//===- HexagonMCInst.cpp - Hexagon sub-class of MCInst --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This class extends MCInst to allow some Hexagon VLIW annotations. // //===----------------------------------------------------------------------===// #include "HexagonInstrInfo.h" #include "MCTargetDesc/HexagonBaseInfo.h" #include "MCTargetDesc/HexagonMCInst.h" #include "MCTargetDesc/HexagonMCTargetDesc.h" using namespace llvm; // Return the slots used by the insn. unsigned HexagonMCInst::getUnits(const HexagonTargetMachine* TM) const { const HexagonInstrInfo* QII = TM->getInstrInfo(); const InstrItineraryData* II = TM->getInstrItineraryData(); const InstrStage* IS = II->beginStage(QII->get(this->getOpcode()).getSchedClass()); return (IS->getUnits()); } // Return the Hexagon ISA class for the insn. unsigned HexagonMCInst::getType() const { const uint64_t F = MCID->TSFlags; return ((F >> HexagonII::TypePos) & HexagonII::TypeMask); } // Return whether the insn is an actual insn. bool HexagonMCInst::isCanon() const { return (!MCID->isPseudo() && !isPrefix() && getType() != HexagonII::TypeENDLOOP); } // Return whether the insn is a prefix. bool HexagonMCInst::isPrefix() const { return (getType() == HexagonII::TypePREFIX); } // Return whether the insn is solo, i.e., cannot be in a packet. bool HexagonMCInst::isSolo() const { const uint64_t F = MCID->TSFlags; return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask); } // Return whether the insn is a new-value consumer. bool HexagonMCInst::isNewValue() const { const uint64_t F = MCID->TSFlags; return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask); } // Return whether the instruction is a legal new-value producer. bool HexagonMCInst::hasNewValue() const { const uint64_t F = MCID->TSFlags; return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask); } // Return the operand that consumes or produces a new value. const MCOperand& HexagonMCInst::getNewValue() const { const uint64_t F = MCID->TSFlags; const unsigned O = (F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask; const MCOperand& MCO = getOperand(O); assert ((isNewValue() || hasNewValue()) && MCO.isReg()); return (MCO); } // Return whether the instruction needs to be constant extended. // 1) Always return true if the instruction has 'isExtended' flag set. // // isExtendable: // 2) For immediate extended operands, return true only if the value is // out-of-range. // 3) For global address, always return true. bool HexagonMCInst::isConstExtended(void) const { if (isExtended()) return true; if (!isExtendable()) return false; short ExtOpNum = getCExtOpNum(); int MinValue = getMinValue(); int MaxValue = getMaxValue(); const MCOperand& MO = getOperand(ExtOpNum); // We could be using an instruction with an extendable immediate and shoehorn // a global address into it. If it is a global address it will be constant // extended. We do this for COMBINE. // We currently only handle isGlobal() because it is the only kind of // object we are going to end up with here for now. // In the future we probably should add isSymbol(), etc. if (MO.isExpr()) return true; // If the extendable operand is not 'Immediate' type, the instruction should // have 'isExtended' flag set. assert(MO.isImm() && "Extendable operand must be Immediate type"); int ImmValue = MO.getImm(); return (ImmValue < MinValue || ImmValue > MaxValue); } // Return whether the instruction must be always extended. bool HexagonMCInst::isExtended(void) const { const uint64_t F = MCID->TSFlags; return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask; } // Return true if the instruction may be extended based on the operand value. bool HexagonMCInst::isExtendable(void) const { const uint64_t F = MCID->TSFlags; return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask; } // Return number of bits in the constant extended operand. unsigned HexagonMCInst::getBitCount(void) const { const uint64_t F = MCID->TSFlags; return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask); } // Return constant extended operand number. unsigned short HexagonMCInst::getCExtOpNum(void) const { const uint64_t F = MCID->TSFlags; return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask); } // Return whether the operand can be constant extended. bool HexagonMCInst::isOperandExtended(const unsigned short OperandNum) const { const uint64_t F = MCID->TSFlags; return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) == OperandNum; } // Return the min value that a constant extendable operand can have // without being extended. int HexagonMCInst::getMinValue(void) const { const uint64_t F = MCID->TSFlags; unsigned isSigned = (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask; unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask; if (isSigned) // if value is signed return -1 << (bits - 1); else return 0; } // Return the max value that a constant extendable operand can have // without being extended. int HexagonMCInst::getMaxValue(void) const { const uint64_t F = MCID->TSFlags; unsigned isSigned = (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask; unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask; if (isSigned) // if value is signed return ~(-1 << (bits - 1)); else return ~(-1 << bits); }