//===-- MipsSubtarget.cpp - Mips Subtarget Information --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Mips specific subclass of TargetSubtargetInfo. // //===----------------------------------------------------------------------===// #include "MipsMachineFunction.h" #include "Mips.h" #include "MipsRegisterInfo.h" #include "MipsSubtarget.h" #include "MipsTargetMachine.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Function.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "mips-subtarget" #define GET_SUBTARGETINFO_TARGET_DESC #define GET_SUBTARGETINFO_CTOR #include "MipsGenSubtargetInfo.inc" // FIXME: Maybe this should be on by default when Mips16 is specified // static cl::opt Mixed16_32( "mips-mixed-16-32", cl::init(false), cl::desc("Allow for a mixture of Mips16 " "and Mips32 code in a single source file"), cl::Hidden); static cl::opt Mips_Os16( "mips-os16", cl::init(false), cl::desc("Compile all functions that don' use " "floating point as Mips 16"), cl::Hidden); static cl::opt Mips16HardFloat("mips16-hard-float", cl::NotHidden, cl::desc("MIPS: mips16 hard float enable."), cl::init(false)); static cl::opt Mips16ConstantIslands( "mips16-constant-islands", cl::NotHidden, cl::desc("MIPS: mips16 constant islands enable."), cl::init(true)); /// Select the Mips CPU for the given triple and cpu name. /// FIXME: Merge with the copy in MipsMCTargetDesc.cpp static inline StringRef selectMipsCPU(StringRef TT, StringRef CPU) { if (CPU.empty() || CPU == "generic") { Triple TheTriple(TT); if (TheTriple.getArch() == Triple::mips || TheTriple.getArch() == Triple::mipsel) CPU = "mips32"; else CPU = "mips64"; } return CPU; } void MipsSubtarget::anchor() { } MipsSubtarget::MipsSubtarget(const std::string &TT, const std::string &CPU, const std::string &FS, bool little, Reloc::Model _RM, MipsTargetMachine *_TM) : MipsGenSubtargetInfo(TT, CPU, FS), MipsArchVersion(Mips32), MipsABI(UnknownABI), IsLittle(little), IsSingleFloat(false), IsFP64bit(false), IsNaN2008bit(false), IsGP64bit(false), HasVFPU(false), HasCnMips(false), IsLinux(true), HasMips3_32(false), HasMips3_32r2(false), HasMips4_32(false), HasMips4_32r2(false), HasMips5_32r2(false), InMips16Mode(false), InMips16HardFloat(Mips16HardFloat), InMicroMipsMode(false), HasDSP(false), HasDSPR2(false), AllowMixed16_32(Mixed16_32 | Mips_Os16), Os16(Mips_Os16), HasMSA(false), RM(_RM), OverrideMode(NoOverride), TM(_TM), TargetTriple(TT) { std::string CPUName = CPU; CPUName = selectMipsCPU(TT, CPUName); // Parse features string. ParseSubtargetFeatures(CPUName, FS); if (InMips16Mode && !TM->Options.UseSoftFloat) { // Hard float for mips16 means essentially to compile as soft float // but to use a runtime library for soft float that is written with // native mips32 floating point instructions (those runtime routines // run in mips32 hard float mode). TM->Options.UseSoftFloat = true; TM->Options.FloatABIType = FloatABI::Soft; InMips16HardFloat = true; } PreviousInMips16Mode = InMips16Mode; // Initialize scheduling itinerary for the specified CPU. InstrItins = getInstrItineraryForCPU(CPUName); // Don't even attempt to generate code for MIPS-I, MIPS-II, MIPS-III, and // MIPS-V. They have not been tested and currently exist for the integrated // assembler only. if (MipsArchVersion == Mips1) report_fatal_error("Code generation for MIPS-I is not implemented", false); if (MipsArchVersion == Mips2) report_fatal_error("Code generation for MIPS-II is not implemented", false); if (MipsArchVersion == Mips3) report_fatal_error("Code generation for MIPS-III is not implemented", false); if (MipsArchVersion == Mips5) report_fatal_error("Code generation for MIPS-V is not implemented", false); // Assert exactly one ABI was chosen. assert(MipsABI != UnknownABI); assert((((getFeatureBits() & Mips::FeatureO32) != 0) + ((getFeatureBits() & Mips::FeatureEABI) != 0) + ((getFeatureBits() & Mips::FeatureN32) != 0) + ((getFeatureBits() & Mips::FeatureN64) != 0)) == 1); // Check if Architecture and ABI are compatible. assert(((!isGP64bit() && (isABI_O32() || isABI_EABI())) || (isGP64bit() && (isABI_N32() || isABI_N64()))) && "Invalid Arch & ABI pair."); if (hasMSA() && !isFP64bit()) report_fatal_error("MSA requires a 64-bit FPU register file (FR=1 mode). " "See -mattr=+fp64.", false); if (hasMips32r6()) { StringRef ISA = hasMips64r6() ? "MIPS64r6" : "MIPS32r6"; assert(isFP64bit()); assert(isNaN2008()); if (hasDSP()) report_fatal_error(ISA + " is not compatible with the DSP ASE", false); } // Is the target system Linux ? if (TT.find("linux") == std::string::npos) IsLinux = false; // Set UseSmallSection. // TODO: Investigate the IsLinux check. I suspect it's really checking for // bare-metal. UseSmallSection = !IsLinux && (RM == Reloc::Static); } bool MipsSubtarget::enablePostRAScheduler(CodeGenOpt::Level OptLevel, TargetSubtargetInfo::AntiDepBreakMode &Mode, RegClassVector &CriticalPathRCs) const { Mode = TargetSubtargetInfo::ANTIDEP_NONE; CriticalPathRCs.clear(); CriticalPathRCs.push_back(isGP64bit() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass); return OptLevel >= CodeGenOpt::Aggressive; } //FIXME: This logic for reseting the subtarget along with // the helper classes can probably be simplified but there are a lot of // cases so we will defer rewriting this to later. // void MipsSubtarget::resetSubtarget(MachineFunction *MF) { bool ChangeToMips16 = false, ChangeToNoMips16 = false; DEBUG(dbgs() << "resetSubtargetFeatures" << "\n"); AttributeSet FnAttrs = MF->getFunction()->getAttributes(); ChangeToMips16 = FnAttrs.hasAttribute(AttributeSet::FunctionIndex, "mips16"); ChangeToNoMips16 = FnAttrs.hasAttribute(AttributeSet::FunctionIndex, "nomips16"); assert (!(ChangeToMips16 & ChangeToNoMips16) && "mips16 and nomips16 specified on the same function"); if (ChangeToMips16) { if (PreviousInMips16Mode) return; OverrideMode = Mips16Override; PreviousInMips16Mode = true; TM->setHelperClassesMips16(); return; } else if (ChangeToNoMips16) { if (!PreviousInMips16Mode) return; OverrideMode = NoMips16Override; PreviousInMips16Mode = false; TM->setHelperClassesMipsSE(); return; } else { if (OverrideMode == NoOverride) return; OverrideMode = NoOverride; DEBUG(dbgs() << "back to default" << "\n"); if (inMips16Mode() && !PreviousInMips16Mode) { TM->setHelperClassesMips16(); PreviousInMips16Mode = true; } else if (!inMips16Mode() && PreviousInMips16Mode) { TM->setHelperClassesMipsSE(); PreviousInMips16Mode = false; } return; } } bool MipsSubtarget::mipsSEUsesSoftFloat() const { return TM->Options.UseSoftFloat && !InMips16HardFloat; } bool MipsSubtarget::useConstantIslands() { DEBUG(dbgs() << "use constant islands " << Mips16ConstantIslands << "\n"); return Mips16ConstantIslands; }