IntRegs:$src1), (add IntRegs:$src2, s11_1ExtPred:$offset)), (STrih_indexed IntRegs:$src2, s11_1ImmPred:$offset, (i32 IntRegs:$src1))>; def : Pat<(store (i32 IntRegs:$src1), (add IntRegs:$src2, s11_2ExtPred:$offset)), (STriw_indexed IntRegs:$src2, s11_2ImmPred:$offset, (i32 IntRegs:$src1))>; def : Pat<(store (i64 DoubleRegs:$src1), (add IntRegs:$src2, s11_3ExtPred:$offset)), (STrid_indexed IntRegs:$src2, s11_3ImmPred:$offset, (i64 DoubleRegs:$src1))>; } // memh(Rx++#s4:1)=Rt.H // Store word. // Store predicate. let Defs = [R10,R11,D5], neverHasSideEffects = 1 in def STriw_pred : STInst2<(outs), (ins MEMri:$addr, PredRegs:$src1), "Error; should not emit", []>; // Allocate stack frame. let Defs = [R29, R30], Uses = [R31, R30], neverHasSideEffects = 1 in { def ALLOCFRAME : STInst2<(outs), (ins i32imm:$amt), "allocframe(#$amt)", []>; } //===----------------------------------------------------------------------===// // ST - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/ALU + //===----------------------------------------------------------------------===// // Logical NOT. def NOT_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1), "$dst = not($src1)", [(set (i64 DoubleRegs:$dst), (not (i64 DoubleRegs:$src1)))]>; // Sign extend word to doubleword. def SXTW : ALU64_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src1), "$dst = sxtw($src1)", [(set (i64 DoubleRegs:$dst), (sext (i32 IntRegs:$src1)))]>; //===----------------------------------------------------------------------===// // STYPE/ALU - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/BIT + //===----------------------------------------------------------------------===// // clrbit. def CLRBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), "$dst = clrbit($src1, #$src2)", [(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1), (not (shl 1, u5ImmPred:$src2))))]>; def CLRBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), "$dst = clrbit($src1, #$src2)", []>; // Map from r0 = and(r1, 2147483647) to r0 = clrbit(r1, #31). def : Pat <(and (i32 IntRegs:$src1), 2147483647), (CLRBIT_31 (i32 IntRegs:$src1), 31)>; // setbit. def SETBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), "$dst = setbit($src1, #$src2)", [(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1), (shl 1, u5ImmPred:$src2)))]>; // Map from r0 = or(r1, -2147483648) to r0 = setbit(r1, #31). def SETBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), "$dst = setbit($src1, #$src2)", []>; def : Pat <(or (i32 IntRegs:$src1), -2147483648), (SETBIT_31 (i32 IntRegs:$src1), 31)>; // togglebit. def TOGBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), "$dst = setbit($src1, #$src2)", [(set (i32 IntRegs:$dst), (xor (i32 IntRegs:$src1), (shl 1, u5ImmPred:$src2)))]>; // Map from r0 = xor(r1, -2147483648) to r0 = togglebit(r1, #31). def TOGBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), "$dst = togglebit($src1, #$src2)", []>; def : Pat <(xor (i32 IntRegs:$src1), -2147483648), (TOGBIT_31 (i32 IntRegs:$src1), 31)>; // Predicate transfer. let neverHasSideEffects = 1 in def TFR_RsPd : SInst<(outs IntRegs:$dst), (ins PredRegs:$src1), "$dst = $src1 /* Should almost never emit this. */", []>; def TFR_PdRs : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1), "$dst = $src1 /* Should almost never emit this. */", [(set (i1 PredRegs:$dst), (trunc (i32 IntRegs:$src1)))]>; //===----------------------------------------------------------------------===// // STYPE/PRED - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/SHIFT + //===----------------------------------------------------------------------===// // Shift by immediate. def ASR_ri : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), "$dst = asr($src1, #$src2)", [(set (i32 IntRegs:$dst), (sra (i32 IntRegs:$src1), u5ImmPred:$src2))]>; def ASRd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2), "$dst = asr($src1, #$src2)", [(set (i64 DoubleRegs:$dst), (sra (i64 DoubleRegs:$src1), u6ImmPred:$src2))]>; def ASL : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), "$dst = asl($src1, #$src2)", [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1), u5ImmPred:$src2))]>; def ASLd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2), "$dst = asl($src1, #$src2)", [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1), u6ImmPred:$src2))]>; def LSR_ri : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), "$dst = lsr($src1, #$src2)", [(set (i32 IntRegs:$dst), (srl (i32 IntRegs:$src1), u5ImmPred:$src2))]>; def LSRd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2), "$dst = lsr($src1, #$src2)", [(set (i64 DoubleRegs:$dst), (srl (i64 DoubleRegs:$src1), u6ImmPred:$src2))]>; // Shift by immediate and add. let AddedComplexity = 100 in def ADDASL : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, u3Imm:$src3), "$dst = addasl($src1, $src2, #$src3)", [(set (i32 IntRegs:$dst), (add (i32 IntRegs:$src1), (shl (i32 IntRegs:$src2), u3ImmPred:$src3)))]>; // Shift by register. def ASL_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = asl($src1, $src2)", [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>; def ASR_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = asr($src1, $src2)", [(set (i32 IntRegs:$dst), (sra (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>; def LSL_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = lsl($src1, $src2)", [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>; def LSR_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = lsr($src1, $src2)", [(set (i32 IntRegs:$dst), (srl (i32 IntRegs:$src1), (i32 IntRegs:$src2)))]>; def ASLd : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2), "$dst = asl($src1, $src2)", [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1), (i32 IntRegs:$src2)))]>; def LSLd : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2), "$dst = lsl($src1, $src2)", [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1), (i32 IntRegs:$src2)))]>; def ASRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2), "$dst = asr($src1, $src2)", [(set (i64 DoubleRegs:$dst), (sra (i64 DoubleRegs:$src1), (i32 IntRegs:$src2)))]>; def LSRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2), "$dst = lsr($src1, $src2)", [(set (i64 DoubleRegs:$dst), (srl (i64 DoubleRegs:$src1), (i32 IntRegs:$src2)))]>; //===----------------------------------------------------------------------===// // STYPE/SHIFT - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/VH + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/VH - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/VW + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // STYPE/VW - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // SYSTEM/SUPER + //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // SYSTEM/USER + //===----------------------------------------------------------------------===// def SDHexagonBARRIER: SDTypeProfile<0, 0, []>; def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDHexagonBARRIER, [SDNPHasChain]>; let hasSideEffects = 1, isSolo = 1 in def BARRIER : SYSInst<(outs), (ins), "barrier", [(HexagonBARRIER)]>; //===----------------------------------------------------------------------===// // SYSTEM/SUPER - //===----------------------------------------------------------------------===// // TFRI64 - assembly mapped. let isReMaterializable = 1 in def TFRI64 : ALU64_rr<(outs DoubleRegs:$dst), (ins s8Imm64:$src1), "$dst = #$src1", [(set (i64 DoubleRegs:$dst), s8Imm64Pred:$src1)]>; // Pseudo instruction to encode a set of conditional transfers. // This instruction is used instead of a mux and trades-off codesize // for performance. We conduct this transformation optimistically in // the hope that these instructions get promoted to dot-new transfers. let AddedComplexity = 100, isPredicated = 1 in def TFR_condset_rr : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), "Error; should not emit", [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2), (i32 IntRegs:$src3))))]>; let AddedComplexity = 100, isPredicated = 1 in def TFR_condset_ri : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, s12Imm:$src3), "Error; should not emit", [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2), s12ImmPred:$src3)))]>; let AddedComplexity = 100, isPredicated = 1 in def TFR_condset_ir : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, s12Imm:$src2, IntRegs:$src3), "Error; should not emit", [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), s12ImmPred:$src2, (i32 IntRegs:$src3))))]>; let AddedComplexity = 100, isPredicated = 1 in def TFR_condset_ii : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, s12Imm:$src2, s12Imm:$src3), "Error; should not emit", [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), s12ImmPred:$src2, s12ImmPred:$src3)))]>; // Generate frameindex addresses. let isReMaterializable = 1 in def TFR_FI : ALU32_ri<(outs IntRegs:$dst), (ins FrameIndex:$src1), "$dst = add($src1)", [(set (i32 IntRegs:$dst), ADDRri:$src1)]>; // // CR - Type. // let neverHasSideEffects = 1, Defs = [SA0, LC0] in { def LOOP0_i : CRInst<(outs), (ins brtarget:$offset, u10Imm:$src2), "loop0($offset, #$src2)", []>; } let neverHasSideEffects = 1, Defs = [SA0, LC0] in { def LOOP0_r : CRInst<(outs), (ins brtarget:$offset, IntRegs:$src2), "loop0($offset, $src2)", []>; } let isBranch = 1, isTerminator = 1, neverHasSideEffects = 1, Defs = [PC, LC0], Uses = [SA0, LC0] in { def ENDLOOP0 : Endloop<(outs), (ins brtarget:$offset), ":endloop0", []>; } // Support for generating global address. // Taken from X86InstrInfo.td. def SDTHexagonCONST32 : SDTypeProfile<1, 1, [ SDTCisVT<0, i32>, SDTCisVT<1, i32>, SDTCisPtrTy<0>]>; def HexagonCONST32 : SDNode<"HexagonISD::CONST32", SDTHexagonCONST32>; def HexagonCONST32_GP : SDNode<"HexagonISD::CONST32_GP", SDTHexagonCONST32>; // HI/LO Instructions let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in def LO : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst.l = #LO($global)", []>; let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in def HI : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst.h = #HI($global)", []>; let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in def LOi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value), "$dst.l = #LO($imm_value)", []>; let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in def HIi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value), "$dst.h = #HI($imm_value)", []>; let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in def LO_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt), "$dst.l = #LO($jt)", []>; let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in def HI_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt), "$dst.h = #HI($jt)", []>; let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in def LO_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label), "$dst.l = #LO($label)", []>; let isReMaterializable = 1, isMoveImm = 1 , neverHasSideEffects = 1 in def HI_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label), "$dst.h = #HI($label)", []>; // This pattern is incorrect. When we add small data, we should change // this pattern to use memw(#foo). // This is for sdata. let isMoveImm = 1 in def CONST32 : LDInst<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst = CONST32(#$global)", [(set (i32 IntRegs:$dst), (load (HexagonCONST32 tglobaltlsaddr:$global)))]>; // This is for non-sdata. let isReMaterializable = 1, isMoveImm = 1 in def CONST32_set : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst = CONST32(#$global)", [(set (i32 IntRegs:$dst), (HexagonCONST32 tglobaladdr:$global))]>; let isReMaterializable = 1, isMoveImm = 1 in def CONST32_set_jt : LDInst2<(outs IntRegs:$dst), (ins jumptablebase:$jt), "$dst = CONST32(#$jt)", [(set (i32 IntRegs:$dst), (HexagonCONST32 tjumptable:$jt))]>; let isReMaterializable = 1, isMoveImm = 1 in def CONST32GP_set : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global), "$dst = CONST32(#$global)", [(set (i32 IntRegs:$dst), (HexagonCONST32_GP tglobaladdr:$global))]>; let isReMaterializable = 1, isMoveImm = 1 in def CONST32_Int_Real : LDInst2<(outs IntRegs:$dst), (ins i32imm:$global), "$dst = CONST32(#$global)", [(set (i32 IntRegs:$dst), imm:$global) ]>; // Map BlockAddress lowering to CONST32_Int_Real def : Pat<(HexagonCONST32_GP tblockaddress:$addr), (CONST32_Int_Real tblockaddress:$addr)>; let isReMaterializable = 1, isMoveImm = 1 in def CONST32_Label : LDInst2<(outs IntRegs:$dst), (ins bblabel:$label), "$dst = CONST32($label)", [(set (i32 IntRegs:$dst), (HexagonCONST32 bbl:$label))]>; let isReMaterializable = 1, isMoveImm = 1 in def CONST64_Int_Real : LDInst2<(outs DoubleRegs:$dst), (ins i64imm:$global), "$dst = CONST64(#$global)", [(set (i64 DoubleRegs:$dst), imm:$global) ]>; def TFR_PdFalse : SInst<(outs PredRegs:$dst), (ins), "$dst = xor($dst, $dst)", [(set (i1 PredRegs:$dst), 0)]>; def MPY_trsext : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), "$dst = mpy($src1, $src2)", [(set (i32 IntRegs:$dst), (trunc (i64 (srl (i64 (mul (i64 (sext (i32 IntRegs:$src1))), (i64 (sext (i32 IntRegs:$src2))))), (i32 32)))))]>; // Pseudo instructions. def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>; def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>; def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart, [SDNPHasChain, SDNPOutGlue]>; def SDT_SPCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; def call : SDNode<"HexagonISD::CALL", SDT_SPCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; // For tailcalls a HexagonTCRet SDNode has 3 SDNode Properties - a chain, // Optional Flag and Variable Arguments. // Its 1 Operand has pointer type. def HexagonTCRet : SDNode<"HexagonISD::TC_RETURN", SDT_SPCall, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; let Defs = [R29, R30], Uses = [R31, R30, R29] in { def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt), "Should never be emitted", [(callseq_start timm:$amt)]>; } let Defs = [R29, R30, R31], Uses = [R29] in { def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), "Should never be emitted", [(callseq_end timm:$amt1, timm:$amt2)]>; } // Call subroutine. let isCall = 1, neverHasSideEffects = 1, Defs = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, R22, R23, R28, R31, P0, P1, P2, P3, LC0, LC1, SA0, SA1] in { def CALL : JInst<(outs), (ins calltarget:$dst), "call $dst", []>; } // Call subroutine from register. let isCall = 1, neverHasSideEffects = 1, Defs = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, R22, R23, R28, R31, P0, P1, P2, P3, LC0, LC1, SA0, SA1] in { def CALLR : JRInst<(outs), (ins IntRegs:$dst), "callr $dst", []>; } // Indirect tail-call. let isCodeGenOnly = 1, isCall = 1, isReturn = 1 in def TCRETURNR : T_JMPr; // Direct tail-calls. let isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0, isTerminator = 1, isCodeGenOnly = 1 in { def TCRETURNtg : T_JMP<(ins calltarget:$dst)>; def TCRETURNtext : T_JMP<(ins calltarget:$dst)>; } // Map call instruction. def : Pat<(call (i32 IntRegs:$dst)), (CALLR (i32 IntRegs:$dst))>, Requires<[HasV2TOnly]>; def : Pat<(call tglobaladdr:$dst), (CALL tglobaladdr:$dst)>, Requires<[HasV2TOnly]>; def : Pat<(call texternalsym:$dst), (CALL texternalsym:$dst)>, Requires<[HasV2TOnly]>; //Tail calls. def : Pat<(HexagonTCRet tglobaladdr:$dst), (TCRETURNtg tglobaladdr:$dst)>; def : Pat<(HexagonTCRet texternalsym:$dst), (TCRETURNtext texternalsym:$dst)>; def : Pat<(HexagonTCRet (i32 IntRegs:$dst)), (TCRETURNR (i32 IntRegs:$dst))>; // Atomic load and store support // 8 bit atomic load def : Pat<(atomic_load_8 ADDRriS11_0:$src1), (i32 (LDriub ADDRriS11_0:$src1))>; def : Pat<(atomic_load_8 (add (i32 IntRegs:$src1), s11_0ImmPred:$offset)), (i32 (LDriub_indexed (i32 IntRegs:$src1), s11_0ImmPred:$offset))>; // 16 bit atomic load def : Pat<(atomic_load_16 ADDRriS11_1:$src1), (i32 (LDriuh ADDRriS11_1:$src1))>; def : Pat<(atomic_load_16 (add (i32 IntRegs:$src1), s11_1ImmPred:$offset)), (i32 (LDriuh_indexed (i32 IntRegs:$src1), s11_1ImmPred:$offset))>; def : Pat<(atomic_load_32 ADDRriS11_2:$src1), (i32 (LDriw ADDRriS11_2:$src1))>; def : Pat<(atomic_load_32 (add (i32 IntRegs:$src1), s11_2ImmPred:$offset)), (i32 (LDriw_indexed (i32 IntRegs:$src1), s11_2ImmPred:$offset))>; // 64 bit atomic load def : Pat<(atomic_load_64 ADDRriS11_3:$src1), (i64 (LDrid ADDRriS11_3:$src1))>; def : Pat<(atomic_load_64 (add (i32 IntRegs:$src1), s11_3ImmPred:$offset)), (i64 (LDrid_indexed (i32 IntRegs:$src1), s11_3ImmPred:$offset))>; def : Pat<(atomic_store_8 ADDRriS11_0:$src2, (i32 IntRegs:$src1)), (STrib ADDRriS11_0:$src2, (i32 IntRegs:$src1))>; def : Pat<(atomic_store_8 (add (i32 IntRegs:$src2), s11_0ImmPred:$offset), (i32 IntRegs:$src1)), (STrib_indexed (i32 IntRegs:$src2), s11_0ImmPred:$offset, (i32 IntRegs:$src1))>; def : Pat<(atomic_store_16 ADDRriS11_1:$src2, (i32 IntRegs:$src1)), (STrih ADDRriS11_1:$src2, (i32 IntRegs:$src1))>; def : Pat<(atomic_store_16 (i32 IntRegs:$src1), (add (i32 IntRegs:$src2), s11_1ImmPred:$offset)), (STrih_indexed (i32 IntRegs:$src2), s11_1ImmPred:$offset, (i32 IntRegs:$src1))>; def : Pat<(atomic_store_32 ADDRriS11_2:$src2, (i32 IntRegs:$src1)), (STriw ADDRriS11_2:$src2, (i32 IntRegs:$src1))>; def : Pat<(atomic_store_32 (add (i32 IntRegs:$src2), s11_2ImmPred:$offset), (i32 IntRegs:$src1)), (STriw_indexed (i32 IntRegs:$src2), s11_2ImmPred:$offset, (i32 IntRegs:$src1))>; def : Pat<(atomic_store_64 ADDRriS11_3:$src2, (i64 DoubleRegs:$src1)), (STrid ADDRriS11_3:$src2, (i64 DoubleRegs:$src1))>; def : Pat<(atomic_store_64 (add (i32 IntRegs:$src2), s11_3ImmPred:$offset), (i64 DoubleRegs:$src1)), (STrid_indexed (i32 IntRegs:$src2), s11_3ImmPred:$offset, (i64 DoubleRegs:$src1))>; // Map from r0 = and(r1, 65535) to r0 = zxth(r1) def : Pat <(and (i32 IntRegs:$src1), 65535), (ZXTH (i32 IntRegs:$src1))>; // Map from r0 = and(r1, 255) to r0 = zxtb(r1). def : Pat <(and (i32 IntRegs:$src1), 255), (ZXTB (i32 IntRegs:$src1))>; // Map Add(p1, true) to p1 = not(p1). // Add(p1, false) should never be produced, // if it does, it got to be mapped to NOOP. def : Pat <(add (i1 PredRegs:$src1), -1), (NOT_p (i1 PredRegs:$src1))>; // Map from p0 = setlt(r0, r1) r2 = mux(p0, r3, r4) => // p0 = cmp.lt(r0, r1), r0 = mux(p0, r2, r1). // cmp.lt(r0, r1) -> cmp.gt(r1, r0) def : Pat <(select (i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i32 IntRegs:$src3), (i32 IntRegs:$src4)), (i32 (TFR_condset_rr (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)), (i32 IntRegs:$src4), (i32 IntRegs:$src3)))>, Requires<[HasV2TOnly]>; // Map from p0 = pnot(p0); r0 = mux(p0, #i, #j) => r0 = mux(p0, #j, #i). def : Pat <(select (not (i1 PredRegs:$src1)), s8ImmPred:$src2, s8ImmPred:$src3), (i32 (TFR_condset_ii (i1 PredRegs:$src1), s8ImmPred:$src3, s8ImmPred:$src2))>; // Map from p0 = pnot(p0); r0 = select(p0, #i, r1) // => r0 = TFR_condset_ri(p0, r1, #i) def : Pat <(select (not (i1 PredRegs:$src1)), s12ImmPred:$src2, (i32 IntRegs:$src3)), (i32 (TFR_condset_ri (i1 PredRegs:$src1), (i32 IntRegs:$src3), s12ImmPred:$src2))>; // Map from p0 = pnot(p0); r0 = mux(p0, r1, #i) // => r0 = TFR_condset_ir(p0, #i, r1) def : Pat <(select (not (i1 PredRegs:$src1)), IntRegs:$src2, s12ImmPred:$src3), (i32 (TFR_condset_ir (i1 PredRegs:$src1), s12ImmPred:$src3, (i32 IntRegs:$src2)))>; // Map from p0 = pnot(p0); if (p0) jump => if (!p0) jump. def : Pat <(brcond (not (i1 PredRegs:$src1)), bb:$offset), (JMP_f (i1 PredRegs:$src1), bb:$offset)>; // Map from p2 = pnot(p2); p1 = and(p0, p2) => p1 = and(p0, !p2). def : Pat <(and (i1 PredRegs:$src1), (not (i1 PredRegs:$src2))), (i1 (AND_pnotp (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>; let AddedComplexity = 100 in def : Pat <(i64 (zextloadi1 (HexagonCONST32 tglobaladdr:$global))), (i64 (COMBINE_rr (TFRI 0), (LDriub_indexed (CONST32_set tglobaladdr:$global), 0)))>, Requires<[NoV4T]>; // Map from i1 loads to 32 bits. This assumes that the i1* is byte aligned. let AddedComplexity = 10 in def : Pat <(i32 (zextloadi1 ADDRriS11_0:$addr)), (i32 (AND_rr (i32 (LDrib ADDRriS11_0:$addr)), (TFRI 0x1)))>; // Map from Rdd = sign_extend_inreg(Rss, i32) -> Rdd = SXTW(Rss.lo). def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i32)), (i64 (SXTW (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg))))>; // Map from Rdd = sign_extend_inreg(Rss, i16) -> Rdd = SXTW(SXTH(Rss.lo)). def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i16)), (i64 (SXTW (i32 (SXTH (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg))))))>; // Map from Rdd = sign_extend_inreg(Rss, i8) -> Rdd = SXTW(SXTB(Rss.lo)). def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i8)), (i64 (SXTW (i32 (SXTB (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg))))))>; // We want to prevent emitting pnot's as much as possible. // Map brcond with an unsupported setcc to a JMP_f. def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))), bb:$offset), (JMP_f (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)), bb:$offset)>; def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), s10ImmPred:$src2)), bb:$offset), (JMP_f (CMPEQri (i32 IntRegs:$src1), s10ImmPred:$src2), bb:$offset)>; def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 -1))), bb:$offset), (JMP_f (i1 PredRegs:$src1), bb:$offset)>; def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 0))), bb:$offset), (JMP_t (i1 PredRegs:$src1), bb:$offset)>; // cmp.lt(Rs, Imm) -> !cmp.ge(Rs, Imm) -> !cmp.gt(Rs, Imm-1) def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), s8ImmPred:$src2)), bb:$offset), (JMP_f (CMPGTri (i32 IntRegs:$src1), (DEC_CONST_SIGNED s8ImmPred:$src2)), bb:$offset)>; // cmp.lt(r0, r1) -> cmp.gt(r1, r0) def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))), bb:$offset), (JMP_t (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)), bb:$offset)>; def : Pat <(brcond (i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), bb:$offset), (JMP_f (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)), bb:$offset)>; def : Pat <(brcond (i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))), bb:$offset), (JMP_f (CMPGTUrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)), bb:$offset)>; def : Pat <(brcond (i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), bb:$offset), (JMP_f (CMPGTU64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)), bb:$offset)>; // Map from a 64-bit select to an emulated 64-bit mux. // Hexagon does not support 64-bit MUXes; so emulate with combines. def : Pat <(select (i1 PredRegs:$src1), (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src3)), (i64 (COMBINE_rr (i32 (MUX_rr (i1 PredRegs:$src1), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3), subreg_hireg)))), (i32 (MUX_rr (i1 PredRegs:$src1), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3), subreg_loreg))))))>; // Map from a 1-bit select to logical ops. // From LegalizeDAG.cpp: (B1 ? B2 : B3) <=> (B1 & B2)|(!B1&B3). def : Pat <(select (i1 PredRegs:$src1), (i1 PredRegs:$src2), (i1 PredRegs:$src3)), (OR_pp (AND_pp (i1 PredRegs:$src1), (i1 PredRegs:$src2)), (AND_pp (NOT_p (i1 PredRegs:$src1)), (i1 PredRegs:$src3)))>; // Map Pd = load(addr) -> Rs = load(addr); Pd = Rs. def : Pat<(i1 (load ADDRriS11_2:$addr)), (i1 (TFR_PdRs (i32 (LDrib ADDRriS11_2:$addr))))>; // Map for truncating from 64 immediates to 32 bit immediates. def : Pat<(i32 (trunc (i64 DoubleRegs:$src))), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg))>; // Map for truncating from i64 immediates to i1 bit immediates. def : Pat<(i1 (trunc (i64 DoubleRegs:$src))), (i1 (TFR_PdRs (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg))))>; // Map memb(Rs) = Rdd -> memb(Rs) = Rt. def : Pat<(truncstorei8 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), (STrib ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg)))>; // Map memh(Rs) = Rdd -> memh(Rs) = Rt. def : Pat<(truncstorei16 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), (STrih ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg)))>; // Map memw(Rs) = Rdd -> memw(Rs) = Rt def : Pat<(truncstorei32 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), (STriw ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg)))>; // Map memw(Rs) = Rdd -> memw(Rs) = Rt. def : Pat<(truncstorei32 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), (STriw ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg)))>; // Map from i1 = constant<-1>; memw(addr) = i1 -> r0 = 1; memw(addr) = r0. def : Pat<(store (i1 -1), ADDRriS11_2:$addr), (STrib ADDRriS11_2:$addr, (TFRI 1))>; // Map from i1 = constant<-1>; store i1 -> r0 = 1; store r0. def : Pat<(store (i1 -1), ADDRriS11_2:$addr), (STrib ADDRriS11_2:$addr, (TFRI 1))>; // Map from memb(Rs) = Pd -> Rt = mux(Pd, #0, #1); store Rt. def : Pat<(store (i1 PredRegs:$src1), ADDRriS11_2:$addr), (STrib ADDRriS11_2:$addr, (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0)) )>; // Map Rdd = anyext(Rs) -> Rdd = sxtw(Rs). // Hexagon_TODO: We can probably use combine but that will cost 2 instructions. // Better way to do this? def : Pat<(i64 (anyext (i32 IntRegs:$src1))), (i64 (SXTW (i32 IntRegs:$src1)))>; // Map cmple -> cmpgt. // rs <= rt -> !(rs > rt). def : Pat<(i1 (setle (i32 IntRegs:$src1), s10ExtPred:$src2)), (i1 (NOT_p (CMPGTri (i32 IntRegs:$src1), s10ExtPred:$src2)))>; // rs <= rt -> !(rs > rt). def : Pat<(i1 (setle (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i1 (NOT_p (CMPGTrr (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>; // Rss <= Rtt -> !(Rss > Rtt). def : Pat<(i1 (setle (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (i1 (NOT_p (CMPGT64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>; // Map cmpne -> cmpeq. // Hexagon_TODO: We should improve on this. // rs != rt -> !(rs == rt). def : Pat <(i1 (setne (i32 IntRegs:$src1), s10ExtPred:$src2)), (i1 (NOT_p(i1 (CMPEQri (i32 IntRegs:$src1), s10ExtPred:$src2))))>; // Map cmpne(Rs) -> !cmpeqe(Rs). // rs != rt -> !(rs == rt). def : Pat <(i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i1 (NOT_p (i1 (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)))))>; // Convert setne back to xor for hexagon since we compute w/ pred registers. def : Pat <(i1 (setne (i1 PredRegs:$src1), (i1 PredRegs:$src2))), (i1 (XOR_pp (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>; // Map cmpne(Rss) -> !cmpew(Rss). // rs != rt -> !(rs == rt). def : Pat <(i1 (setne (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (i1 (NOT_p (i1 (CMPEHexagon4rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)))))>; // Map cmpge(Rs, Rt) -> !(cmpgt(Rs, Rt). // rs >= rt -> !(rt > rs). def : Pat <(i1 (setge (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i1 (NOT_p (i1 (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))))>; // cmpge(Rs, Imm) -> cmpgt(Rs, Imm-1) def : Pat <(i1 (setge (i32 IntRegs:$src1), s8ExtPred:$src2)), (i1 (CMPGTri (i32 IntRegs:$src1), (DEC_CONST_SIGNED s8ExtPred:$src2)))>; // Map cmpge(Rss, Rtt) -> !cmpgt(Rtt, Rss). // rss >= rtt -> !(rtt > rss). def : Pat <(i1 (setge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (i1 (NOT_p (i1 (CMPGT64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))))>; // Map cmplt(Rs, Imm) -> !cmpge(Rs, Imm). // !cmpge(Rs, Imm) -> !cmpgt(Rs, Imm-1). // rs < rt -> !(rs >= rt). def : Pat <(i1 (setlt (i32 IntRegs:$src1), s8ExtPred:$src2)), (i1 (NOT_p (CMPGTri (i32 IntRegs:$src1), (DEC_CONST_SIGNED s8ExtPred:$src2))))>; // Map cmplt(Rs, Rt) -> cmpgt(Rt, Rs). // rs < rt -> rt > rs. // We can let assembler map it, or we can do in the compiler itself. def : Pat <(i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i1 (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>; // Map cmplt(Rss, Rtt) -> cmpgt(Rtt, Rss). // rss < rtt -> (rtt > rss). def : Pat <(i1 (setlt (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (i1 (CMPGT64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>; // Map from cmpltu(Rs, Rd) -> cmpgtu(Rd, Rs) // rs < rt -> rt > rs. // We can let assembler map it, or we can do in the compiler itself. def : Pat <(i1 (setult (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i1 (CMPGTUrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>; // Map from cmpltu(Rss, Rdd) -> cmpgtu(Rdd, Rss). // rs < rt -> rt > rs. def : Pat <(i1 (setult (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (i1 (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>; // Generate cmpgeu(Rs, #0) -> cmpeq(Rs, Rs) def : Pat <(i1 (setuge (i32 IntRegs:$src1), 0)), (i1 (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src1)))>; // Generate cmpgeu(Rs, #u8) -> cmpgtu(Rs, #u8 -1) def : Pat <(i1 (setuge (i32 IntRegs:$src1), u8ExtPred:$src2)), (i1 (CMPGTUri (i32 IntRegs:$src1), (DEC_CONST_UNSIGNED u8ExtPred:$src2)))>; // Generate cmpgtu(Rs, #u9) def : Pat <(i1 (setugt (i32 IntRegs:$src1), u9ExtPred:$src2)), (i1 (CMPGTUri (i32 IntRegs:$src1), u9ExtPred:$src2))>; // Map from Rs >= Rt -> !(Rt > Rs). // rs >= rt -> !(rt > rs). def : Pat <(i1 (setuge (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i1 (NOT_p (CMPGTUrr (i32 IntRegs:$src2), (i32 IntRegs:$src1))))>; // Map from Rs >= Rt -> !(Rt > Rs). // rs >= rt -> !(rt > rs). def : Pat <(i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (i1 (NOT_p (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1))))>; // Map from cmpleu(Rs, Rt) -> !cmpgtu(Rs, Rt). // Map from (Rs <= Rt) -> !(Rs > Rt). def : Pat <(i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))), (i1 (NOT_p (CMPGTUrr (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>; // Map from cmpleu(Rss, Rtt) -> !cmpgtu(Rss, Rtt-1). // Map from (Rs <= Rt) -> !(Rs > Rt). def : Pat <(i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), (i1 (NOT_p (CMPGTU64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>; // Sign extends. // i1 -> i32 def : Pat <(i32 (sext (i1 PredRegs:$src1))), (i32 (MUX_ii (i1 PredRegs:$src1), -1, 0))>; // i1 -> i64 def : Pat <(i64 (sext (i1 PredRegs:$src1))), (i64 (COMBINE_rr (TFRI -1), (MUX_ii (i1 PredRegs:$src1), -1, 0)))>; // Convert sign-extended load back to load and sign extend. // i8 -> i64 def: Pat <(i64 (sextloadi8 ADDRriS11_0:$src1)), (i64 (SXTW (LDrib ADDRriS11_0:$src1)))>; // Convert any-extended load back to load and sign extend. // i8 -> i64 def: Pat <(i64 (extloadi8 ADDRriS11_0:$src1)), (i64 (SXTW (LDrib ADDRriS11_0:$src1)))>; // Convert sign-extended load back to load and sign extend. // i16 -> i64 def: Pat <(i64 (sextloadi16 ADDRriS11_1:$src1)), (i64 (SXTW (LDrih ADDRriS11_1:$src1)))>; // Convert sign-extended load back to load and sign extend. // i32 -> i64 def: Pat <(i64 (sextloadi32 ADDRriS11_2:$src1)), (i64 (SXTW (LDriw ADDRriS11_2:$src1)))>; // Zero extends. // i1 -> i32 def : Pat <(i32 (zext (i1 PredRegs:$src1))), (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>; // i1 -> i64 def : Pat <(i64 (zext (i1 PredRegs:$src1))), (i64 (COMBINE_rr (TFRI 0), (MUX_ii (i1 PredRegs:$src1), 1, 0)))>, Requires<[NoV4T]>; // i32 -> i64 def : Pat <(i64 (zext (i32 IntRegs:$src1))), (i64 (COMBINE_rr (TFRI 0), (i32 IntRegs:$src1)))>, Requires<[NoV4T]>; // i8 -> i64 def: Pat <(i64 (zextloadi8 ADDRriS11_0:$src1)), (i64 (COMBINE_rr (TFRI 0), (LDriub ADDRriS11_0:$src1)))>, Requires<[NoV4T]>; let AddedComplexity = 20 in def: Pat <(i64 (zextloadi8 (add (i32 IntRegs:$src1), s11_0ExtPred:$offset))), (i64 (COMBINE_rr (TFRI 0), (LDriub_indexed IntRegs:$src1, s11_0ExtPred:$offset)))>, Requires<[NoV4T]>; // i1 -> i64 def: Pat <(i64 (zextloadi1 ADDRriS11_0:$src1)), (i64 (COMBINE_rr (TFRI 0), (LDriub ADDRriS11_0:$src1)))>, Requires<[NoV4T]>; let AddedComplexity = 20 in def: Pat <(i64 (zextloadi1 (add (i32 IntRegs:$src1), s11_0ExtPred:$offset))), (i64 (COMBINE_rr (TFRI 0), (LDriub_indexed IntRegs:$src1, s11_0ExtPred:$offset)))>, Requires<[NoV4T]>; // i16 -> i64 def: Pat <(i64 (zextloadi16 ADDRriS11_1:$src1)), (i64 (COMBINE_rr (TFRI 0), (LDriuh ADDRriS11_1:$src1)))>, Requires<[NoV4T]>; let AddedComplexity = 20 in def: Pat <(i64 (zextloadi16 (add (i32 IntRegs:$src1), s11_1ExtPred:$offset))), (i64 (COMBINE_rr (TFRI 0), (LDriuh_indexed IntRegs:$src1, s11_1ExtPred:$offset)))>, Requires<[NoV4T]>; // i32 -> i64 def: Pat <(i64 (zextloadi32 ADDRriS11_2:$src1)), (i64 (COMBINE_rr (TFRI 0), (LDriw ADDRriS11_2:$src1)))>, Requires<[NoV4T]>; let AddedComplexity = 100 in def: Pat <(i64 (zextloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))), (i64 (COMBINE_rr (TFRI 0), (LDriw_indexed IntRegs:$src1, s11_2ExtPred:$offset)))>, Requires<[NoV4T]>; let AddedComplexity = 10 in def: Pat <(i32 (zextloadi1 ADDRriS11_0:$src1)), (i32 (LDriw ADDRriS11_0:$src1))>; // Map from Rs = Pd to Pd = mux(Pd, #1, #0) def : Pat <(i32 (zext (i1 PredRegs:$src1))), (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>; // Map from Rs = Pd to Pd = mux(Pd, #1, #0) def : Pat <(i32 (anyext (i1 PredRegs:$src1))), (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>; // Map from Rss = Pd to Rdd = sxtw (mux(Pd, #1, #0)) def : Pat <(i64 (anyext (i1 PredRegs:$src1))), (i64 (SXTW (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))))>; let AddedComplexity = 100 in def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), (i32 32))), (i64 (zextloadi32 (i32 (add IntRegs:$src2, s11_2ExtPred:$offset2)))))), (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), (LDriw_indexed IntRegs:$src2, s11_2ExtPred:$offset2)))>; def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), (i32 32))), (i64 (zextloadi32 ADDRriS11_2:$srcLow)))), (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), (LDriw ADDRriS11_2:$srcLow)))>; def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), (i32 32))), (i64 (zext (i32 IntRegs:$srcLow))))), (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), IntRegs:$srcLow))>; let AddedComplexity = 100 in def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), (i32 32))), (i64 (zextloadi32 (i32 (add IntRegs:$src2, s11_2ExtPred:$offset2)))))), (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), (LDriw_indexed IntRegs:$src2, s11_2ExtPred:$offset2)))>; def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), (i32 32))), (i64 (zextloadi32 ADDRriS11_2:$srcLow)))), (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), (LDriw ADDRriS11_2:$srcLow)))>; def: Pat<(i64 (or (i64 (shl (i64 DoubleRegs:$srcHigh), (i32 32))), (i64 (zext (i32 IntRegs:$srcLow))))), (i64 (COMBINE_rr (EXTRACT_SUBREG (i64 DoubleRegs:$srcHigh), subreg_loreg), IntRegs:$srcLow))>; // Any extended 64-bit load. // anyext i32 -> i64 def: Pat <(i64 (extloadi32 ADDRriS11_2:$src1)), (i64 (COMBINE_rr (TFRI 0), (LDriw ADDRriS11_2:$src1)))>, Requires<[NoV4T]>; // When there is an offset we should prefer the pattern below over the pattern above. // The complexity of the above is 13 (gleaned from HexagonGenDAGIsel.inc) // So this complexity below is comfortably higher to allow for choosing the below. // If this is not done then we generate addresses such as // ******************************************** // r1 = add (r0, #4) // r1 = memw(r1 + #0) // instead of // r1 = memw(r0 + #4) // ******************************************** let AddedComplexity = 100 in def: Pat <(i64 (extloadi32 (i32 (add IntRegs:$src1, s11_2ExtPred:$offset)))), (i64 (COMBINE_rr (TFRI 0), (LDriw_indexed IntRegs:$src1, s11_2ExtPred:$offset)))>, Requires<[NoV4T]>; // anyext i16 -> i64. def: Pat <(i64 (extloadi16 ADDRriS11_2:$src1)), (i64 (COMBINE_rr (TFRI 0), (LDrih ADDRriS11_2:$src1)))>, Requires<[NoV4T]>; let AddedComplexity = 20 in def: Pat <(i64 (extloadi16 (add (i32 IntRegs:$src1), s11_1ExtPred:$offset))), (i64 (COMBINE_rr (TFRI 0), (LDrih_indexed IntRegs:$src1, s11_1ExtPred:$offset)))>, Requires<[NoV4T]>; // Map from Rdd = zxtw(Rs) -> Rdd = combine(0, Rs). def : Pat<(i64 (zext (i32 IntRegs:$src1))), (i64 (COMBINE_rr (TFRI 0), (i32 IntRegs:$src1)))>, Requires<[NoV4T]>; // Multiply 64-bit unsigned and use upper result. def : Pat <(mulhu (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)), (i64 (MPYU64_acc (i64 (COMBINE_rr (TFRI 0), (i32 (EXTRACT_SUBREG (i64 (LSRd_ri (i64 (MPYU64_acc (i64 (MPYU64_acc (i64 (COMBINE_rr (TFRI 0), (i32 (EXTRACT_SUBREG (i64 (LSRd_ri (i64 (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))), 32)), subreg_loreg)))), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)))), 32)), subreg_loreg)))), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg))))>; // Multiply 64-bit signed and use upper result. def : Pat <(mulhs (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)), (i64 (MPY64_acc (i64 (COMBINE_rr (TFRI 0), (i32 (EXTRACT_SUBREG (i64 (LSRd_ri (i64 (MPY64_acc (i64 (MPY64_acc (i64 (COMBINE_rr (TFRI 0), (i32 (EXTRACT_SUBREG (i64 (LSRd_ri (i64 (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))), 32)), subreg_loreg)))), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)))), 32)), subreg_loreg)))), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg))))>; // Hexagon specific ISD nodes. //def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>]>; def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; def Hexagon_ADJDYNALLOC : SDNode<"HexagonISD::ADJDYNALLOC", SDTHexagonADJDYNALLOC>; // Needed to tag these instructions for stack layout. let usesCustomInserter = 1 in def ADJDYNALLOC : ALU32_ri<(outs IntRegs:$dst), (ins IntRegs:$src1, s16Imm:$src2), "$dst = add($src1, #$src2)", [(set (i32 IntRegs:$dst), (Hexagon_ADJDYNALLOC (i32 IntRegs:$src1), s16ImmPred:$src2))]>; def SDTHexagonARGEXTEND : SDTypeProfile<1, 1, [SDTCisVT<0, i32>]>; def Hexagon_ARGEXTEND : SDNode<"HexagonISD::ARGEXTEND", SDTHexagonARGEXTEND>; def ARGEXTEND : ALU32_rr <(outs IntRegs:$dst), (ins IntRegs:$src1), "$dst = $src1", [(set (i32 IntRegs:$dst), (Hexagon_ARGEXTEND (i32 IntRegs:$src1)))]>; let AddedComplexity = 100 in def : Pat<(i32 (sext_inreg (Hexagon_ARGEXTEND (i32 IntRegs:$src1)), i16)), (COPY (i32 IntRegs:$src1))>; def HexagonWrapperJT: SDNode<"HexagonISD::WrapperJT", SDTIntUnaryOp>; def : Pat<(HexagonWrapperJT tjumptable:$dst), (i32 (CONST32_set_jt tjumptable:$dst))>; // XTYPE/SHIFT // Multi-class for logical operators : // Shift by immediate/register and accumulate/logical multiclass xtype_imm { def _ri : SInst_acc<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, u5Imm:$src3), !strconcat("$dst ", !strconcat(OpcStr, "($src2, #$src3)")), [(set (i32 IntRegs:$dst), (OpNode2 (i32 IntRegs:$src1), (OpNode1 (i32 IntRegs:$src2), u5ImmPred:$src3)))], "$src1 = $dst">; def d_ri : SInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2, u6Imm:$src3), !strconcat("$dst ", !strconcat(OpcStr, "($src2, #$src3)")), [(set (i64 DoubleRegs:$dst), (OpNode2 (i64 DoubleRegs:$src1), (OpNode1 (i64 DoubleRegs:$src2), u6ImmPred:$src3)))], "$src1 = $dst">; } // Multi-class for logical operators : // Shift by register and accumulate/logical (32/64 bits) multiclass xtype_reg { def _rr : SInst_acc<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3), !strconcat("$dst ", !strconcat(OpcStr, "($src2, $src3)")), [(set (i32 IntRegs:$dst), (OpNode2 (i32 IntRegs:$src1), (OpNode1 (i32 IntRegs:$src2), (i32 IntRegs:$src3))))], "$src1 = $dst">; def d_rr : SInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3), !strconcat("$dst ", !strconcat(OpcStr, "($src2, $src3)")), [(set (i64 DoubleRegs:$dst), (OpNode2 (i64 DoubleRegs:$src1), (OpNode1 (i64 DoubleRegs:$src2), (i32 IntRegs:$src3))))], "$src1 = $dst">; } multiclass basic_xtype_imm { let AddedComplexity = 100 in defm _ADD : xtype_imm< !strconcat("+= ", OpcStr), OpNode, add>; defm _SUB : xtype_imm< !strconcat("-= ", OpcStr), OpNode, sub>; defm _AND : xtype_imm< !strconcat("&= ", OpcStr), OpNode, and>; defm _OR : xtype_imm< !strconcat("|= ", OpcStr), OpNode, or>; } multiclass basic_xtype_reg { let AddedComplexity = 100 in defm _ADD : xtype_reg< !strconcat("+= ", OpcStr), OpNode, add>; defm _SUB : xtype_reg< !strconcat("-= ", OpcStr), OpNode, sub>; defm _AND : xtype_reg< !strconcat("&= ", OpcStr), OpNode, and>; defm _OR : xtype_reg< !strconcat("|= ", OpcStr), OpNode, or>; } multiclass xtype_xor_imm { let AddedComplexity = 100 in defm _XOR : xtype_imm< !strconcat("^= ", OpcStr), OpNode, xor>; } defm ASL : basic_xtype_imm<"asl", shl>, basic_xtype_reg<"asl", shl>, xtype_xor_imm<"asl", shl>; defm LSR : basic_xtype_imm<"lsr", srl>, basic_xtype_reg<"lsr", srl>, xtype_xor_imm<"lsr", srl>; defm ASR : basic_xtype_imm<"asr", sra>, basic_xtype_reg<"asr", sra>; defm LSL : basic_xtype_reg<"lsl", shl>; // Change the sign of the immediate for Rd=-mpyi(Rs,#u8) def : Pat <(mul (i32 IntRegs:$src1), (ineg n8ImmPred:$src2)), (i32 (MPYI_rin (i32 IntRegs:$src1), u8ImmPred:$src2))>; //===----------------------------------------------------------------------===// // V3 Instructions + //===----------------------------------------------------------------------===// include "HexagonInstrInfoV3.td" //===----------------------------------------------------------------------===// // V3 Instructions - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // V4 Instructions + //===----------------------------------------------------------------------===// include "HexagonInstrInfoV4.td" //===----------------------------------------------------------------------===// // V4 Instructions - //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // V5 Instructions + //===----------------------------------------------------------------------===// include "HexagonInstrInfoV5.td" //===----------------------------------------------------------------------===// // V5 Instructions - //===----------------------------------------------------------------------===//