// // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that NVPTX uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #include "NVPTX.h" #include "NVPTXISelLowering.h" #include "NVPTXTargetMachine.h" #include "NVPTXTargetObjectFile.h" #include "NVPTXUtilities.h" #include "llvm/Intrinsics.h" #include "llvm/IntrinsicInst.h" #include "llvm/Support/CommandLine.h" #include "llvm/DerivedTypes.h" #include "llvm/GlobalValue.h" #include "llvm/Module.h" #include "llvm/Function.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/MC/MCSectionELF.h" #include #undef DEBUG_TYPE #define DEBUG_TYPE "nvptx-lower" using namespace llvm; static unsigned int uniqueCallSite = 0; static cl::opt RetainVectorOperands("nvptx-codegen-vectors", cl::desc("NVPTX Specific: Retain LLVM's vectors and generate PTX vectors"), cl::init(true)); static cl::opt sched4reg("nvptx-sched4reg", cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false)); // NVPTXTargetLowering Constructor. NVPTXTargetLowering::NVPTXTargetLowering(NVPTXTargetMachine &TM) : TargetLowering(TM, new NVPTXTargetObjectFile()), nvTM(&TM), nvptxSubtarget(TM.getSubtarget()) { // always lower memset, memcpy, and memmove intrinsics to load/store // instructions, rather // then generating calls to memset, mempcy or memmove. maxStoresPerMemset = (unsigned)0xFFFFFFFF; maxStoresPerMemcpy = (unsigned)0xFFFFFFFF; maxStoresPerMemmove = (unsigned)0xFFFFFFFF; setBooleanContents(ZeroOrNegativeOneBooleanContent); // Jump is Expensive. Don't create extra control flow for 'and', 'or' // condition branches. setJumpIsExpensive(true); // By default, use the Source scheduling if (sched4reg) setSchedulingPreference(Sched::RegPressure); else setSchedulingPreference(Sched::Source); addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass); addRegisterClass(MVT::i8, &NVPTX::Int8RegsRegClass); addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass); addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass); addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass); addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass); addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass); if (RetainVectorOperands) { addRegisterClass(MVT::v2f32, &NVPTX::V2F32RegsRegClass); addRegisterClass(MVT::v4f32, &NVPTX::V4F32RegsRegClass); addRegisterClass(MVT::v2i32, &NVPTX::V2I32RegsRegClass); addRegisterClass(MVT::v4i32, &NVPTX::V4I32RegsRegClass); addRegisterClass(MVT::v2f64, &NVPTX::V2F64RegsRegClass); addRegisterClass(MVT::v2i64, &NVPTX::V2I64RegsRegClass); addRegisterClass(MVT::v2i16, &NVPTX::V2I16RegsRegClass); addRegisterClass(MVT::v4i16, &NVPTX::V4I16RegsRegClass); addRegisterClass(MVT::v2i8, &NVPTX::V2I8RegsRegClass); addRegisterClass(MVT::v4i8, &NVPTX::V4I8RegsRegClass); setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32 , Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32 , Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16 , Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v4i8 , Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64 , Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64 , Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32 , Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32 , Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16 , Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v2i8 , Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32 , Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32 , Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i16 , Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i8 , Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64 , Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64 , Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32 , Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32 , Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i16 , Custom); setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i8 , Custom); } // Operations not directly supported by NVPTX. setOperationAction(ISD::SELECT_CC, MVT::Other, Expand); setOperationAction(ISD::BR_CC, MVT::Other, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); if (nvptxSubtarget.hasROT64()) { setOperationAction(ISD::ROTL , MVT::i64, Legal); setOperationAction(ISD::ROTR , MVT::i64, Legal); } else { setOperationAction(ISD::ROTL , MVT::i64, Expand); setOperationAction(ISD::ROTR , MVT::i64, Expand); } if (nvptxSubtarget.hasROT32()) { setOperationAction(ISD::ROTL , MVT::i32, Legal); setOperationAction(ISD::ROTR , MVT::i32, Legal); } else { setOperationAction(ISD::ROTL , MVT::i32, Expand); setOperationAction(ISD::ROTR , MVT::i32, Expand); } setOperationAction(ISD::ROTL , MVT::i16, Expand); setOperationAction(ISD::ROTR , MVT::i16, Expand); setOperationAction(ISD::ROTL , MVT::i8, Expand); setOperationAction(ISD::ROTR , MVT::i8, Expand); setOperationAction(ISD::BSWAP , MVT::i16, Expand); setOperationAction(ISD::BSWAP , MVT::i32, Expand); setOperationAction(ISD::BSWAP , MVT::i64, Expand); // Indirect branch is not supported. // This also disables Jump Table creation. setOperationAction(ISD::BR_JT, MVT::Other, Expand); setOperationAction(ISD::BRIND, MVT::Other, Expand); setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom); // We want to legalize constant related memmove and memcopy // intrinsics. setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); // Turn FP extload into load/fextend setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); // Turn FP truncstore into trunc + store. setTruncStoreAction(MVT::f64, MVT::f32, Expand); // PTX does not support load / store predicate registers setOperationAction(ISD::LOAD, MVT::i1, Expand); setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); setOperationAction(ISD::STORE, MVT::i1, Expand); setTruncStoreAction(MVT::i64, MVT::i1, Expand); setTruncStoreAction(MVT::i32, MVT::i1, Expand); setTruncStoreAction(MVT::i16, MVT::i1, Expand); setTruncStoreAction(MVT::i8, MVT::i1, Expand); // This is legal in NVPTX setOperationAction(ISD::ConstantFP, MVT::f64, Legal); setOperationAction(ISD::ConstantFP, MVT::f32, Legal); // TRAP can be lowered to PTX trap setOperationAction(ISD::TRAP, MVT::Other, Legal); // By default, CONCAT_VECTORS is implemented via store/load // through stack. It is slow and uses local memory. We need // to custom-lowering them. setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32 , Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32 , Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i16 , Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i8 , Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64 , Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64 , Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i32 , Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f32 , Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i16 , Custom); setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i8 , Custom); // Expand vector int to float and float to int conversions // - For SINT_TO_FP and UINT_TO_FP, the src type // (Node->getOperand(0).getValueType()) // is used to determine the action, while for FP_TO_UINT and FP_TO_SINT, // the dest type (Node->getValueType(0)) is used. // // See VectorLegalizer::LegalizeOp() (LegalizeVectorOps.cpp) for the vector // case, and // SelectionDAGLegalize::LegalizeOp() (LegalizeDAG.cpp) for the scalar case. // // That is why v4i32 or v2i32 are used here. // // The expansion for vectors happens in VectorLegalizer::LegalizeOp() // (LegalizeVectorOps.cpp). setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Expand); setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Expand); setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Expand); setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Expand); setOperationAction(ISD::FP_TO_SINT, MVT::v2i32, Expand); setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Expand); setOperationAction(ISD::FP_TO_UINT, MVT::v2i32, Expand); setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Expand); // Now deduce the information based on the above mentioned // actions computeRegisterProperties(); } const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: return 0; case NVPTXISD::CALL: return "NVPTXISD::CALL"; case NVPTXISD::RET_FLAG: return "NVPTXISD::RET_FLAG"; case NVPTXISD::Wrapper: return "NVPTXISD::Wrapper"; case NVPTXISD::NVBuiltin: return "NVPTXISD::NVBuiltin"; case NVPTXISD::DeclareParam: return "NVPTXISD::DeclareParam"; case NVPTXISD::DeclareScalarParam: return "NVPTXISD::DeclareScalarParam"; case NVPTXISD::DeclareRet: return "NVPTXISD::DeclareRet"; case NVPTXISD::DeclareRetParam: return "NVPTXISD::DeclareRetParam"; case NVPTXISD::PrintCall: return "NVPTXISD::PrintCall"; case NVPTXISD::LoadParam: return "NVPTXISD::LoadParam"; case NVPTXISD::StoreParam: return "NVPTXISD::StoreParam"; case NVPTXISD::StoreParamS32: return "NVPTXISD::StoreParamS32"; case NVPTXISD::StoreParamU32: return "NVPTXISD::StoreParamU32"; case NVPTXISD::MoveToParam: return "NVPTXISD::MoveToParam"; case NVPTXISD::CallArgBegin: return "NVPTXISD::CallArgBegin"; case NVPTXISD::CallArg: return "NVPTXISD::CallArg"; case NVPTXISD::LastCallArg: return "NVPTXISD::LastCallArg"; case NVPTXISD::CallArgEnd: return "NVPTXISD::CallArgEnd"; case NVPTXISD::CallVoid: return "NVPTXISD::CallVoid"; case NVPTXISD::CallVal: return "NVPTXISD::CallVal"; case NVPTXISD::CallSymbol: return "NVPTXISD::CallSymbol"; case NVPTXISD::Prototype: return "NVPTXISD::Prototype"; case NVPTXISD::MoveParam: return "NVPTXISD::MoveParam"; case NVPTXISD::MoveRetval: return "NVPTXISD::MoveRetval"; case NVPTXISD::MoveToRetval: return "NVPTXISD::MoveToRetval"; case NVPTXISD::StoreRetval: return "NVPTXISD::StoreRetval"; case NVPTXISD::PseudoUseParam: return "NVPTXISD::PseudoUseParam"; case NVPTXISD::RETURN: return "NVPTXISD::RETURN"; case NVPTXISD::CallSeqBegin: return "NVPTXISD::CallSeqBegin"; case NVPTXISD::CallSeqEnd: return "NVPTXISD::CallSeqEnd"; } } SDValue NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { DebugLoc dl = Op.getDebugLoc(); const GlobalValue *GV = cast(Op)->getGlobal(); Op = DAG.getTargetGlobalAddress(GV, dl, getPointerTy()); return DAG.getNode(NVPTXISD::Wrapper, dl, getPointerTy(), Op); } std::string NVPTXTargetLowering::getPrototype(Type *retTy, const ArgListTy &Args, const SmallVectorImpl &Outs, unsigned retAlignment) const { bool isABI = (nvptxSubtarget.getSmVersion() >= 20); std::stringstream O; O << "prototype_" << uniqueCallSite << " : .callprototype "; if (retTy->getTypeID() == Type::VoidTyID) O << "()"; else { O << "("; if (isABI) { if (retTy->isPrimitiveType() || retTy->isIntegerTy()) { unsigned size = 0; if (const IntegerType *ITy = dyn_cast(retTy)) { size = ITy->getBitWidth(); if (size < 32) size = 32; } else { assert(retTy->isFloatingPointTy() && "Floating point type expected here"); size = retTy->getPrimitiveSizeInBits(); } O << ".param .b" << size << " _"; } else if (isa(retTy)) O << ".param .b" << getPointerTy().getSizeInBits() << " _"; else { if ((retTy->getTypeID() == Type::StructTyID) || isa(retTy)) { SmallVector vtparts; ComputeValueVTs(*this, retTy, vtparts); unsigned totalsz = 0; for (unsigned i=0,e=vtparts.size(); i!=e; ++i) { unsigned elems = 1; EVT elemtype = vtparts[i]; if (vtparts[i].isVector()) { elems = vtparts[i].getVectorNumElements(); elemtype = vtparts[i].getVectorElementType(); } for (unsigned j=0, je=elems; j!=je; ++j) { unsigned sz = elemtype.getSizeInBits(); if (elemtype.isInteger() && (sz < 8)) sz = 8; totalsz += sz/8; } } O << ".param .align " << retAlignment << " .b8 _[" << totalsz << "]"; } else { assert(false && "Unknown return type"); } } } else { SmallVector vtparts; ComputeValueVTs(*this, retTy, vtparts); unsigned idx = 0; for (unsigned i=0,e=vtparts.size(); i!=e; ++i) { unsigned elems = 1; EVT elemtype = vtparts[i]; if (vtparts[i].isVector()) { elems = vtparts[i].getVectorNumElements(); elemtype = vtparts[i].getVectorElementType(); } for (unsigned j=0, je=elems; j!=je; ++j) { unsigned sz = elemtype.getSizeInBits(); if (elemtype.isInteger() && (sz < 32)) sz = 32; O << ".reg .b" << sz << " _"; if (j(Ty)) { sz = cast(Ty)->getBitWidth(); if (sz < 32) sz = 32; } else if (isa(Ty)) sz = thePointerTy.getSizeInBits(); else sz = Ty->getPrimitiveSizeInBits(); if (isABI) O << ".param .b" << sz << " "; else O << ".reg .b" << sz << " "; O << "_"; continue; } const PointerType *PTy = dyn_cast(Ty); assert(PTy && "Param with byval attribute should be a pointer type"); Type *ETy = PTy->getElementType(); if (isABI) { unsigned align = Outs[i].Flags.getByValAlign(); unsigned sz = getDataLayout()->getTypeAllocSize(ETy); O << ".param .align " << align << " .b8 "; O << "_"; O << "[" << sz << "]"; continue; } else { SmallVector vtparts; ComputeValueVTs(*this, ETy, vtparts); for (unsigned i=0,e=vtparts.size(); i!=e; ++i) { unsigned elems = 1; EVT elemtype = vtparts[i]; if (vtparts[i].isVector()) { elems = vtparts[i].getVectorNumElements(); elemtype = vtparts[i].getVectorElementType(); } for (unsigned j=0,je=elems; j!=je; ++j) { unsigned sz = elemtype.getSizeInBits(); if (elemtype.isInteger() && (sz < 32)) sz = 32; O << ".reg .b" << sz << " "; O << "_"; if (j &InVals) const { SelectionDAG &DAG = CLI.DAG; DebugLoc &dl = CLI.DL; SmallVector &Outs = CLI.Outs; SmallVector &OutVals = CLI.OutVals; SmallVector &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &isTailCall = CLI.IsTailCall; ArgListTy &Args = CLI.Args; Type *retTy = CLI.RetTy; ImmutableCallSite *CS = CLI.CS; bool isABI = (nvptxSubtarget.getSmVersion() >= 20); SDValue tempChain = Chain; Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(uniqueCallSite, true)); SDValue InFlag = Chain.getValue(1); assert((Outs.size() == Args.size()) && "Unexpected number of arguments to function call"); unsigned paramCount = 0; // Declare the .params or .reg need to pass values // to the function for (unsigned i=0, e=Outs.size(); i!=e; ++i) { EVT VT = Outs[i].VT; if (Outs[i].Flags.isByVal() == false) { // Plain scalar // for ABI, declare .param .b .param; // for nonABI, declare .reg .b .param; unsigned isReg = 1; if (isABI) isReg = 0; unsigned sz = VT.getSizeInBits(); if (VT.isInteger() && (sz < 32)) sz = 32; SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue DeclareParamOps[] = { Chain, DAG.getConstant(paramCount, MVT::i32), DAG.getConstant(sz, MVT::i32), DAG.getConstant(isReg, MVT::i32), InFlag }; Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs, DeclareParamOps, 5); InFlag = Chain.getValue(1); SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue CopyParamOps[] = { Chain, DAG.getConstant(paramCount, MVT::i32), DAG.getConstant(0, MVT::i32), OutVals[i], InFlag }; unsigned opcode = NVPTXISD::StoreParam; if (isReg) opcode = NVPTXISD::MoveToParam; else { if (Outs[i].Flags.isZExt()) opcode = NVPTXISD::StoreParamU32; else if (Outs[i].Flags.isSExt()) opcode = NVPTXISD::StoreParamS32; } Chain = DAG.getNode(opcode, dl, CopyParamVTs, CopyParamOps, 5); InFlag = Chain.getValue(1); ++paramCount; continue; } // struct or vector SmallVector vtparts; const PointerType *PTy = dyn_cast(Args[i].Ty); assert(PTy && "Type of a byval parameter should be pointer"); ComputeValueVTs(*this, PTy->getElementType(), vtparts); if (isABI) { // declare .param .align 16 .b8 .param[]; unsigned sz = Outs[i].Flags.getByValSize(); SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); // The ByValAlign in the Outs[i].Flags is alway set at this point, so we // don't need to // worry about natural alignment or not. See TargetLowering::LowerCallTo() SDValue DeclareParamOps[] = { Chain, DAG.getConstant(Outs[i].Flags.getByValAlign(), MVT::i32), DAG.getConstant(paramCount, MVT::i32), DAG.getConstant(sz, MVT::i32), InFlag }; Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs, DeclareParamOps, 5); InFlag = Chain.getValue(1); unsigned curOffset = 0; for (unsigned j=0,je=vtparts.size(); j!=je; ++j) { unsigned elems = 1; EVT elemtype = vtparts[j]; if (vtparts[j].isVector()) { elems = vtparts[j].getVectorNumElements(); elemtype = vtparts[j].getVectorElementType(); } for (unsigned k=0,ke=elems; k!=ke; ++k) { unsigned sz = elemtype.getSizeInBits(); if (elemtype.isInteger() && (sz < 8)) sz = 8; SDValue srcAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), OutVals[i], DAG.getConstant(curOffset, getPointerTy())); SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr, MachinePointerInfo(), false, false, false, 0); SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue CopyParamOps[] = { Chain, DAG.getConstant(paramCount, MVT::i32), DAG.getConstant(curOffset, MVT::i32), theVal, InFlag }; Chain = DAG.getNode(NVPTXISD::StoreParam, dl, CopyParamVTs, CopyParamOps, 5); InFlag = Chain.getValue(1); curOffset += sz/8; } } ++paramCount; continue; } // Non-abi, struct or vector // Declare a bunch or .reg .b .param unsigned curOffset = 0; for (unsigned j=0,je=vtparts.size(); j!=je; ++j) { unsigned elems = 1; EVT elemtype = vtparts[j]; if (vtparts[j].isVector()) { elems = vtparts[j].getVectorNumElements(); elemtype = vtparts[j].getVectorElementType(); } for (unsigned k=0,ke=elems; k!=ke; ++k) { unsigned sz = elemtype.getSizeInBits(); if (elemtype.isInteger() && (sz < 32)) sz = 32; SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue DeclareParamOps[] = { Chain, DAG.getConstant(paramCount, MVT::i32), DAG.getConstant(sz, MVT::i32), DAG.getConstant(1, MVT::i32), InFlag }; Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs, DeclareParamOps, 5); InFlag = Chain.getValue(1); SDValue srcAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), OutVals[i], DAG.getConstant(curOffset, getPointerTy())); SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr, MachinePointerInfo(), false, false, false, 0); SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue CopyParamOps[] = { Chain, DAG.getConstant(paramCount, MVT::i32), DAG.getConstant(0, MVT::i32), theVal, InFlag }; Chain = DAG.getNode(NVPTXISD::MoveToParam, dl, CopyParamVTs, CopyParamOps, 5); InFlag = Chain.getValue(1); ++paramCount; } } } GlobalAddressSDNode *Func = dyn_cast(Callee.getNode()); unsigned retAlignment = 0; // Handle Result unsigned retCount = 0; if (Ins.size() > 0) { SmallVector resvtparts; ComputeValueVTs(*this, retTy, resvtparts); // Declare one .param .align 16 .b8 func_retval0[] for ABI or // individual .reg .b func_retval<0..> for non ABI unsigned resultsz = 0; for (unsigned i=0,e=resvtparts.size(); i!=e; ++i) { unsigned elems = 1; EVT elemtype = resvtparts[i]; if (resvtparts[i].isVector()) { elems = resvtparts[i].getVectorNumElements(); elemtype = resvtparts[i].getVectorElementType(); } for (unsigned j=0,je=elems; j!=je; ++j) { unsigned sz = elemtype.getSizeInBits(); if (isABI == false) { if (elemtype.isInteger() && (sz < 32)) sz = 32; } else { if (elemtype.isInteger() && (sz < 8)) sz = 8; } if (isABI == false) { SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue DeclareRetOps[] = { Chain, DAG.getConstant(2, MVT::i32), DAG.getConstant(sz, MVT::i32), DAG.getConstant(retCount, MVT::i32), InFlag }; Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs, DeclareRetOps, 5); InFlag = Chain.getValue(1); ++retCount; } resultsz += sz; } } if (isABI) { if (retTy->isPrimitiveType() || retTy->isIntegerTy() || retTy->isPointerTy() ) { // Scalar needs to be at least 32bit wide if (resultsz < 32) resultsz = 32; SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, MVT::i32), DAG.getConstant(resultsz, MVT::i32), DAG.getConstant(0, MVT::i32), InFlag }; Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs, DeclareRetOps, 5); InFlag = Chain.getValue(1); } else { if (Func) { // direct call if (!llvm::getAlign(*(CS->getCalledFunction()), 0, retAlignment)) retAlignment = getDataLayout()->getABITypeAlignment(retTy); } else { // indirect call const CallInst *CallI = dyn_cast(CS->getInstruction()); if (!llvm::getAlign(*CallI, 0, retAlignment)) retAlignment = getDataLayout()->getABITypeAlignment(retTy); } SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue DeclareRetOps[] = { Chain, DAG.getConstant(retAlignment, MVT::i32), DAG.getConstant(resultsz/8, MVT::i32), DAG.getConstant(0, MVT::i32), InFlag }; Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs, DeclareRetOps, 5); InFlag = Chain.getValue(1); } } } if (!Func) { // This is indirect function call case : PTX requires a prototype of the // form // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _); // to be emitted, and the label has to used as the last arg of call // instruction. // The prototype is embedded in a string and put as the operand for an // INLINEASM SDNode. SDVTList InlineAsmVTs = DAG.getVTList(MVT::Other, MVT::Glue); std::string proto_string = getPrototype(retTy, Args, Outs, retAlignment); const char *asmstr = nvTM->getManagedStrPool()-> getManagedString(proto_string.c_str())->c_str(); SDValue InlineAsmOps[] = { Chain, DAG.getTargetExternalSymbol(asmstr, getPointerTy()), DAG.getMDNode(0), DAG.getTargetConstant(0, MVT::i32), InFlag }; Chain = DAG.getNode(ISD::INLINEASM, dl, InlineAsmVTs, InlineAsmOps, 5); InFlag = Chain.getValue(1); } // Op to just print "call" SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue PrintCallOps[] = { Chain, DAG.getConstant(isABI ? ((Ins.size()==0) ? 0 : 1) : retCount, MVT::i32), InFlag }; Chain = DAG.getNode(Func?(NVPTXISD::PrintCallUni):(NVPTXISD::PrintCall), dl, PrintCallVTs, PrintCallOps, 3); InFlag = Chain.getValue(1); // Ops to print out the function name SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue CallVoidOps[] = { Chain, Callee, InFlag }; Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps, 3); InFlag = Chain.getValue(1); // Ops to print out the param list SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue CallArgBeginOps[] = { Chain, InFlag }; Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs, CallArgBeginOps, 2); InFlag = Chain.getValue(1); for (unsigned i=0, e=paramCount; i!=e; ++i) { unsigned opcode; if (i==(e-1)) opcode = NVPTXISD::LastCallArg; else opcode = NVPTXISD::CallArg; SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue CallArgOps[] = { Chain, DAG.getConstant(1, MVT::i32), DAG.getConstant(i, MVT::i32), InFlag }; Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps, 4); InFlag = Chain.getValue(1); } SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue CallArgEndOps[] = { Chain, DAG.getConstant(Func ? 1 : 0, MVT::i32), InFlag }; Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps, 3); InFlag = Chain.getValue(1); if (!Func) { SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue PrototypeOps[] = { Chain, DAG.getConstant(uniqueCallSite, MVT::i32), InFlag }; Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps, 3); InFlag = Chain.getValue(1); } // Generate loads from param memory/moves from registers for result if (Ins.size() > 0) { if (isABI) { unsigned resoffset = 0; for (unsigned i=0,e=Ins.size(); i!=e; ++i) { unsigned sz = Ins[i].VT.getSizeInBits(); if (Ins[i].VT.isInteger() && (sz < 8)) sz = 8; std::vector LoadRetVTs; LoadRetVTs.push_back(Ins[i].VT); LoadRetVTs.push_back(MVT::Other); LoadRetVTs.push_back(MVT::Glue); std::vector LoadRetOps; LoadRetOps.push_back(Chain); LoadRetOps.push_back(DAG.getConstant(1, MVT::i32)); LoadRetOps.push_back(DAG.getConstant(resoffset, MVT::i32)); LoadRetOps.push_back(InFlag); SDValue retval = DAG.getNode(NVPTXISD::LoadParam, dl, LoadRetVTs, &LoadRetOps[0], LoadRetOps.size()); Chain = retval.getValue(1); InFlag = retval.getValue(2); InVals.push_back(retval); resoffset += sz/8; } } else { SmallVector resvtparts; ComputeValueVTs(*this, retTy, resvtparts); assert(Ins.size() == resvtparts.size() && "Unexpected number of return values in non-ABI case"); unsigned paramNum = 0; for (unsigned i=0,e=Ins.size(); i!=e; ++i) { assert(EVT(Ins[i].VT) == resvtparts[i] && "Unexpected EVT type in non-ABI case"); unsigned numelems = 1; EVT elemtype = Ins[i].VT; if (Ins[i].VT.isVector()) { numelems = Ins[i].VT.getVectorNumElements(); elemtype = Ins[i].VT.getVectorElementType(); } std::vector tempRetVals; for (unsigned j=0; j MoveRetVTs; MoveRetVTs.push_back(elemtype); MoveRetVTs.push_back(MVT::Other); MoveRetVTs.push_back(MVT::Glue); std::vector MoveRetOps; MoveRetOps.push_back(Chain); MoveRetOps.push_back(DAG.getConstant(0, MVT::i32)); MoveRetOps.push_back(DAG.getConstant(paramNum, MVT::i32)); MoveRetOps.push_back(InFlag); SDValue retval = DAG.getNode(NVPTXISD::LoadParam, dl, MoveRetVTs, &MoveRetOps[0], MoveRetOps.size()); Chain = retval.getValue(1); InFlag = retval.getValue(2); tempRetVals.push_back(retval); ++paramNum; } if (Ins[i].VT.isVector()) InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, dl, Ins[i].VT, &tempRetVals[0], tempRetVals.size())); else InVals.push_back(tempRetVals[0]); } } } Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(uniqueCallSite, true), DAG.getIntPtrConstant(uniqueCallSite+1, true), InFlag); uniqueCallSite++; // set isTailCall to false for now, until we figure out how to express // tail call optimization in PTX isTailCall = false; return Chain; } // By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack() // (see LegalizeDAG.cpp). This is slow and uses local memory. // We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5 SDValue NVPTXTargetLowering:: LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const { SDNode *Node = Op.getNode(); DebugLoc dl = Node->getDebugLoc(); SmallVector Ops; unsigned NumOperands = Node->getNumOperands(); for (unsigned i=0; i < NumOperands; ++i) { SDValue SubOp = Node->getOperand(i); EVT VVT = SubOp.getNode()->getValueType(0); EVT EltVT = VVT.getVectorElementType(); unsigned NumSubElem = VVT.getVectorNumElements(); for (unsigned j=0; j < NumSubElem; ++j) { Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp, DAG.getIntPtrConstant(j))); } } return DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), &Ops[0], Ops.size()); } SDValue NVPTXTargetLowering:: LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { case ISD::RETURNADDR: return SDValue(); case ISD::FRAMEADDR: return SDValue(); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::INTRINSIC_W_CHAIN: return Op; case ISD::BUILD_VECTOR: case ISD::EXTRACT_SUBVECTOR: return Op; case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); default: llvm_unreachable("Custom lowering not defined for operation"); } } SDValue NVPTXTargetLowering::getExtSymb(SelectionDAG &DAG, const char *inname, int idx, EVT v) const { std::string *name = nvTM->getManagedStrPool()->getManagedString(inname); std::stringstream suffix; suffix << idx; *name += suffix.str(); return DAG.getTargetExternalSymbol(name->c_str(), v); } SDValue NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const { return getExtSymb(DAG, ".PARAM", idx, v); } SDValue NVPTXTargetLowering::getParamHelpSymbol(SelectionDAG &DAG, int idx) { return getExtSymb(DAG, ".HLPPARAM", idx); } // Check to see if the kernel argument is image*_t or sampler_t bool llvm::isImageOrSamplerVal(const Value *arg, const Module *context) { static const char *const specialTypes[] = { "struct._image2d_t", "struct._image3d_t", "struct._sampler_t" }; const Type *Ty = arg->getType(); const PointerType *PTy = dyn_cast(Ty); if (!PTy) return false; if (!context) return false; const StructType *STy = dyn_cast(PTy->getElementType()); const std::string TypeName = STy ? STy->getName() : ""; for (int i = 0, e = array_lengthof(specialTypes); i != e; ++i) if (TypeName == specialTypes[i]) return true; return false; } SDValue NVPTXTargetLowering::LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); const DataLayout *TD = getDataLayout(); const Function *F = MF.getFunction(); const AttrListPtr &PAL = F->getAttributes(); SDValue Root = DAG.getRoot(); std::vector OutChains; bool isKernel = llvm::isKernelFunction(*F); bool isABI = (nvptxSubtarget.getSmVersion() >= 20); std::vector argTypes; std::vector theArgs; for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) { theArgs.push_back(I); argTypes.push_back(I->getType()); } assert(argTypes.size() == Ins.size() && "Ins types and function types did not match"); int idx = 0; for (unsigned i=0, e=Ins.size(); i!=e; ++i, ++idx) { Type *Ty = argTypes[i]; EVT ObjectVT = getValueType(Ty); assert(ObjectVT == Ins[i].VT && "Ins type did not match function type"); // If the kernel argument is image*_t or sampler_t, convert it to // a i32 constant holding the parameter position. This can later // matched in the AsmPrinter to output the correct mangled name. if (isImageOrSamplerVal(theArgs[i], (theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent() : 0))) { assert(isKernel && "Only kernels can have image/sampler params"); InVals.push_back(DAG.getConstant(i+1, MVT::i32)); continue; } if (theArgs[i]->use_empty()) { // argument is dead InVals.push_back(DAG.getNode(ISD::UNDEF, dl, ObjectVT)); continue; } // In the following cases, assign a node order of "idx+1" // to newly created nodes. The SDNOdes for params have to // appear in the same order as their order of appearance // in the original function. "idx+1" holds that order. if (PAL.getParamAttributes(i+1).hasAttribute(Attributes::ByVal) == false) { // A plain scalar. if (isABI || isKernel) { // If ABI, load from the param symbol SDValue Arg = getParamSymbol(DAG, idx); Value *srcValue = new Argument(PointerType::get(ObjectVT.getTypeForEVT( F->getContext()), llvm::ADDRESS_SPACE_PARAM)); SDValue p = DAG.getLoad(ObjectVT, dl, Root, Arg, MachinePointerInfo(srcValue), false, false, false, TD->getABITypeAlignment(ObjectVT.getTypeForEVT( F->getContext()))); if (p.getNode()) DAG.AssignOrdering(p.getNode(), idx+1); InVals.push_back(p); } else { // If no ABI, just move the param symbol SDValue Arg = getParamSymbol(DAG, idx, ObjectVT); SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg); if (p.getNode()) DAG.AssignOrdering(p.getNode(), idx+1); InVals.push_back(p); } continue; } // Param has ByVal attribute if (isABI || isKernel) { // Return MoveParam(param symbol). // Ideally, the param symbol can be returned directly, // but when SDNode builder decides to use it in a CopyToReg(), // machine instruction fails because TargetExternalSymbol // (not lowered) is target dependent, and CopyToReg assumes // the source is lowered. SDValue Arg = getParamSymbol(DAG, idx, getPointerTy()); SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg); if (p.getNode()) DAG.AssignOrdering(p.getNode(), idx+1); if (isKernel) InVals.push_back(p); else { SDValue p2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ObjectVT, DAG.getConstant(Intrinsic::nvvm_ptr_local_to_gen, MVT::i32), p); InVals.push_back(p2); } } else { // Have to move a set of param symbols to registers and // store them locally and return the local pointer in InVals const PointerType *elemPtrType = dyn_cast(argTypes[i]); assert(elemPtrType && "Byval parameter should be a pointer type"); Type *elemType = elemPtrType->getElementType(); // Compute the constituent parts SmallVector vtparts; SmallVector offsets; ComputeValueVTs(*this, elemType, vtparts, &offsets, 0); unsigned totalsize = 0; for (unsigned j=0, je=vtparts.size(); j!=je; ++j) totalsize += vtparts[j].getStoreSizeInBits(); SDValue localcopy = DAG.getFrameIndex(MF.getFrameInfo()-> CreateStackObject(totalsize/8, 16, false), getPointerTy()); unsigned sizesofar = 0; std::vector theChains; for (unsigned j=0, je=vtparts.size(); j!=je; ++j) { unsigned numElems = 1; if (vtparts[j].isVector()) numElems = vtparts[j].getVectorNumElements(); for (unsigned k=0, ke=numElems; k!=ke; ++k) { EVT tmpvt = vtparts[j]; if (tmpvt.isVector()) tmpvt = tmpvt.getVectorElementType(); SDValue arg = DAG.getNode(NVPTXISD::MoveParam, dl, tmpvt, getParamSymbol(DAG, idx, tmpvt)); SDValue addr = DAG.getNode(ISD::ADD, dl, getPointerTy(), localcopy, DAG.getConstant(sizesofar, getPointerTy())); theChains.push_back(DAG.getStore(Chain, dl, arg, addr, MachinePointerInfo(), false, false, 0)); sizesofar += tmpvt.getStoreSizeInBits()/8; ++idx; } } --idx; Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &theChains[0], theChains.size()); InVals.push_back(localcopy); } } // Clang will check explicit VarArg and issue error if any. However, Clang // will let code with // implicit var arg like f() pass. // We treat this case as if the arg list is empty. //if (F.isVarArg()) { // assert(0 && "VarArg not supported yet!"); //} if (!OutChains.empty()) DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &OutChains[0], OutChains.size())); return Chain; } SDValue NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, DebugLoc dl, SelectionDAG &DAG) const { bool isABI = (nvptxSubtarget.getSmVersion() >= 20); unsigned sizesofar = 0; unsigned idx = 0; for (unsigned i=0, e=Outs.size(); i!=e; ++i) { SDValue theVal = OutVals[i]; EVT theValType = theVal.getValueType(); unsigned numElems = 1; if (theValType.isVector()) numElems = theValType.getVectorNumElements(); for (unsigned j=0,je=numElems; j!=je; ++j) { SDValue tmpval = theVal; if (theValType.isVector()) tmpval = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, theValType.getVectorElementType(), tmpval, DAG.getIntPtrConstant(j)); Chain = DAG.getNode(isABI ? NVPTXISD::StoreRetval :NVPTXISD::MoveToRetval, dl, MVT::Other, Chain, DAG.getConstant(isABI ? sizesofar : idx, MVT::i32), tmpval); if (theValType.isVector()) sizesofar += theValType.getVectorElementType().getStoreSizeInBits()/8; else sizesofar += theValType.getStoreSizeInBits()/8; ++idx; } } return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain); } void NVPTXTargetLowering::LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector &Ops, SelectionDAG &DAG) const { if (Constraint.length() > 1) return; else TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } // NVPTX suuport vector of legal types of any length in Intrinsics because the // NVPTX specific type legalizer // will legalize them to the PTX supported length. bool NVPTXTargetLowering::isTypeSupportedInIntrinsic(MVT VT) const { if (isTypeLegal(VT)) return true; if (VT.isVector()) { MVT eVT = VT.getVectorElementType(); if (isTypeLegal(eVT)) return true; } return false; } // llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as // TgtMemIntrinsic // because we need the information that is only available in the "Value" type // of destination // pointer. In particular, the address space information. bool NVPTXTargetLowering::getTgtMemIntrinsic(IntrinsicInfo& Info, const CallInst &I, unsigned Intrinsic) const { switch (Intrinsic) { default: return false; case Intrinsic::nvvm_atomic_load_add_f32: Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::f32; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.vol = 0; Info.readMem = true; Info.writeMem = true; Info.align = 0; return true; case Intrinsic::nvvm_atomic_load_inc_32: case Intrinsic::nvvm_atomic_load_dec_32: Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::i32; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.vol = 0; Info.readMem = true; Info.writeMem = true; Info.align = 0; return true; case Intrinsic::nvvm_ldu_global_i: case Intrinsic::nvvm_ldu_global_f: case Intrinsic::nvvm_ldu_global_p: Info.opc = ISD::INTRINSIC_W_CHAIN; if (Intrinsic == Intrinsic::nvvm_ldu_global_i) Info.memVT = MVT::i32; else if (Intrinsic == Intrinsic::nvvm_ldu_global_p) Info.memVT = getPointerTy(); else Info.memVT = MVT::f32; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.vol = 0; Info.readMem = true; Info.writeMem = false; Info.align = 0; return true; } return false; } /// isLegalAddressingMode - Return true if the addressing mode represented /// by AM is legal for this target, for a load/store of the specified type. /// Used to guide target specific optimizations, like loop strength reduction /// (LoopStrengthReduce.cpp) and memory optimization for address mode /// (CodeGenPrepare.cpp) bool NVPTXTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const { // AddrMode - This represents an addressing mode of: // BaseGV + BaseOffs + BaseReg + Scale*ScaleReg // // The legal address modes are // - [avar] // - [areg] // - [areg+immoff] // - [immAddr] if (AM.BaseGV) { if (AM.BaseOffs || AM.HasBaseReg || AM.Scale) return false; return true; } switch (AM.Scale) { case 0: // "r", "r+i" or "i" is allowed break; case 1: if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed. return false; // Otherwise we have r+i. break; default: // No scale > 1 is allowed return false; } return true; } //===----------------------------------------------------------------------===// // NVPTX Inline Assembly Support //===----------------------------------------------------------------------===// /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. NVPTXTargetLowering::ConstraintType NVPTXTargetLowering::getConstraintType(const std::string &Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 'r': case 'h': case 'c': case 'l': case 'f': case 'd': case '0': case 'N': return C_RegisterClass; } } return TargetLowering::getConstraintType(Constraint); } std::pair NVPTXTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'c': return std::make_pair(0U, &NVPTX::Int8RegsRegClass); case 'h': return std::make_pair(0U, &NVPTX::Int16RegsRegClass); case 'r': return std::make_pair(0U, &NVPTX::Int32RegsRegClass); case 'l': case 'N': return std::make_pair(0U, &NVPTX::Int64RegsRegClass); case 'f': return std::make_pair(0U, &NVPTX::Float32RegsRegClass); case 'd': return std::make_pair(0U, &NVPTX::Float64RegsRegClass); } } return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); } /// getFunctionAlignment - Return the Log2 alignment of this function. unsigned NVPTXTargetLowering::getFunctionAlignment(const Function *) const { return 4; }