//===- NVPTXIntrinsics.td - PTX Intrinsics Instructions -------*- tblgen -*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// def immFloat0 : PatLeaf<(fpimm), [{ float f = (float)N->getValueAPF().convertToFloat(); return (f==0.0f); }]>; def immFloat1 : PatLeaf<(fpimm), [{ float f = (float)N->getValueAPF().convertToFloat(); return (f==1.0f); }]>; def immDouble0 : PatLeaf<(fpimm), [{ double d = (double)N->getValueAPF().convertToDouble(); return (d==0.0); }]>; def immDouble1 : PatLeaf<(fpimm), [{ double d = (double)N->getValueAPF().convertToDouble(); return (d==1.0); }]>; //----------------------------------- // Synchronization Functions //----------------------------------- def INT_CUDA_SYNCTHREADS : NVPTXInst<(outs), (ins), "bar.sync \t0;", [(int_cuda_syncthreads)]>; def INT_BARRIER0 : NVPTXInst<(outs), (ins), "bar.sync \t0;", [(int_nvvm_barrier0)]>; def INT_BARRIER0_POPC : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$pred), !strconcat("{{ \n\t", !strconcat(".reg .pred \t%p1; \n\t", !strconcat("setp.ne.u32 \t%p1, $pred, 0; \n\t", !strconcat("bar.red.popc.u32 \t$dst, 0, %p1; \n\t", !strconcat("}}", ""))))), [(set Int32Regs:$dst, (int_nvvm_barrier0_popc Int32Regs:$pred))]>; def INT_BARRIER0_AND : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$pred), !strconcat("{{ \n\t", !strconcat(".reg .pred \t%p1; \n\t", !strconcat(".reg .pred \t%p2; \n\t", !strconcat("setp.ne.u32 \t%p1, $pred, 0; \n\t", !strconcat("bar.red.and.pred \t%p2, 0, %p1; \n\t", !strconcat("selp.u32 \t$dst, 1, 0, %p2; \n\t", !strconcat("}}", ""))))))), [(set Int32Regs:$dst, (int_nvvm_barrier0_and Int32Regs:$pred))]>; def INT_BARRIER0_OR : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$pred), !strconcat("{{ \n\t", !strconcat(".reg .pred \t%p1; \n\t", !strconcat(".reg .pred \t%p2; \n\t", !strconcat("setp.ne.u32 \t%p1, $pred, 0; \n\t", !strconcat("bar.red.or.pred \t%p2, 0, %p1; \n\t", !strconcat("selp.u32 \t$dst, 1, 0, %p2; \n\t", !strconcat("}}", ""))))))), [(set Int32Regs:$dst, (int_nvvm_barrier0_or Int32Regs:$pred))]>; //----------------------------------- // Explicit Memory Fence Functions //----------------------------------- class MEMBAR : NVPTXInst<(outs), (ins), StrOp, [(IntOP)]>; def INT_MEMBAR_CTA : MEMBAR<"membar.cta;", int_nvvm_membar_cta>; def INT_MEMBAR_GL : MEMBAR<"membar.gl;", int_nvvm_membar_gl>; def INT_MEMBAR_SYS : MEMBAR<"membar.sys;", int_nvvm_membar_sys>; //----------------------------------- // Math Functions //----------------------------------- // Map min(1.0, max(0.0, x)) to sat(x) multiclass SAT { // fmin(1.0, fmax(0.0, x)) => sat(x) def SAT11 : NVPTXInst<(outs regclass:$dst), (ins fimm:$srcf0, fimm:$srcf1, regclass:$src), OpStr, [(set regclass:$dst, (IntMinOp f1:$srcf0 , (IntMaxOp f0:$srcf1, regclass:$src)))]>; // fmin(1.0, fmax(x, 0.0)) => sat(x) def SAT12 : NVPTXInst<(outs regclass:$dst), (ins fimm:$srcf0, fimm:$srcf1, regclass:$src), OpStr, [(set regclass:$dst, (IntMinOp f1:$srcf0 , (IntMaxOp regclass:$src, f0:$srcf1)))]>; // fmin(fmax(0.0, x), 1.0) => sat(x) def SAT13 : NVPTXInst<(outs regclass:$dst), (ins fimm:$srcf0, fimm:$srcf1, regclass:$src), OpStr, [(set regclass:$dst, (IntMinOp (IntMaxOp f0:$srcf0, regclass:$src), f1:$srcf1))]>; // fmin(fmax(x, 0.0), 1.0) => sat(x) def SAT14 : NVPTXInst<(outs regclass:$dst), (ins fimm:$srcf0, fimm:$srcf1, regclass:$src), OpStr, [(set regclass:$dst, (IntMinOp (IntMaxOp regclass:$src, f0:$srcf0), f1:$srcf1))]>; } // Note that max(0.0, min(x, 1.0)) cannot be mapped to sat(x) because when x // is NaN // max(0.0, min(x, 1.0)) is 1.0 while sat(x) is 0. // Same story for fmax, fmin. defm SAT_fmin_fmax_f : SAT; defm SAT_fmin_fmax_d : SAT; // We need a full string for OpcStr here because we need to deal with case like // INT_PTX_RECIP. class F_MATH_1 : NVPTXInst<(outs target_regclass:$dst), (ins src_regclass:$src0), OpcStr, [(set target_regclass:$dst, (IntOP src_regclass:$src0))]>; // We need a full string for OpcStr here because we need to deal with the case // like INT_PTX_NATIVE_POWR_F. class F_MATH_2 : NVPTXInst<(outs t_regclass:$dst), (ins s0_regclass:$src0, s1_regclass:$src1), OpcStr, [(set t_regclass:$dst, (IntOP s0_regclass:$src0, s1_regclass:$src1))]>; class F_MATH_3 : NVPTXInst<(outs t_regclass:$dst), (ins s0_regclass:$src0, s1_regclass:$src1, s2_regclass:$src2), OpcStr, [(set t_regclass:$dst, (IntOP s0_regclass:$src0, s1_regclass:$src1, s2_regclass:$src2))]>; // // MISC // def INT_NVVM_CLZ_I : F_MATH_1<"clz.b32 \t$dst, $src0;", Int32Regs, Int32Regs, int_nvvm_clz_i>; def INT_NVVM_CLZ_LL : F_MATH_1<"clz.b64 \t$dst, $src0;", Int32Regs, Int64Regs, int_nvvm_clz_ll>; def INT_NVVM_POPC_I : F_MATH_1<"popc.b32 \t$dst, $src0;", Int32Regs, Int32Regs, int_nvvm_popc_i>; def INT_NVVM_POPC_LL : F_MATH_1<"popc.b64 \t$dst, $src0;", Int32Regs, Int64Regs, int_nvvm_popc_ll>; def INT_NVVM_PRMT : F_MATH_3<"prmt.b32 \t$dst, $src0, $src1, $src2;", Int32Regs, Int32Regs, Int32Regs, Int32Regs, int_nvvm_prmt>; // // Min Max // def INT_NVVM_MIN_I : F_MATH_2<"min.s32 \t$dst, $src0, $src1;", Int32Regs, Int32Regs, Int32Regs, int_nvvm_min_i>; def INT_NVVM_MIN_UI : F_MATH_2<"min.u32 \t$dst, $src0, $src1;", Int32Regs, Int32Regs, Int32Regs, int_nvvm_min_ui>; def INT_NVVM_MIN_LL : F_MATH_2<"min.s64 \t$dst, $src0, $src1;", Int64Regs, Int64Regs, Int64Regs, int_nvvm_min_ll>; def INT_NVVM_MIN_ULL : F_MATH_2<"min.u64 \t$dst, $src0, $src1;", Int64Regs, Int64Regs, Int64Regs, int_nvvm_min_ull>; def INT_NVVM_MAX_I : F_MATH_2<"max.s32 \t$dst, $src0, $src1;", Int32Regs, Int32Regs, Int32Regs, int_nvvm_max_i>; def INT_NVVM_MAX_UI : F_MATH_2<"max.u32 \t$dst, $src0, $src1;", Int32Regs, Int32Regs, Int32Regs, int_nvvm_max_ui>; def INT_NVVM_MAX_LL : F_MATH_2<"max.s64 \t$dst, $src0, $src1;", Int64Regs, Int64Regs, Int64Regs, int_nvvm_max_ll>; def INT_NVVM_MAX_ULL : F_MATH_2<"max.u64 \t$dst, $src0, $src1;", Int64Regs, Int64Regs, Int64Regs, int_nvvm_max_ull>; def INT_NVVM_FMIN_F : F_MATH_2<"min.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_fmin_f>; def INT_NVVM_FMIN_FTZ_F : F_MATH_2<"min.ftz.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_fmin_ftz_f>; def INT_NVVM_FMAX_F : F_MATH_2<"max.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_fmax_f>; def INT_NVVM_FMAX_FTZ_F : F_MATH_2<"max.ftz.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_fmax_ftz_f>; def INT_NVVM_FMIN_D : F_MATH_2<"min.f64 \t$dst, $src0, $src1;", Float64Regs, Float64Regs, Float64Regs, int_nvvm_fmin_d>; def INT_NVVM_FMAX_D : F_MATH_2<"max.f64 \t$dst, $src0, $src1;", Float64Regs, Float64Regs, Float64Regs, int_nvvm_fmax_d>; // // Multiplication // def INT_NVVM_MULHI_I : F_MATH_2<"mul.hi.s32 \t$dst, $src0, $src1;", Int32Regs, Int32Regs, Int32Regs, int_nvvm_mulhi_i>; def INT_NVVM_MULHI_UI : F_MATH_2<"mul.hi.u32 \t$dst, $src0, $src1;", Int32Regs, Int32Regs, Int32Regs, int_nvvm_mulhi_ui>; def INT_NVVM_MULHI_LL : F_MATH_2<"mul.hi.s64 \t$dst, $src0, $src1;", Int64Regs, Int64Regs, Int64Regs, int_nvvm_mulhi_ll>; def INT_NVVM_MULHI_ULL : F_MATH_2<"mul.hi.u64 \t$dst, $src0, $src1;", Int64Regs, Int64Regs, Int64Regs, int_nvvm_mulhi_ull>; def INT_NVVM_MUL_RN_FTZ_F : F_MATH_2<"mul.rn.ftz.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_mul_rn_ftz_f>; def INT_NVVM_MUL_RN_F : F_MATH_2<"mul.rn.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_mul_rn_f>; def INT_NVVM_MUL_RZ_FTZ_F : F_MATH_2<"mul.rz.ftz.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_mul_rz_ftz_f>; def INT_NVVM_MUL_RZ_F : F_MATH_2<"mul.rz.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_mul_rz_f>; def INT_NVVM_MUL_RM_FTZ_F : F_MATH_2<"mul.rm.ftz.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_mul_rm_ftz_f>; def INT_NVVM_MUL_RM_F : F_MATH_2<"mul.rm.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_mul_rm_f>; def INT_NVVM_MUL_RP_FTZ_F : F_MATH_2<"mul.rp.ftz.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_mul_rp_ftz_f>; def INT_NVVM_MUL_RP_F : F_MATH_2<"mul.rp.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_mul_rp_f>; def INT_NVVM_MUL_RN_D : F_MATH_2<"mul.rn.f64 \t$dst, $src0, $src1;", Float64Regs, Float64Regs, Float64Regs, int_nvvm_mul_rn_d>; def INT_NVVM_MUL_RZ_D : F_MATH_2<"mul.rz.f64 \t$dst, $src0, $src1;", Float64Regs, Float64Regs, Float64Regs, int_nvvm_mul_rz_d>; def INT_NVVM_MUL_RM_D : F_MATH_2<"mul.rm.f64 \t$dst, $src0, $src1;", Float64Regs, Float64Regs, Float64Regs, int_nvvm_mul_rm_d>; def INT_NVVM_MUL_RP_D : F_MATH_2<"mul.rp.f64 \t$dst, $src0, $src1;", Float64Regs, Float64Regs, Float64Regs, int_nvvm_mul_rp_d>; def INT_NVVM_MUL24_I : F_MATH_2<"mul24.lo.s32 \t$dst, $src0, $src1;", Int32Regs, Int32Regs, Int32Regs, int_nvvm_mul24_i>; def INT_NVVM_MUL24_UI : F_MATH_2<"mul24.lo.u32 \t$dst, $src0, $src1;", Int32Regs, Int32Regs, Int32Regs, int_nvvm_mul24_ui>; // // Div // def INT_NVVM_DIV_APPROX_FTZ_F : F_MATH_2<"div.approx.ftz.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_div_approx_ftz_f>; def INT_NVVM_DIV_APPROX_F : F_MATH_2<"div.approx.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_div_approx_f>; def INT_NVVM_DIV_RN_FTZ_F : F_MATH_2<"div.rn.ftz.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_div_rn_ftz_f>; def INT_NVVM_DIV_RN_F : F_MATH_2<"div.rn.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_div_rn_f>; def INT_NVVM_DIV_RZ_FTZ_F : F_MATH_2<"div.rz.ftz.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_div_rz_ftz_f>; def INT_NVVM_DIV_RZ_F : F_MATH_2<"div.rz.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_div_rz_f>; def INT_NVVM_DIV_RM_FTZ_F : F_MATH_2<"div.rm.ftz.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_div_rm_ftz_f>; def INT_NVVM_DIV_RM_F : F_MATH_2<"div.rm.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_div_rm_f>; def INT_NVVM_DIV_RP_FTZ_F : F_MATH_2<"div.rp.ftz.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_div_rp_ftz_f>; def INT_NVVM_DIV_RP_F : F_MATH_2<"div.rp.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_div_rp_f>; def INT_NVVM_DIV_RN_D : F_MATH_2<"div.rn.f64 \t$dst, $src0, $src1;", Float64Regs, Float64Regs, Float64Regs, int_nvvm_div_rn_d>; def INT_NVVM_DIV_RZ_D : F_MATH_2<"div.rz.f64 \t$dst, $src0, $src1;", Float64Regs, Float64Regs, Float64Regs, int_nvvm_div_rz_d>; def INT_NVVM_DIV_RM_D : F_MATH_2<"div.rm.f64 \t$dst, $src0, $src1;", Float64Regs, Float64Regs, Float64Regs, int_nvvm_div_rm_d>; def INT_NVVM_DIV_RP_D : F_MATH_2<"div.rp.f64 \t$dst, $src0, $src1;", Float64Regs, Float64Regs, Float64Regs, int_nvvm_div_rp_d>; // // Brev // def INT_NVVM_BREV32 : F_MATH_1<"brev.b32 \t$dst, $src0;", Int32Regs, Int32Regs, int_nvvm_brev32>; def INT_NVVM_BREV64 : F_MATH_1<"brev.b64 \t$dst, $src0;", Int64Regs, Int64Regs, int_nvvm_brev64>; // // Sad // def INT_NVVM_SAD_I : F_MATH_3<"sad.s32 \t$dst, $src0, $src1, $src2;", Int32Regs, Int32Regs, Int32Regs, Int32Regs, int_nvvm_sad_i>; def INT_NVVM_SAD_UI : F_MATH_3<"sad.u32 \t$dst, $src0, $src1, $src2;", Int32Regs, Int32Regs, Int32Regs, Int32Regs, int_nvvm_sad_ui>; // // Floor Ceil // def INT_NVVM_FLOOR_FTZ_F : F_MATH_1<"cvt.rmi.ftz.f32.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_floor_ftz_f>; def INT_NVVM_FLOOR_F : F_MATH_1<"cvt.rmi.f32.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_floor_f>; def INT_NVVM_FLOOR_D : F_MATH_1<"cvt.rmi.f64.f64 \t$dst, $src0;", Float64Regs, Float64Regs, int_nvvm_floor_d>; def INT_NVVM_CEIL_FTZ_F : F_MATH_1<"cvt.rpi.ftz.f32.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_ceil_ftz_f>; def INT_NVVM_CEIL_F : F_MATH_1<"cvt.rpi.f32.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_ceil_f>; def INT_NVVM_CEIL_D : F_MATH_1<"cvt.rpi.f64.f64 \t$dst, $src0;", Float64Regs, Float64Regs, int_nvvm_ceil_d>; // // Abs // def INT_NVVM_ABS_I : F_MATH_1<"abs.s32 \t$dst, $src0;", Int32Regs, Int32Regs, int_nvvm_abs_i>; def INT_NVVM_ABS_LL : F_MATH_1<"abs.s64 \t$dst, $src0;", Int64Regs, Int64Regs, int_nvvm_abs_ll>; def INT_NVVM_FABS_FTZ_F : F_MATH_1<"abs.ftz.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_fabs_ftz_f>; def INT_NVVM_FABS_F : F_MATH_1<"abs.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_fabs_f>; def INT_NVVM_FABS_D : F_MATH_1<"abs.f64 \t$dst, $src0;", Float64Regs, Float64Regs, int_nvvm_fabs_d>; // // Round // def INT_NVVM_ROUND_FTZ_F : F_MATH_1<"cvt.rni.ftz.f32.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_round_ftz_f>; def INT_NVVM_ROUND_F : F_MATH_1<"cvt.rni.f32.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_round_f>; def INT_NVVM_ROUND_D : F_MATH_1<"cvt.rni.f64.f64 \t$dst, $src0;", Float64Regs, Float64Regs, int_nvvm_round_d>; // // Trunc // def INT_NVVM_TRUNC_FTZ_F : F_MATH_1<"cvt.rzi.ftz.f32.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_trunc_ftz_f>; def INT_NVVM_TRUNC_F : F_MATH_1<"cvt.rzi.f32.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_trunc_f>; def INT_NVVM_TRUNC_D : F_MATH_1<"cvt.rzi.f64.f64 \t$dst, $src0;", Float64Regs, Float64Regs, int_nvvm_trunc_d>; // // Saturate // def INT_NVVM_SATURATE_FTZ_F : F_MATH_1<"cvt.sat.ftz.f32.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_saturate_ftz_f>; def INT_NVVM_SATURATE_F : F_MATH_1<"cvt.sat.f32.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_saturate_f>; def INT_NVVM_SATURATE_D : F_MATH_1<"cvt.sat.f64.f64 \t$dst, $src0;", Float64Regs, Float64Regs, int_nvvm_saturate_d>; // // Exp2 Log2 // def INT_NVVM_EX2_APPROX_FTZ_F : F_MATH_1<"ex2.approx.ftz.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_ex2_approx_ftz_f>; def INT_NVVM_EX2_APPROX_F : F_MATH_1<"ex2.approx.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_ex2_approx_f>; def INT_NVVM_EX2_APPROX_D : F_MATH_1<"ex2.approx.f64 \t$dst, $src0;", Float64Regs, Float64Regs, int_nvvm_ex2_approx_d>; def INT_NVVM_LG2_APPROX_FTZ_F : F_MATH_1<"lg2.approx.ftz.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_lg2_approx_ftz_f>; def INT_NVVM_LG2_APPROX_F : F_MATH_1<"lg2.approx.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_lg2_approx_f>; def INT_NVVM_LG2_APPROX_D : F_MATH_1<"lg2.approx.f64 \t$dst, $src0;", Float64Regs, Float64Regs, int_nvvm_lg2_approx_d>; // // Sin Cos // def INT_NVVM_SIN_APPROX_FTZ_F : F_MATH_1<"sin.approx.ftz.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_sin_approx_ftz_f>; def INT_NVVM_SIN_APPROX_F : F_MATH_1<"sin.approx.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_sin_approx_f>; def INT_NVVM_COS_APPROX_FTZ_F : F_MATH_1<"cos.approx.ftz.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_cos_approx_ftz_f>; def INT_NVVM_COS_APPROX_F : F_MATH_1<"cos.approx.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_cos_approx_f>; // // Fma // def INT_NVVM_FMA_RN_FTZ_F : F_MATH_3<"fma.rn.ftz.f32 \t$dst, $src0, $src1, $src2;", Float32Regs, Float32Regs, Float32Regs, Float32Regs, int_nvvm_fma_rn_ftz_f>; def INT_NVVM_FMA_RN_F : F_MATH_3<"fma.rn.f32 \t$dst, $src0, $src1, $src2;", Float32Regs, Float32Regs, Float32Regs, Float32Regs, int_nvvm_fma_rn_f>; def INT_NVVM_FMA_RZ_FTZ_F : F_MATH_3<"fma.rz.ftz.f32 \t$dst, $src0, $src1, $src2;", Float32Regs, Float32Regs, Float32Regs, Float32Regs, int_nvvm_fma_rz_ftz_f>; def INT_NVVM_FMA_RZ_F : F_MATH_3<"fma.rz.f32 \t$dst, $src0, $src1, $src2;", Float32Regs, Float32Regs, Float32Regs, Float32Regs, int_nvvm_fma_rz_f>; def INT_NVVM_FMA_RM_FTZ_F : F_MATH_3<"fma.rm.ftz.f32 \t$dst, $src0, $src1, $src2;", Float32Regs, Float32Regs, Float32Regs, Float32Regs, int_nvvm_fma_rm_ftz_f>; def INT_NVVM_FMA_RM_F : F_MATH_3<"fma.rm.f32 \t$dst, $src0, $src1, $src2;", Float32Regs, Float32Regs, Float32Regs, Float32Regs, int_nvvm_fma_rm_f>; def INT_NVVM_FMA_RP_FTZ_F : F_MATH_3<"fma.rp.ftz.f32 \t$dst, $src0, $src1, $src2;", Float32Regs, Float32Regs, Float32Regs, Float32Regs, int_nvvm_fma_rp_ftz_f>; def INT_NVVM_FMA_RP_F : F_MATH_3<"fma.rp.f32 \t$dst, $src0, $src1, $src2;", Float32Regs, Float32Regs, Float32Regs, Float32Regs, int_nvvm_fma_rp_f>; def INT_NVVM_FMA_RN_D : F_MATH_3<"fma.rn.f64 \t$dst, $src0, $src1, $src2;", Float64Regs, Float64Regs, Float64Regs, Float64Regs, int_nvvm_fma_rn_d>; def INT_NVVM_FMA_RZ_D : F_MATH_3<"fma.rz.f64 \t$dst, $src0, $src1, $src2;", Float64Regs, Float64Regs, Float64Regs, Float64Regs, int_nvvm_fma_rz_d>; def INT_NVVM_FMA_RM_D : F_MATH_3<"fma.rm.f64 \t$dst, $src0, $src1, $src2;", Float64Regs, Float64Regs, Float64Regs, Float64Regs, int_nvvm_fma_rm_d>; def INT_NVVM_FMA_RP_D : F_MATH_3<"fma.rp.f64 \t$dst, $src0, $src1, $src2;", Float64Regs, Float64Regs, Float64Regs, Float64Regs, int_nvvm_fma_rp_d>; // // Rcp // def INT_NVVM_RCP_RN_FTZ_F : F_MATH_1<"rcp.rn.ftz.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_rcp_rn_ftz_f>; def INT_NVVM_RCP_RN_F : F_MATH_1<"rcp.rn.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_rcp_rn_f>; def INT_NVVM_RCP_RZ_FTZ_F : F_MATH_1<"rcp.rz.ftz.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_rcp_rz_ftz_f>; def INT_NVVM_RCP_RZ_F : F_MATH_1<"rcp.rz.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_rcp_rz_f>; def INT_NVVM_RCP_RM_FTZ_F : F_MATH_1<"rcp.rm.ftz.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_rcp_rm_ftz_f>; def INT_NVVM_RCP_RM_F : F_MATH_1<"rcp.rm.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_rcp_rm_f>; def INT_NVVM_RCP_RP_FTZ_F : F_MATH_1<"rcp.rp.ftz.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_rcp_rp_ftz_f>; def INT_NVVM_RCP_RP_F : F_MATH_1<"rcp.rp.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_rcp_rp_f>; def INT_NVVM_RCP_RN_D : F_MATH_1<"rcp.rn.f64 \t$dst, $src0;", Float64Regs, Float64Regs, int_nvvm_rcp_rn_d>; def INT_NVVM_RCP_RZ_D : F_MATH_1<"rcp.rz.f64 \t$dst, $src0;", Float64Regs, Float64Regs, int_nvvm_rcp_rz_d>; def INT_NVVM_RCP_RM_D : F_MATH_1<"rcp.rm.f64 \t$dst, $src0;", Float64Regs, Float64Regs, int_nvvm_rcp_rm_d>; def INT_NVVM_RCP_RP_D : F_MATH_1<"rcp.rp.f64 \t$dst, $src0;", Float64Regs, Float64Regs, int_nvvm_rcp_rp_d>; def INT_NVVM_RCP_APPROX_FTZ_D : F_MATH_1<"rcp.approx.ftz.f64 \t$dst, $src0;", Float64Regs, Float64Regs, int_nvvm_rcp_approx_ftz_d>; // // Sqrt // def INT_NVVM_SQRT_RN_FTZ_F : F_MATH_1<"sqrt.rn.ftz.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_sqrt_rn_ftz_f>; def INT_NVVM_SQRT_RN_F : F_MATH_1<"sqrt.rn.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_sqrt_rn_f>; def INT_NVVM_SQRT_RZ_FTZ_F : F_MATH_1<"sqrt.rz.ftz.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_sqrt_rz_ftz_f>; def INT_NVVM_SQRT_RZ_F : F_MATH_1<"sqrt.rz.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_sqrt_rz_f>; def INT_NVVM_SQRT_RM_FTZ_F : F_MATH_1<"sqrt.rm.ftz.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_sqrt_rm_ftz_f>; def INT_NVVM_SQRT_RM_F : F_MATH_1<"sqrt.rm.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_sqrt_rm_f>; def INT_NVVM_SQRT_RP_FTZ_F : F_MATH_1<"sqrt.rp.ftz.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_sqrt_rp_ftz_f>; def INT_NVVM_SQRT_RP_F : F_MATH_1<"sqrt.rp.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_sqrt_rp_f>; def INT_NVVM_SQRT_APPROX_FTZ_F : F_MATH_1<"sqrt.approx.ftz.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_sqrt_approx_ftz_f>; def INT_NVVM_SQRT_APPROX_F : F_MATH_1<"sqrt.approx.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_sqrt_approx_f>; def INT_NVVM_SQRT_RN_D : F_MATH_1<"sqrt.rn.f64 \t$dst, $src0;", Float64Regs, Float64Regs, int_nvvm_sqrt_rn_d>; def INT_NVVM_SQRT_RZ_D : F_MATH_1<"sqrt.rz.f64 \t$dst, $src0;", Float64Regs, Float64Regs, int_nvvm_sqrt_rz_d>; def INT_NVVM_SQRT_RM_D : F_MATH_1<"sqrt.rm.f64 \t$dst, $src0;", Float64Regs, Float64Regs, int_nvvm_sqrt_rm_d>; def INT_NVVM_SQRT_RP_D : F_MATH_1<"sqrt.rp.f64 \t$dst, $src0;", Float64Regs, Float64Regs, int_nvvm_sqrt_rp_d>; // // Rsqrt // def INT_NVVM_RSQRT_APPROX_FTZ_F : F_MATH_1<"rsqrt.approx.ftz.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_rsqrt_approx_ftz_f>; def INT_NVVM_RSQRT_APPROX_F : F_MATH_1<"rsqrt.approx.f32 \t$dst, $src0;", Float32Regs, Float32Regs, int_nvvm_rsqrt_approx_f>; def INT_NVVM_RSQRT_APPROX_D : F_MATH_1<"rsqrt.approx.f64 \t$dst, $src0;", Float64Regs, Float64Regs, int_nvvm_rsqrt_approx_d>; // // Add // def INT_NVVM_ADD_RN_FTZ_F : F_MATH_2<"add.rn.ftz.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_add_rn_ftz_f>; def INT_NVVM_ADD_RN_F : F_MATH_2<"add.rn.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_add_rn_f>; def INT_NVVM_ADD_RZ_FTZ_F : F_MATH_2<"add.rz.ftz.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_add_rz_ftz_f>; def INT_NVVM_ADD_RZ_F : F_MATH_2<"add.rz.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_add_rz_f>; def INT_NVVM_ADD_RM_FTZ_F : F_MATH_2<"add.rm.ftz.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_add_rm_ftz_f>; def INT_NVVM_ADD_RM_F : F_MATH_2<"add.rm.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_add_rm_f>; def INT_NVVM_ADD_RP_FTZ_F : F_MATH_2<"add.rp.ftz.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_add_rp_ftz_f>; def INT_NVVM_ADD_RP_F : F_MATH_2<"add.rp.f32 \t$dst, $src0, $src1;", Float32Regs, Float32Regs, Float32Regs, int_nvvm_add_rp_f>; def INT_NVVM_ADD_RN_D : F_MATH_2<"add.rn.f64 \t$dst, $src0, $src1;", Float64Regs, Float64Regs, Float64Regs, int_nvvm_add_rn_d>; def INT_NVVM_ADD_RZ_D : F_MATH_2<"add.rz.f64 \t$dst, $src0, $src1;", Float64Regs, Float64Regs, Float64Regs, int_nvvm_add_rz_d>; def INT_NVVM_ADD_RM_D : F_MATH_2<"add.rm.f64 \t$dst, $src0, $src1;", Float64Regs, Float64Regs, Float64Regs, int_nvvm_add_rm_d>; def INT_NVVM_ADD_RP_D : F_MATH_2<"add.rp.f64 \t$dst, $src0, $src1;", Float64Regs, Float64Regs, Float64Regs, int_nvvm_add_rp_d>; // // Convert // def INT_NVVM_D2F_RN_FTZ : F_MATH_1<"cvt.rn.ftz.f32.f64 \t$dst, $src0;", Float32Regs, Float64Regs, int_nvvm_d2f_rn_ftz>; def INT_NVVM_D2F_RN : F_MATH_1<"cvt.rn.f32.f64 \t$dst, $src0;", Float32Regs, Float64Regs, int_nvvm_d2f_rn>; def INT_NVVM_D2F_RZ_FTZ : F_MATH_1<"cvt.rz.ftz.f32.f64 \t$dst, $src0;", Float32Regs, Float64Regs, int_nvvm_d2f_rz_ftz>; def INT_NVVM_D2F_RZ : F_MATH_1<"cvt.rz.f32.f64 \t$dst, $src0;", Float32Regs, Float64Regs, int_nvvm_d2f_rz>; def INT_NVVM_D2F_RM_FTZ : F_MATH_1<"cvt.rm.ftz.f32.f64 \t$dst, $src0;", Float32Regs, Float64Regs, int_nvvm_d2f_rm_ftz>; def INT_NVVM_D2F_RM : F_MATH_1<"cvt.rm.f32.f64 \t$dst, $src0;", Float32Regs, Float64Regs, int_nvvm_d2f_rm>; def INT_NVVM_D2F_RP_FTZ : F_MATH_1<"cvt.rp.ftz.f32.f64 \t$dst, $src0;", Float32Regs, Float64Regs, int_nvvm_d2f_rp_ftz>; def INT_NVVM_D2F_RP : F_MATH_1<"cvt.rp.f32.f64 \t$dst, $src0;", Float32Regs, Float64Regs, int_nvvm_d2f_rp>; def INT_NVVM_D2I_RN : F_MATH_1<"cvt.rni.s32.f64 \t$dst, $src0;", Int32Regs, Float64Regs, int_nvvm_d2i_rn>; def INT_NVVM_D2I_RZ : F_MATH_1<"cvt.rzi.s32.f64 \t$dst, $src0;", Int32Regs, Float64Regs, int_nvvm_d2i_rz>; def INT_NVVM_D2I_RM : F_MATH_1<"cvt.rmi.s32.f64 \t$dst, $src0;", Int32Regs, Float64Regs, int_nvvm_d2i_rm>; def INT_NVVM_D2I_RP : F_MATH_1<"cvt.rpi.s32.f64 \t$dst, $src0;", Int32Regs, Float64Regs, int_nvvm_d2i_rp>; def INT_NVVM_D2UI_RN : F_MATH_1<"cvt.rni.u32.f64 \t$dst, $src0;", Int32Regs, Float64Regs, int_nvvm_d2ui_rn>; def INT_NVVM_D2UI_RZ : F_MATH_1<"cvt.rzi.u32.f64 \t$dst, $src0;", Int32Regs, Float64Regs, int_nvvm_d2ui_rz>; def INT_NVVM_D2UI_RM : F_MATH_1<"cvt.rmi.u32.f64 \t$dst, $src0;", Int32Regs, Float64Regs, int_nvvm_d2ui_rm>; def INT_NVVM_D2UI_RP : F_MATH_1<"cvt.rpi.u32.f64 \t$dst, $src0;", Int32Regs, Float64Regs, int_nvvm_d2ui_rp>; def INT_NVVM_I2D_RN : F_MATH_1<"cvt.rn.f64.s32 \t$dst, $src0;", Float64Regs, Int32Regs, int_nvvm_i2d_rn>; def INT_NVVM_I2D_RZ : F_MATH_1<"cvt.rz.f64.s32 \t$dst, $src0;", Float64Regs, Int32Regs, int_nvvm_i2d_rz>; def INT_NVVM_I2D_RM : F_MATH_1<"cvt.rm.f64.s32 \t$dst, $src0;", Float64Regs, Int32Regs, int_nvvm_i2d_rm>; def INT_NVVM_I2D_RP : F_MATH_1<"cvt.rp.f64.s32 \t$dst, $src0;", Float64Regs, Int32Regs, int_nvvm_i2d_rp>; def INT_NVVM_UI2D_RN : F_MATH_1<"cvt.rn.f64.u32 \t$dst, $src0;", Float64Regs, Int32Regs, int_nvvm_ui2d_rn>; def INT_NVVM_UI2D_RZ : F_MATH_1<"cvt.rz.f64.u32 \t$dst, $src0;", Float64Regs, Int32Regs, int_nvvm_ui2d_rz>; def INT_NVVM_UI2D_RM : F_MATH_1<"cvt.rm.f64.u32 \t$dst, $src0;", Float64Regs, Int32Regs, int_nvvm_ui2d_rm>; def INT_NVVM_UI2D_RP : F_MATH_1<"cvt.rp.f64.u32 \t$dst, $src0;", Float64Regs, Int32Regs, int_nvvm_ui2d_rp>; def INT_NVVM_F2I_RN_FTZ : F_MATH_1<"cvt.rni.ftz.s32.f32 \t$dst, $src0;", Int32Regs, Float32Regs, int_nvvm_f2i_rn_ftz>; def INT_NVVM_F2I_RN : F_MATH_1<"cvt.rni.s32.f32 \t$dst, $src0;", Int32Regs, Float32Regs, int_nvvm_f2i_rn>; def INT_NVVM_F2I_RZ_FTZ : F_MATH_1<"cvt.rzi.ftz.s32.f32 \t$dst, $src0;", Int32Regs, Float32Regs, int_nvvm_f2i_rz_ftz>; def INT_NVVM_F2I_RZ : F_MATH_1<"cvt.rzi.s32.f32 \t$dst, $src0;", Int32Regs, Float32Regs, int_nvvm_f2i_rz>; def INT_NVVM_F2I_RM_FTZ : F_MATH_1<"cvt.rmi.ftz.s32.f32 \t$dst, $src0;", Int32Regs, Float32Regs, int_nvvm_f2i_rm_ftz>; def INT_NVVM_F2I_RM : F_MATH_1<"cvt.rmi.s32.f32 \t$dst, $src0;", Int32Regs, Float32Regs, int_nvvm_f2i_rm>; def INT_NVVM_F2I_RP_FTZ : F_MATH_1<"cvt.rpi.ftz.s32.f32 \t$dst, $src0;", Int32Regs, Float32Regs, int_nvvm_f2i_rp_ftz>; def INT_NVVM_F2I_RP : F_MATH_1<"cvt.rpi.s32.f32 \t$dst, $src0;", Int32Regs, Float32Regs, int_nvvm_f2i_rp>; def INT_NVVM_F2UI_RN_FTZ : F_MATH_1<"cvt.rni.ftz.u32.f32 \t$dst, $src0;", Int32Regs, Float32Regs, int_nvvm_f2ui_rn_ftz>; def INT_NVVM_F2UI_RN : F_MATH_1<"cvt.rni.u32.f32 \t$dst, $src0;", Int32Regs, Float32Regs, int_nvvm_f2ui_rn>; def INT_NVVM_F2UI_RZ_FTZ : F_MATH_1<"cvt.rzi.ftz.u32.f32 \t$dst, $src0;", Int32Regs, Float32Regs, int_nvvm_f2ui_rz_ftz>; def INT_NVVM_F2UI_RZ : F_MATH_1<"cvt.rzi.u32.f32 \t$dst, $src0;", Int32Regs, Float32Regs, int_nvvm_f2ui_rz>; def INT_NVVM_F2UI_RM_FTZ : F_MATH_1<"cvt.rmi.ftz.u32.f32 \t$dst, $src0;", Int32Regs, Float32Regs, int_nvvm_f2ui_rm_ftz>; def INT_NVVM_F2UI_RM : F_MATH_1<"cvt.rmi.u32.f32 \t$dst, $src0;", Int32Regs, Float32Regs, int_nvvm_f2ui_rm>; def INT_NVVM_F2UI_RP_FTZ : F_MATH_1<"cvt.rpi.ftz.u32.f32 \t$dst, $src0;", Int32Regs, Float32Regs, int_nvvm_f2ui_rp_ftz>; def INT_NVVM_F2UI_RP : F_MATH_1<"cvt.rpi.u32.f32 \t$dst, $src0;", Int32Regs, Float32Regs, int_nvvm_f2ui_rp>; def INT_NVVM_I2F_RN : F_MATH_1<"cvt.rn.f32.s32 \t$dst, $src0;", Float32Regs, Int32Regs, int_nvvm_i2f_rn>; def INT_NVVM_I2F_RZ : F_MATH_1<"cvt.rz.f32.s32 \t$dst, $src0;", Float32Regs, Int32Regs, int_nvvm_i2f_rz>; def INT_NVVM_I2F_RM : F_MATH_1<"cvt.rm.f32.s32 \t$dst, $src0;", Float32Regs, Int32Regs, int_nvvm_i2f_rm>; def INT_NVVM_I2F_RP : F_MATH_1<"cvt.rp.f32.s32 \t$dst, $src0;", Float32Regs, Int32Regs, int_nvvm_i2f_rp>; def INT_NVVM_UI2F_RN : F_MATH_1<"cvt.rn.f32.u32 \t$dst, $src0;", Float32Regs, Int32Regs, int_nvvm_ui2f_rn>; def INT_NVVM_UI2F_RZ : F_MATH_1<"cvt.rz.f32.u32 \t$dst, $src0;", Float32Regs, Int32Regs, int_nvvm_ui2f_rz>; def INT_NVVM_UI2F_RM : F_MATH_1<"cvt.rm.f32.u32 \t$dst, $src0;", Float32Regs, Int32Regs, int_nvvm_ui2f_rm>; def INT_NVVM_UI2F_RP : F_MATH_1<"cvt.rp.f32.u32 \t$dst, $src0;", Float32Regs, Int32Regs, int_nvvm_ui2f_rp>; def INT_NVVM_LOHI_I2D : F_MATH_2<"mov.b64 \t$dst, {{$src0, $src1}};", Float64Regs, Int32Regs, Int32Regs, int_nvvm_lohi_i2d>; def INT_NVVM_D2I_LO : F_MATH_1; def INT_NVVM_D2I_HI : F_MATH_1; def INT_NVVM_F2LL_RN_FTZ : F_MATH_1<"cvt.rni.ftz.s64.f32 \t$dst, $src0;", Int64Regs, Float32Regs, int_nvvm_f2ll_rn_ftz>; def INT_NVVM_F2LL_RN : F_MATH_1<"cvt.rni.s64.f32 \t$dst, $src0;", Int64Regs, Float32Regs, int_nvvm_f2ll_rn>; def INT_NVVM_F2LL_RZ_FTZ : F_MATH_1<"cvt.rzi.ftz.s64.f32 \t$dst, $src0;", Int64Regs, Float32Regs, int_nvvm_f2ll_rz_ftz>; def INT_NVVM_F2LL_RZ : F_MATH_1<"cvt.rzi.s64.f32 \t$dst, $src0;", Int64Regs, Float32Regs, int_nvvm_f2ll_rz>; def INT_NVVM_F2LL_RM_FTZ : F_MATH_1<"cvt.rmi.ftz.s64.f32 \t$dst, $src0;", Int64Regs, Float32Regs, int_nvvm_f2ll_rm_ftz>; def INT_NVVM_F2LL_RM : F_MATH_1<"cvt.rmi.s64.f32 \t$dst, $src0;", Int64Regs, Float32Regs, int_nvvm_f2ll_rm>; def INT_NVVM_F2LL_RP_FTZ : F_MATH_1<"cvt.rpi.ftz.s64.f32 \t$dst, $src0;", Int64Regs, Float32Regs, int_nvvm_f2ll_rp_ftz>; def INT_NVVM_F2LL_RP : F_MATH_1<"cvt.rpi.s64.f32 \t$dst, $src0;", Int64Regs, Float32Regs, int_nvvm_f2ll_rp>; def INT_NVVM_F2ULL_RN_FTZ : F_MATH_1<"cvt.rni.ftz.u64.f32 \t$dst, $src0;", Int64Regs, Float32Regs, int_nvvm_f2ull_rn_ftz>; def INT_NVVM_F2ULL_RN : F_MATH_1<"cvt.rni.u64.f32 \t$dst, $src0;", Int64Regs, Float32Regs, int_nvvm_f2ull_rn>; def INT_NVVM_F2ULL_RZ_FTZ : F_MATH_1<"cvt.rzi.ftz.u64.f32 \t$dst, $src0;", Int64Regs, Float32Regs, int_nvvm_f2ull_rz_ftz>; def INT_NVVM_F2ULL_RZ : F_MATH_1<"cvt.rzi.u64.f32 \t$dst, $src0;", Int64Regs, Float32Regs, int_nvvm_f2ull_rz>; def INT_NVVM_F2ULL_RM_FTZ : F_MATH_1<"cvt.rmi.ftz.u64.f32 \t$dst, $src0;", Int64Regs, Float32Regs, int_nvvm_f2ull_rm_ftz>; def INT_NVVM_F2ULL_RM : F_MATH_1<"cvt.rmi.u64.f32 \t$dst, $src0;", Int64Regs, Float32Regs, int_nvvm_f2ull_rm>; def INT_NVVM_F2ULL_RP_FTZ : F_MATH_1<"cvt.rpi.ftz.u64.f32 \t$dst, $src0;", Int64Regs, Float32Regs, int_nvvm_f2ull_rp_ftz>; def INT_NVVM_F2ULL_RP : F_MATH_1<"cvt.rpi.u64.f32 \t$dst, $src0;", Int64Regs, Float32Regs, int_nvvm_f2ull_rp>; def INT_NVVM_D2LL_RN : F_MATH_1<"cvt.rni.s64.f64 \t$dst, $src0;", Int64Regs, Float64Regs, int_nvvm_d2ll_rn>; def INT_NVVM_D2LL_RZ : F_MATH_1<"cvt.rzi.s64.f64 \t$dst, $src0;", Int64Regs, Float64Regs, int_nvvm_d2ll_rz>; def INT_NVVM_D2LL_RM : F_MATH_1<"cvt.rmi.s64.f64 \t$dst, $src0;", Int64Regs, Float64Regs, int_nvvm_d2ll_rm>; def INT_NVVM_D2LL_RP : F_MATH_1<"cvt.rpi.s64.f64 \t$dst, $src0;", Int64Regs, Float64Regs, int_nvvm_d2ll_rp>; def INT_NVVM_D2ULL_RN : F_MATH_1<"cvt.rni.u64.f64 \t$dst, $src0;", Int64Regs, Float64Regs, int_nvvm_d2ull_rn>; def INT_NVVM_D2ULL_RZ : F_MATH_1<"cvt.rzi.u64.f64 \t$dst, $src0;", Int64Regs, Float64Regs, int_nvvm_d2ull_rz>; def INT_NVVM_D2ULL_RM : F_MATH_1<"cvt.rmi.u64.f64 \t$dst, $src0;", Int64Regs, Float64Regs, int_nvvm_d2ull_rm>; def INT_NVVM_D2ULL_RP : F_MATH_1<"cvt.rpi.u64.f64 \t$dst, $src0;", Int64Regs, Float64Regs, int_nvvm_d2ull_rp>; def INT_NVVM_LL2F_RN : F_MATH_1<"cvt.rn.f32.s64 \t$dst, $src0;", Float32Regs, Int64Regs, int_nvvm_ll2f_rn>; def INT_NVVM_LL2F_RZ : F_MATH_1<"cvt.rz.f32.s64 \t$dst, $src0;", Float32Regs, Int64Regs, int_nvvm_ll2f_rz>; def INT_NVVM_LL2F_RM : F_MATH_1<"cvt.rm.f32.s64 \t$dst, $src0;", Float32Regs, Int64Regs, int_nvvm_ll2f_rm>; def INT_NVVM_LL2F_RP : F_MATH_1<"cvt.rp.f32.s64 \t$dst, $src0;", Float32Regs, Int64Regs, int_nvvm_ll2f_rp>; def INT_NVVM_ULL2F_RN : F_MATH_1<"cvt.rn.f32.u64 \t$dst, $src0;", Float32Regs, Int64Regs, int_nvvm_ull2f_rn>; def INT_NVVM_ULL2F_RZ : F_MATH_1<"cvt.rz.f32.u64 \t$dst, $src0;", Float32Regs, Int64Regs, int_nvvm_ull2f_rz>; def INT_NVVM_ULL2F_RM : F_MATH_1<"cvt.rm.f32.u64 \t$dst, $src0;", Float32Regs, Int64Regs, int_nvvm_ull2f_rm>; def INT_NVVM_ULL2F_RP : F_MATH_1<"cvt.rp.f32.u64 \t$dst, $src0;", Float32Regs, Int64Regs, int_nvvm_ull2f_rp>; def INT_NVVM_LL2D_RN : F_MATH_1<"cvt.rn.f64.s64 \t$dst, $src0;", Float64Regs, Int64Regs, int_nvvm_ll2d_rn>; def INT_NVVM_LL2D_RZ : F_MATH_1<"cvt.rz.f64.s64 \t$dst, $src0;", Float64Regs, Int64Regs, int_nvvm_ll2d_rz>; def INT_NVVM_LL2D_RM : F_MATH_1<"cvt.rm.f64.s64 \t$dst, $src0;", Float64Regs, Int64Regs, int_nvvm_ll2d_rm>; def INT_NVVM_LL2D_RP : F_MATH_1<"cvt.rp.f64.s64 \t$dst, $src0;", Float64Regs, Int64Regs, int_nvvm_ll2d_rp>; def INT_NVVM_ULL2D_RN : F_MATH_1<"cvt.rn.f64.u64 \t$dst, $src0;", Float64Regs, Int64Regs, int_nvvm_ull2d_rn>; def INT_NVVM_ULL2D_RZ : F_MATH_1<"cvt.rz.f64.u64 \t$dst, $src0;", Float64Regs, Int64Regs, int_nvvm_ull2d_rz>; def INT_NVVM_ULL2D_RM : F_MATH_1<"cvt.rm.f64.u64 \t$dst, $src0;", Float64Regs, Int64Regs, int_nvvm_ull2d_rm>; def INT_NVVM_ULL2D_RP : F_MATH_1<"cvt.rp.f64.u64 \t$dst, $src0;", Float64Regs, Int64Regs, int_nvvm_ull2d_rp>; def INT_NVVM_F2H_RN_FTZ : F_MATH_1; def INT_NVVM_F2H_RN : F_MATH_1; def INT_NVVM_H2F : F_MATH_1; // // Bitcast // def INT_NVVM_BITCAST_F2I : F_MATH_1<"mov.b32 \t$dst, $src0;", Int32Regs, Float32Regs, int_nvvm_bitcast_f2i>; def INT_NVVM_BITCAST_I2F : F_MATH_1<"mov.b32 \t$dst, $src0;", Float32Regs, Int32Regs, int_nvvm_bitcast_i2f>; def INT_NVVM_BITCAST_LL2D : F_MATH_1<"mov.b64 \t$dst, $src0;", Float64Regs, Int64Regs, int_nvvm_bitcast_ll2d>; def INT_NVVM_BITCAST_D2LL : F_MATH_1<"mov.b64 \t$dst, $src0;", Int64Regs, Float64Regs, int_nvvm_bitcast_d2ll>; //----------------------------------- // Atomic Functions //----------------------------------- class ATOMIC_GLOBAL_CHK : PatFrag; class ATOMIC_SHARED_CHK : PatFrag; class ATOMIC_GENERIC_CHK : PatFrag; multiclass F_ATOMIC_2_imp { def reg : NVPTXInst<(outs regclass:$dst), (ins ptrclass:$addr, regclass:$b), !strconcat("atom", !strconcat(SpaceStr, !strconcat(OpcStr, !strconcat(TypeStr, !strconcat(" \t$dst, [$addr], $b;", ""))))), [(set regclass:$dst, (IntOp ptrclass:$addr, regclass:$b))]>, Requires<[Pred]>; def imm : NVPTXInst<(outs regclass:$dst), (ins ptrclass:$addr, IMMType:$b), !strconcat("atom", !strconcat(SpaceStr, !strconcat(OpcStr, !strconcat(TypeStr, !strconcat(" \t$dst, [$addr], $b;", ""))))), [(set regclass:$dst, (IntOp ptrclass:$addr, IMM:$b))]>, Requires<[Pred]>; } multiclass F_ATOMIC_2 { defm p32 : F_ATOMIC_2_imp; defm p64 : F_ATOMIC_2_imp; } // has 2 operands, neg the second one multiclass F_ATOMIC_2_NEG_imp { def reg : NVPTXInst<(outs regclass:$dst), (ins ptrclass:$addr, regclass:$b), !strconcat("{{ \n\t", !strconcat(".reg \t.s", !strconcat(TypeStr, !strconcat(" temp; \n\t", !strconcat("neg.s", !strconcat(TypeStr, !strconcat(" \ttemp, $b; \n\t", !strconcat("atom", !strconcat(SpaceStr, !strconcat(OpcStr, !strconcat(".u", !strconcat(TypeStr, !strconcat(" \t$dst, [$addr], temp; \n\t", !strconcat("}}", "")))))))))))))), [(set regclass:$dst, (IntOp ptrclass:$addr, regclass:$b))]>, Requires<[Pred]>; } multiclass F_ATOMIC_2_NEG { defm p32: F_ATOMIC_2_NEG_imp ; defm p64: F_ATOMIC_2_NEG_imp ; } // has 3 operands multiclass F_ATOMIC_3_imp { def reg : NVPTXInst<(outs regclass:$dst), (ins ptrclass:$addr, regclass:$b, regclass:$c), !strconcat("atom", !strconcat(SpaceStr, !strconcat(OpcStr, !strconcat(TypeStr, !strconcat(" \t$dst, [$addr], $b, $c;", ""))))), [(set regclass:$dst, (IntOp ptrclass:$addr, regclass:$b, regclass:$c))]>, Requires<[Pred]>; def imm1 : NVPTXInst<(outs regclass:$dst), (ins ptrclass:$addr, IMMType:$b, regclass:$c), !strconcat("atom", !strconcat(SpaceStr, !strconcat(OpcStr, !strconcat(TypeStr, !strconcat(" \t$dst, [$addr], $b, $c;", ""))))), [(set regclass:$dst, (IntOp ptrclass:$addr, imm:$b, regclass:$c))]>, Requires<[Pred]>; def imm2 : NVPTXInst<(outs regclass:$dst), (ins ptrclass:$addr, regclass:$b, IMMType:$c), !strconcat("atom", !strconcat(SpaceStr, !strconcat(OpcStr, !strconcat(TypeStr, !strconcat(" \t$dst, [$addr], $b, $c;", ""))))), [(set regclass:$dst, (IntOp ptrclass:$addr, regclass:$b, imm:$c))]>, Requires<[Pred]>; def imm3 : NVPTXInst<(outs regclass:$dst), (ins ptrclass:$addr, IMMType:$b, IMMType:$c), !strconcat("atom", !strconcat(SpaceStr, !strconcat(OpcStr, !strconcat(TypeStr, !strconcat(" \t$dst, [$addr], $b, $c;", ""))))), [(set regclass:$dst, (IntOp ptrclass:$addr, imm:$b, imm:$c))]>, Requires<[Pred]>; } multiclass F_ATOMIC_3 { defm p32 : F_ATOMIC_3_imp; defm p64 : F_ATOMIC_3_imp; } // atom_add def atomic_load_add_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b), (atomic_load_add_32 node:$a, node:$b)>; def atomic_load_add_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b), (atomic_load_add_32 node:$a, node:$b)>; def atomic_load_add_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b), (atomic_load_add_32 node:$a, node:$b)>; def atomic_load_add_64_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b), (atomic_load_add_64 node:$a, node:$b)>; def atomic_load_add_64_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b), (atomic_load_add_64 node:$a, node:$b)>; def atomic_load_add_64_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b), (atomic_load_add_64 node:$a, node:$b)>; def atomic_load_add_f32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b), (int_nvvm_atomic_load_add_f32 node:$a, node:$b)>; def atomic_load_add_f32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b), (int_nvvm_atomic_load_add_f32 node:$a, node:$b)>; def atomic_load_add_f32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b), (int_nvvm_atomic_load_add_f32 node:$a, node:$b)>; defm INT_PTX_ATOM_ADD_G_32 : F_ATOMIC_2; defm INT_PTX_ATOM_ADD_S_32 : F_ATOMIC_2; defm INT_PTX_ATOM_ADD_GEN_32 : F_ATOMIC_2; defm INT_PTX_ATOM_ADD_GEN_32_USE_G : F_ATOMIC_2; defm INT_PTX_ATOM_ADD_G_64 : F_ATOMIC_2; defm INT_PTX_ATOM_ADD_S_64 : F_ATOMIC_2; defm INT_PTX_ATOM_ADD_GEN_64 : F_ATOMIC_2; defm INT_PTX_ATOM_ADD_GEN_64_USE_G : F_ATOMIC_2; defm INT_PTX_ATOM_ADD_G_F32 : F_ATOMIC_2; defm INT_PTX_ATOM_ADD_S_F32 : F_ATOMIC_2; defm INT_PTX_ATOM_ADD_GEN_F32 : F_ATOMIC_2; // atom_sub def atomic_load_sub_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b), (atomic_load_sub_32 node:$a, node:$b)>; def atomic_load_sub_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b), (atomic_load_sub_32 node:$a, node:$b)>; def atomic_load_sub_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b), (atomic_load_sub_32 node:$a, node:$b)>; def atomic_load_sub_64_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b), (atomic_load_sub_64 node:$a, node:$b)>; def atomic_load_sub_64_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b), (atomic_load_sub_64 node:$a, node:$b)>; def atomic_load_sub_64_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b), (atomic_load_sub_64 node:$a, node:$b)>; defm INT_PTX_ATOM_SUB_G_32 : F_ATOMIC_2_NEG; defm INT_PTX_ATOM_SUB_G_64 : F_ATOMIC_2_NEG; defm INT_PTX_ATOM_SUB_GEN_32 : F_ATOMIC_2_NEG; defm INT_PTX_ATOM_SUB_GEN_32_USE_G : F_ATOMIC_2_NEG; defm INT_PTX_ATOM_SUB_S_32 : F_ATOMIC_2_NEG; defm INT_PTX_ATOM_SUB_S_64 : F_ATOMIC_2_NEG; defm INT_PTX_ATOM_SUB_GEN_64 : F_ATOMIC_2_NEG; defm INT_PTX_ATOM_SUB_GEN_64_USE_G : F_ATOMIC_2_NEG; // atom_swap def atomic_swap_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b), (atomic_swap_32 node:$a, node:$b)>; def atomic_swap_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b), (atomic_swap_32 node:$a, node:$b)>; def atomic_swap_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b), (atomic_swap_32 node:$a, node:$b)>; def atomic_swap_64_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b), (atomic_swap_64 node:$a, node:$b)>; def atomic_swap_64_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b), (atomic_swap_64 node:$a, node:$b)>; def atomic_swap_64_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b), (atomic_swap_64 node:$a, node:$b)>; defm INT_PTX_ATOM_SWAP_G_32 : F_ATOMIC_2; defm INT_PTX_ATOM_SWAP_S_32 : F_ATOMIC_2; defm INT_PTX_ATOM_SWAP_GEN_32 : F_ATOMIC_2; defm INT_PTX_ATOM_SWAP_GEN_32_USE_G : F_ATOMIC_2; defm INT_PTX_ATOM_SWAP_G_64 : F_ATOMIC_2; defm INT_PTX_ATOM_SWAP_S_64 : F_ATOMIC_2; defm INT_PTX_ATOM_SWAP_GEN_64 : F_ATOMIC_2; defm INT_PTX_ATOM_SWAP_GEN_64_USE_G : F_ATOMIC_2; // atom_max def atomic_load_max_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b) , (atomic_load_max_32 node:$a, node:$b)>; def atomic_load_max_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b), (atomic_load_max_32 node:$a, node:$b)>; def atomic_load_max_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b), (atomic_load_max_32 node:$a, node:$b)>; def atomic_load_umax_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b), (atomic_load_umax_32 node:$a, node:$b)>; def atomic_load_umax_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b), (atomic_load_umax_32 node:$a, node:$b)>; def atomic_load_umax_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b), (atomic_load_umax_32 node:$a, node:$b)>; defm INT_PTX_ATOM_LOAD_MAX_G_32 : F_ATOMIC_2; defm INT_PTX_ATOM_LOAD_MAX_S_32 : F_ATOMIC_2; defm INT_PTX_ATOM_LOAD_MAX_GEN_32 : F_ATOMIC_2; defm INT_PTX_ATOM_LOAD_MAX_GEN_32_USE_G : F_ATOMIC_2; defm INT_PTX_ATOM_LOAD_UMAX_G_32 : F_ATOMIC_2; defm INT_PTX_ATOM_LOAD_UMAX_S_32 : F_ATOMIC_2; defm INT_PTX_ATOM_LOAD_UMAX_GEN_32 : F_ATOMIC_2; defm INT_PTX_ATOM_LOAD_UMAX_GEN_32_USE_G : F_ATOMIC_2; // atom_min def atomic_load_min_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b), (atomic_load_min_32 node:$a, node:$b)>; def atomic_load_min_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b), (atomic_load_min_32 node:$a, node:$b)>; def atomic_load_min_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b), (atomic_load_min_32 node:$a, node:$b)>; def atomic_load_umin_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b), (atomic_load_umin_32 node:$a, node:$b)>; def atomic_load_umin_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b), (atomic_load_umin_32 node:$a, node:$b)>; def atomic_load_umin_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b), (atomic_load_umin_32 node:$a, node:$b)>; defm INT_PTX_ATOM_LOAD_MIN_G_32 : F_ATOMIC_2; defm INT_PTX_ATOM_LOAD_MIN_S_32 : F_ATOMIC_2; defm INT_PTX_ATOM_LOAD_MIN_GEN_32 : F_ATOMIC_2; defm INT_PTX_ATOM_LOAD_MIN_GEN_32_USE_G : F_ATOMIC_2; defm INT_PTX_ATOM_LOAD_UMIN_G_32 : F_ATOMIC_2; defm INT_PTX_ATOM_LOAD_UMIN_S_32 : F_ATOMIC_2; defm INT_PTX_ATOM_LOAD_UMIN_GEN_32 : F_ATOMIC_2; defm INT_PTX_ATOM_LOAD_UMIN_GEN_32_USE_G : F_ATOMIC_2; // atom_inc atom_dec def atomic_load_inc_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b), (int_nvvm_atomic_load_inc_32 node:$a, node:$b)>; def atomic_load_inc_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b), (int_nvvm_atomic_load_inc_32 node:$a, node:$b)>; def atomic_load_inc_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b), (int_nvvm_atomic_load_inc_32 node:$a, node:$b)>; def atomic_load_dec_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b), (int_nvvm_atomic_load_dec_32 node:$a, node:$b)>; def atomic_load_dec_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b), (int_nvvm_atomic_load_dec_32 node:$a, node:$b)>; def atomic_load_dec_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b), (int_nvvm_atomic_load_dec_32 node:$a, node:$b)>; defm INT_PTX_ATOM_INC_G_32 : F_ATOMIC_2; defm INT_PTX_ATOM_INC_S_32 : F_ATOMIC_2; defm INT_PTX_ATOM_INC_GEN_32 : F_ATOMIC_2; defm INT_PTX_ATOM_INC_GEN_32_USE_G : F_ATOMIC_2; defm INT_PTX_ATOM_DEC_G_32 : F_ATOMIC_2; defm INT_PTX_ATOM_DEC_S_32 : F_ATOMIC_2; defm INT_PTX_ATOM_DEC_GEN_32 : F_ATOMIC_2; defm INT_PTX_ATOM_DEC_GEN_32_USE_G : F_ATOMIC_2; // atom_and def atomic_load_and_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b), (atomic_load_and_32 node:$a, node:$b)>; def atomic_load_and_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b), (atomic_load_and_32 node:$a, node:$b)>; def atomic_load_and_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b), (atomic_load_and_32 node:$a, node:$b)>; defm INT_PTX_ATOM_AND_G_32 : F_ATOMIC_2; defm INT_PTX_ATOM_AND_S_32 : F_ATOMIC_2; defm INT_PTX_ATOM_AND_GEN_32 : F_ATOMIC_2; defm INT_PTX_ATOM_AND_GEN_32_USE_G : F_ATOMIC_2; // atom_or def atomic_load_or_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b), (atomic_load_or_32 node:$a, node:$b)>; def atomic_load_or_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b), (atomic_load_or_32 node:$a, node:$b)>; def atomic_load_or_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b), (atomic_load_or_32 node:$a, node:$b)>; defm INT_PTX_ATOM_OR_G_32 : F_ATOMIC_2; defm INT_PTX_ATOM_OR_GEN_32 : F_ATOMIC_2; defm INT_PTX_ATOM_OR_GEN_32_USE_G : F_ATOMIC_2; defm INT_PTX_ATOM_OR_S_32 : F_ATOMIC_2; // atom_xor def atomic_load_xor_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b), (atomic_load_xor_32 node:$a, node:$b)>; def atomic_load_xor_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b), (atomic_load_xor_32 node:$a, node:$b)>; def atomic_load_xor_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b), (atomic_load_xor_32 node:$a, node:$b)>; defm INT_PTX_ATOM_XOR_G_32 : F_ATOMIC_2; defm INT_PTX_ATOM_XOR_S_32 : F_ATOMIC_2; defm INT_PTX_ATOM_XOR_GEN_32 : F_ATOMIC_2; defm INT_PTX_ATOM_XOR_GEN_32_USE_G : F_ATOMIC_2; // atom_cas def atomic_cmp_swap_32_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b, node:$c), (atomic_cmp_swap_32 node:$a, node:$b, node:$c)>; def atomic_cmp_swap_32_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b, node:$c), (atomic_cmp_swap_32 node:$a, node:$b, node:$c)>; def atomic_cmp_swap_32_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b, node:$c), (atomic_cmp_swap_32 node:$a, node:$b, node:$c)>; def atomic_cmp_swap_64_g: ATOMIC_GLOBAL_CHK<(ops node:$a, node:$b, node:$c), (atomic_cmp_swap_64 node:$a, node:$b, node:$c)>; def atomic_cmp_swap_64_s: ATOMIC_SHARED_CHK<(ops node:$a, node:$b, node:$c), (atomic_cmp_swap_64 node:$a, node:$b, node:$c)>; def atomic_cmp_swap_64_gen: ATOMIC_GENERIC_CHK<(ops node:$a, node:$b, node:$c), (atomic_cmp_swap_64 node:$a, node:$b, node:$c)>; defm INT_PTX_ATOM_CAS_G_32 : F_ATOMIC_3; defm INT_PTX_ATOM_CAS_S_32 : F_ATOMIC_3; defm INT_PTX_ATOM_CAS_GEN_32 : F_ATOMIC_3; defm INT_PTX_ATOM_CAS_GEN_32_USE_G : F_ATOMIC_3; defm INT_PTX_ATOM_CAS_G_64 : F_ATOMIC_3; defm INT_PTX_ATOM_CAS_S_64 : F_ATOMIC_3; defm INT_PTX_ATOM_CAS_GEN_64 : F_ATOMIC_3; defm INT_PTX_ATOM_CAS_GEN_64_USE_G : F_ATOMIC_3; //----------------------------------- // Read Special Registers //----------------------------------- class F_SREG : NVPTXInst<(outs regclassOut:$dst), (ins), OpStr, [(set regclassOut:$dst, (IntOp))]>; def INT_PTX_SREG_TID_X : F_SREG<"mov.u32 \t$dst, %tid.x;", Int32Regs, int_nvvm_read_ptx_sreg_tid_x>; def INT_PTX_SREG_TID_Y : F_SREG<"mov.u32 \t$dst, %tid.y;", Int32Regs, int_nvvm_read_ptx_sreg_tid_y>; def INT_PTX_SREG_TID_Z : F_SREG<"mov.u32 \t$dst, %tid.z;", Int32Regs, int_nvvm_read_ptx_sreg_tid_z>; def INT_PTX_SREG_NTID_X : F_SREG<"mov.u32 \t$dst, %ntid.x;", Int32Regs, int_nvvm_read_ptx_sreg_ntid_x>; def INT_PTX_SREG_NTID_Y : F_SREG<"mov.u32 \t$dst, %ntid.y;", Int32Regs, int_nvvm_read_ptx_sreg_ntid_y>; def INT_PTX_SREG_NTID_Z : F_SREG<"mov.u32 \t$dst, %ntid.z;", Int32Regs, int_nvvm_read_ptx_sreg_ntid_z>; def INT_PTX_SREG_CTAID_X : F_SREG<"mov.u32 \t$dst, %ctaid.x;", Int32Regs, int_nvvm_read_ptx_sreg_ctaid_x>; def INT_PTX_SREG_CTAID_Y : F_SREG<"mov.u32 \t$dst, %ctaid.y;", Int32Regs, int_nvvm_read_ptx_sreg_ctaid_y>; def INT_PTX_SREG_CTAID_Z : F_SREG<"mov.u32 \t$dst, %ctaid.z;", Int32Regs, int_nvvm_read_ptx_sreg_ctaid_z>; def INT_PTX_SREG_NCTAID_X : F_SREG<"mov.u32 \t$dst, %nctaid.x;", Int32Regs, int_nvvm_read_ptx_sreg_nctaid_x>; def INT_PTX_SREG_NCTAID_Y : F_SREG<"mov.u32 \t$dst, %nctaid.y;", Int32Regs, int_nvvm_read_ptx_sreg_nctaid_y>; def INT_PTX_SREG_NCTAID_Z : F_SREG<"mov.u32 \t$dst, %nctaid.z;", Int32Regs, int_nvvm_read_ptx_sreg_nctaid_z>; def INT_PTX_SREG_WARPSIZE : F_SREG<"mov.u32 \t$dst, WARP_SZ;", Int32Regs, int_nvvm_read_ptx_sreg_warpsize>; //----------------------------------- // Support for ldu on sm_20 or later //----------------------------------- // Scalar // @TODO: Revisit this, Changed imemAny to imem multiclass LDU_G { def areg: NVPTXInst<(outs regclass:$result), (ins Int32Regs:$src), !strconcat("ldu.global.", TyStr), [(set regclass:$result, (IntOp Int32Regs:$src))]>, Requires<[hasLDU]>; def areg64: NVPTXInst<(outs regclass:$result), (ins Int64Regs:$src), !strconcat("ldu.global.", TyStr), [(set regclass:$result, (IntOp Int64Regs:$src))]>, Requires<[hasLDU]>; def avar: NVPTXInst<(outs regclass:$result), (ins imem:$src), !strconcat("ldu.global.", TyStr), [(set regclass:$result, (IntOp (Wrapper tglobaladdr:$src)))]>, Requires<[hasLDU]>; def ari : NVPTXInst<(outs regclass:$result), (ins MEMri:$src), !strconcat("ldu.global.", TyStr), [(set regclass:$result, (IntOp ADDRri:$src))]>, Requires<[hasLDU]>; def ari64 : NVPTXInst<(outs regclass:$result), (ins MEMri64:$src), !strconcat("ldu.global.", TyStr), [(set regclass:$result, (IntOp ADDRri64:$src))]>, Requires<[hasLDU]>; } defm INT_PTX_LDU_GLOBAL_i8 : LDU_G<"u8 \t$result, [$src];", Int8Regs, int_nvvm_ldu_global_i>; defm INT_PTX_LDU_GLOBAL_i16 : LDU_G<"u16 \t$result, [$src];", Int16Regs, int_nvvm_ldu_global_i>; defm INT_PTX_LDU_GLOBAL_i32 : LDU_G<"u32 \t$result, [$src];", Int32Regs, int_nvvm_ldu_global_i>; defm INT_PTX_LDU_GLOBAL_i64 : LDU_G<"u64 \t$result, [$src];", Int64Regs, int_nvvm_ldu_global_i>; defm INT_PTX_LDU_GLOBAL_f32 : LDU_G<"f32 \t$result, [$src];", Float32Regs, int_nvvm_ldu_global_f>; defm INT_PTX_LDU_GLOBAL_f64 : LDU_G<"f64 \t$result, [$src];", Float64Regs, int_nvvm_ldu_global_f>; defm INT_PTX_LDU_GLOBAL_p32 : LDU_G<"u32 \t$result, [$src];", Int32Regs, int_nvvm_ldu_global_p>; defm INT_PTX_LDU_GLOBAL_p64 : LDU_G<"u64 \t$result, [$src];", Int64Regs, int_nvvm_ldu_global_p>; // vector // Elementized vector ldu multiclass VLDU_G_ELE_V2 { def _32: NVPTXInst<(outs regclass:$dst1, regclass:$dst2), (ins Int32Regs:$src), !strconcat("ldu.global.", TyStr), []>; def _64: NVPTXInst<(outs regclass:$dst1, regclass:$dst2), (ins Int64Regs:$src), !strconcat("ldu.global.", TyStr), []>; } multiclass VLDU_G_ELE_V4 { def _32: NVPTXInst<(outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), (ins Int32Regs:$src), !strconcat("ldu.global.", TyStr), []>; def _64: NVPTXInst<(outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), (ins Int64Regs:$src), !strconcat("ldu.global.", TyStr), []>; } defm INT_PTX_LDU_G_v2i8_ELE : VLDU_G_ELE_V2<"v2.u8 \t{{$dst1, $dst2}}, [$src];", Int8Regs>; defm INT_PTX_LDU_G_v2i16_ELE : VLDU_G_ELE_V2<"v2.u16 \t{{$dst1, $dst2}}, [$src];", Int16Regs>; defm INT_PTX_LDU_G_v2i32_ELE : VLDU_G_ELE_V2<"v2.u32 \t{{$dst1, $dst2}}, [$src];", Int32Regs>; defm INT_PTX_LDU_G_v2f32_ELE : VLDU_G_ELE_V2<"v2.f32 \t{{$dst1, $dst2}}, [$src];", Float32Regs>; defm INT_PTX_LDU_G_v2i64_ELE : VLDU_G_ELE_V2<"v2.u64 \t{{$dst1, $dst2}}, [$src];", Int64Regs>; defm INT_PTX_LDU_G_v2f64_ELE : VLDU_G_ELE_V2<"v2.f64 \t{{$dst1, $dst2}}, [$src];", Float64Regs>; defm INT_PTX_LDU_G_v4i8_ELE : VLDU_G_ELE_V4<"v4.u8 \t{{$dst1, $dst2, $dst3, $dst4}}, [$src];", Int8Regs>; defm INT_PTX_LDU_G_v4i16_ELE : VLDU_G_ELE_V4<"v4.u16 \t{{$dst1, $dst2, $dst3, $dst4}}, [$src];", Int16Regs>; defm INT_PTX_LDU_G_v4i32_ELE : VLDU_G_ELE_V4<"v4.u32 \t{{$dst1, $dst2, $dst3, $dst4}}, [$src];", Int32Regs>; defm INT_PTX_LDU_G_v4f32_ELE : VLDU_G_ELE_V4<"v4.f32 \t{{$dst1, $dst2, $dst3, $dst4}}, [$src];", Float32Regs>; // Vector ldu multiclass VLDU_G { def _32: NVPTXVecInst<(outs regclass:$result), (ins Int32Regs:$src), !strconcat("ldu.global.", TyStr), [(set regclass:$result, (IntOp Int32Regs:$src))], eleInst>, Requires<[hasLDU]>; def _64: NVPTXVecInst<(outs regclass:$result), (ins Int64Regs:$src), !strconcat("ldu.global.", TyStr), [(set regclass:$result, (IntOp Int64Regs:$src))], eleInst64>, Requires<[hasLDU]>; } let VecInstType=isVecLD.Value in { defm INT_PTX_LDU_G_v2i8 : VLDU_G<"v2.u8 \t${result:vecfull}, [$src];", V2I8Regs, int_nvvm_ldu_global_i, INT_PTX_LDU_G_v2i8_ELE_32, INT_PTX_LDU_G_v2i8_ELE_64>; defm INT_PTX_LDU_G_v4i8 : VLDU_G<"v4.u8 \t${result:vecfull}, [$src];", V4I8Regs, int_nvvm_ldu_global_i, INT_PTX_LDU_G_v4i8_ELE_32, INT_PTX_LDU_G_v4i8_ELE_64>; defm INT_PTX_LDU_G_v2i16 : VLDU_G<"v2.u16 \t${result:vecfull}, [$src];", V2I16Regs, int_nvvm_ldu_global_i, INT_PTX_LDU_G_v2i16_ELE_32, INT_PTX_LDU_G_v2i16_ELE_64>; defm INT_PTX_LDU_G_v4i16 : VLDU_G<"v4.u16 \t${result:vecfull}, [$src];", V4I16Regs, int_nvvm_ldu_global_i, INT_PTX_LDU_G_v4i16_ELE_32, INT_PTX_LDU_G_v4i16_ELE_64>; defm INT_PTX_LDU_G_v2i32 : VLDU_G<"v2.u32 \t${result:vecfull}, [$src];", V2I32Regs, int_nvvm_ldu_global_i, INT_PTX_LDU_G_v2i32_ELE_32, INT_PTX_LDU_G_v2i32_ELE_64>; defm INT_PTX_LDU_G_v4i32 : VLDU_G<"v4.u32 \t${result:vecfull}, [$src];", V4I32Regs, int_nvvm_ldu_global_i, INT_PTX_LDU_G_v4i32_ELE_32, INT_PTX_LDU_G_v4i32_ELE_64>; defm INT_PTX_LDU_G_v2f32 : VLDU_G<"v2.f32 \t${result:vecfull}, [$src];", V2F32Regs, int_nvvm_ldu_global_f, INT_PTX_LDU_G_v2f32_ELE_32, INT_PTX_LDU_G_v2f32_ELE_64>; defm INT_PTX_LDU_G_v4f32 : VLDU_G<"v4.f32 \t${result:vecfull}, [$src];", V4F32Regs, int_nvvm_ldu_global_f, INT_PTX_LDU_G_v4f32_ELE_32, INT_PTX_LDU_G_v4f32_ELE_64>; defm INT_PTX_LDU_G_v2i64 : VLDU_G<"v2.u64 \t${result:vecfull}, [$src];", V2I64Regs, int_nvvm_ldu_global_i, INT_PTX_LDU_G_v2i64_ELE_32, INT_PTX_LDU_G_v2i64_ELE_64>; defm INT_PTX_LDU_G_v2f64 : VLDU_G<"v2.f64 \t${result:vecfull}, [$src];", V2F64Regs, int_nvvm_ldu_global_f, INT_PTX_LDU_G_v2f64_ELE_32, INT_PTX_LDU_G_v2f64_ELE_64>; } multiclass NG_TO_G { def _yes : NVPTXInst<(outs Int32Regs:$result), (ins Int32Regs:$src), !strconcat("cvta.", !strconcat(Str, ".u32 \t$result, $src;")), [(set Int32Regs:$result, (Intrin Int32Regs:$src))]>, Requires<[hasGenericLdSt]>; def _yes_64 : NVPTXInst<(outs Int64Regs:$result), (ins Int64Regs:$src), !strconcat("cvta.", !strconcat(Str, ".u64 \t$result, $src;")), [(set Int64Regs:$result, (Intrin Int64Regs:$src))]>, Requires<[hasGenericLdSt]>; // @TODO: Are these actually needed? I believe global addresses will be copied // to register values anyway. /*def __addr_yes : NVPTXInst<(outs Int32Regs:$result), (ins imemAny:$src), !strconcat("cvta.", !strconcat(Str, ".u32 \t$result, $src;")), [(set Int32Regs:$result, (Intrin (Wrapper tglobaladdr:$src)))]>, Requires<[hasGenericLdSt]>; def __addr_yes_64 : NVPTXInst<(outs Int64Regs:$result), (ins imemAny:$src), !strconcat("cvta.", !strconcat(Str, ".u64 \t$result, $src;")), [(set Int64Regs:$result, (Intrin (Wrapper tglobaladdr:$src)))]>, Requires<[hasGenericLdSt]>;*/ def _no : NVPTXInst<(outs Int32Regs:$result), (ins Int32Regs:$src), "mov.u32 \t$result, $src;", [(set Int32Regs:$result, (Intrin Int32Regs:$src))]>; def _no_64 : NVPTXInst<(outs Int64Regs:$result), (ins Int64Regs:$src), "mov.u64 \t$result, $src;", [(set Int64Regs:$result, (Intrin Int64Regs:$src))]>; // @TODO: Are these actually needed? I believe global addresses will be copied // to register values anyway. /*def _addr_no : NVPTXInst<(outs Int32Regs:$result), (ins imem:$src), "mov.u32 \t$result, $src;", [(set Int32Regs:$result, (Intrin (Wrapper tglobaladdr:$src)))]>; def _addr_no_64 : NVPTXInst<(outs Int64Regs:$result), (ins imem:$src), "mov.u64 \t$result, $src;", [(set Int64Regs:$result, (Intrin (Wrapper tglobaladdr:$src)))]>;*/ } multiclass G_TO_NG { def _yes : NVPTXInst<(outs Int32Regs:$result), (ins Int32Regs:$src), !strconcat("cvta.to.", !strconcat(Str, ".u32 \t$result, $src;")), [(set Int32Regs:$result, (Intrin Int32Regs:$src))]>, Requires<[hasGenericLdSt]>; def _yes_64 : NVPTXInst<(outs Int64Regs:$result), (ins Int64Regs:$src), !strconcat("cvta.to.", !strconcat(Str, ".u64 \t$result, $src;")), [(set Int64Regs:$result, (Intrin Int64Regs:$src))]>, Requires<[hasGenericLdSt]>; def _no : NVPTXInst<(outs Int32Regs:$result), (ins Int32Regs:$src), "mov.u32 \t$result, $src;", [(set Int32Regs:$result, (Intrin Int32Regs:$src))]>; def _no_64 : NVPTXInst<(outs Int64Regs:$result), (ins Int64Regs:$src), "mov.u64 \t$result, $src;", [(set Int64Regs:$result, (Intrin Int64Regs:$src))]>; } defm cvta_local : NG_TO_G<"local", int_nvvm_ptr_local_to_gen>; defm cvta_shared : NG_TO_G<"shared", int_nvvm_ptr_shared_to_gen>; defm cvta_global : NG_TO_G<"global", int_nvvm_ptr_global_to_gen>; defm cvta_to_local : G_TO_NG<"local", int_nvvm_ptr_gen_to_local>; defm cvta_to_shared : G_TO_NG<"shared", int_nvvm_ptr_gen_to_shared>; defm cvta_to_global : G_TO_NG<"global", int_nvvm_ptr_gen_to_global>; def cvta_const : NVPTXInst<(outs Int32Regs:$result), (ins Int32Regs:$src), "mov.u32 \t$result, $src;", [(set Int32Regs:$result, (int_nvvm_ptr_constant_to_gen Int32Regs:$src))]>; def cvta_const_64 : NVPTXInst<(outs Int64Regs:$result), (ins Int64Regs:$src), "mov.u64 \t$result, $src;", [(set Int64Regs:$result, (int_nvvm_ptr_constant_to_gen Int64Regs:$src))]>; // @TODO: Revisit this. There is a type // contradiction between iPTRAny and iPTR for the def. /*def cvta_const_addr : NVPTXInst<(outs Int32Regs:$result), (ins imemAny:$src), "mov.u32 \t$result, $src;", [(set Int32Regs:$result, (int_nvvm_ptr_constant_to_gen (Wrapper tglobaladdr:$src)))]>; def cvta_const_addr_64 : NVPTXInst<(outs Int64Regs:$result), (ins imemAny:$src), "mov.u64 \t$result, $src;", [(set Int64Regs:$result, (int_nvvm_ptr_constant_to_gen (Wrapper tglobaladdr:$src)))]>;*/ def cvta_to_const : NVPTXInst<(outs Int32Regs:$result), (ins Int32Regs:$src), "mov.u32 \t$result, $src;", [(set Int32Regs:$result, (int_nvvm_ptr_gen_to_constant Int32Regs:$src))]>; def cvta_to_const_64 : NVPTXInst<(outs Int64Regs:$result), (ins Int64Regs:$src), "mov.u64 \t$result, $src;", [(set Int64Regs:$result, (int_nvvm_ptr_gen_to_constant Int64Regs:$src))]>; // nvvm.ptr.gen.to.param def nvvm_ptr_gen_to_param : NVPTXInst<(outs Int32Regs:$result), (ins Int32Regs:$src), "mov.u32 \t$result, $src;", [(set Int32Regs:$result, (int_nvvm_ptr_gen_to_param Int32Regs:$src))]>; def nvvm_ptr_gen_to_param_64 : NVPTXInst<(outs Int64Regs:$result), (ins Int64Regs:$src), "mov.u64 \t$result, $src;", [(set Int64Regs:$result, (int_nvvm_ptr_gen_to_param Int64Regs:$src))]>; // nvvm.move intrinsicc def nvvm_move_i8 : NVPTXInst<(outs Int8Regs:$r), (ins Int8Regs:$s), "mov.b16 \t$r, $s;", [(set Int8Regs:$r, (int_nvvm_move_i8 Int8Regs:$s))]>; def nvvm_move_i16 : NVPTXInst<(outs Int16Regs:$r), (ins Int16Regs:$s), "mov.b16 \t$r, $s;", [(set Int16Regs:$r, (int_nvvm_move_i16 Int16Regs:$s))]>; def nvvm_move_i32 : NVPTXInst<(outs Int32Regs:$r), (ins Int32Regs:$s), "mov.b32 \t$r, $s;", [(set Int32Regs:$r, (int_nvvm_move_i32 Int32Regs:$s))]>; def nvvm_move_i64 : NVPTXInst<(outs Int64Regs:$r), (ins Int64Regs:$s), "mov.b64 \t$r, $s;", [(set Int64Regs:$r, (int_nvvm_move_i64 Int64Regs:$s))]>; def nvvm_move_float : NVPTXInst<(outs Float32Regs:$r), (ins Float32Regs:$s), "mov.f32 \t$r, $s;", [(set Float32Regs:$r, (int_nvvm_move_float Float32Regs:$s))]>; def nvvm_move_double : NVPTXInst<(outs Float64Regs:$r), (ins Float64Regs:$s), "mov.f64 \t$r, $s;", [(set Float64Regs:$r, (int_nvvm_move_double Float64Regs:$s))]>; def nvvm_move_ptr32 : NVPTXInst<(outs Int32Regs:$r), (ins Int32Regs:$s), "mov.u32 \t$r, $s;", [(set Int32Regs:$r, (int_nvvm_move_ptr Int32Regs:$s))]>; def nvvm_move_ptr64 : NVPTXInst<(outs Int64Regs:$r), (ins Int64Regs:$s), "mov.u64 \t$r, $s;", [(set Int64Regs:$r, (int_nvvm_move_ptr Int64Regs:$s))]>; // @TODO: Are these actually needed, or will we always just see symbols // copied to registers first? /*def nvvm_move_sym32 : NVPTXInst<(outs Int32Regs:$r), (ins imem:$s), "mov.u32 \t$r, $s;", [(set Int32Regs:$r, (int_nvvm_move_ptr texternalsym:$s))]>; def nvvm_move_sym64 : NVPTXInst<(outs Int64Regs:$r), (ins imem:$s), "mov.u64 \t$r, $s;", [(set Int64Regs:$r, (int_nvvm_move_ptr texternalsym:$s))]>;*/ // MoveParam %r1, param // ptr_local_to_gen %r2, %r1 // ptr_gen_to_local %r3, %r2 // -> // mov %r1, param // @TODO: Revisit this. There is a type // contradiction between iPTRAny and iPTR for the addr defs, so the move_sym // instructions are not currently defined. However, we can use the ptr // variants and the asm printer will do the right thing. def : Pat<(i64 (int_nvvm_ptr_gen_to_local (int_nvvm_ptr_local_to_gen (MoveParam texternalsym:$src)))), (nvvm_move_ptr64 texternalsym:$src)>; def : Pat<(i32 (int_nvvm_ptr_gen_to_local (int_nvvm_ptr_local_to_gen (MoveParam texternalsym:$src)))), (nvvm_move_ptr32 texternalsym:$src)>; //----------------------------------- // Compiler Error Warn // - Just ignore them in codegen //----------------------------------- def INT_NVVM_COMPILER_WARN_32 : NVPTXInst<(outs), (ins Int32Regs:$a), "// llvm.nvvm.compiler.warn()", [(int_nvvm_compiler_warn Int32Regs:$a)]>; def INT_NVVM_COMPILER_WARN_64 : NVPTXInst<(outs), (ins Int64Regs:$a), "// llvm.nvvm.compiler.warn()", [(int_nvvm_compiler_warn Int64Regs:$a)]>; def INT_NVVM_COMPILER_ERROR_32 : NVPTXInst<(outs), (ins Int32Regs:$a), "// llvm.nvvm.compiler.error()", [(int_nvvm_compiler_error Int32Regs:$a)]>; def INT_NVVM_COMPILER_ERROR_64 : NVPTXInst<(outs), (ins Int64Regs:$a), "// llvm.nvvm.compiler.error()", [(int_nvvm_compiler_error Int64Regs:$a)]>; //===-- Old PTX Back-end Intrinsics ---------------------------------------===// // These intrinsics are handled to retain compatibility with the old backend. // PTX Special Purpose Register Accessor Intrinsics class PTX_READ_SPECIAL_REGISTER_R64 : NVPTXInst<(outs Int64Regs:$d), (ins), !strconcat(!strconcat("mov.u64\t$d, %", regname), ";"), [(set Int64Regs:$d, (intop))]>; class PTX_READ_SPECIAL_REGISTER_R32 : NVPTXInst<(outs Int32Regs:$d), (ins), !strconcat(!strconcat("mov.u32\t$d, %", regname), ";"), [(set Int32Regs:$d, (intop))]>; // TODO Add read vector-version of special registers def PTX_READ_TID_X : PTX_READ_SPECIAL_REGISTER_R32<"tid.x", int_ptx_read_tid_x>; def PTX_READ_TID_Y : PTX_READ_SPECIAL_REGISTER_R32<"tid.y", int_ptx_read_tid_y>; def PTX_READ_TID_Z : PTX_READ_SPECIAL_REGISTER_R32<"tid.z", int_ptx_read_tid_z>; def PTX_READ_TID_W : PTX_READ_SPECIAL_REGISTER_R32<"tid.w", int_ptx_read_tid_w>; def PTX_READ_NTID_X : PTX_READ_SPECIAL_REGISTER_R32<"ntid.x", int_ptx_read_ntid_x>; def PTX_READ_NTID_Y : PTX_READ_SPECIAL_REGISTER_R32<"ntid.y", int_ptx_read_ntid_y>; def PTX_READ_NTID_Z : PTX_READ_SPECIAL_REGISTER_R32<"ntid.z", int_ptx_read_ntid_z>; def PTX_READ_NTID_W : PTX_READ_SPECIAL_REGISTER_R32<"ntid.w", int_ptx_read_ntid_w>; def PTX_READ_LANEID : PTX_READ_SPECIAL_REGISTER_R32<"laneid", int_ptx_read_laneid>; def PTX_READ_WARPID : PTX_READ_SPECIAL_REGISTER_R32<"warpid", int_ptx_read_warpid>; def PTX_READ_NWARPID : PTX_READ_SPECIAL_REGISTER_R32<"nwarpid", int_ptx_read_nwarpid>; def PTX_READ_CTAID_X : PTX_READ_SPECIAL_REGISTER_R32<"ctaid.x", int_ptx_read_ctaid_x>; def PTX_READ_CTAID_Y : PTX_READ_SPECIAL_REGISTER_R32<"ctaid.y", int_ptx_read_ctaid_y>; def PTX_READ_CTAID_Z : PTX_READ_SPECIAL_REGISTER_R32<"ctaid.z", int_ptx_read_ctaid_z>; def PTX_READ_CTAID_W : PTX_READ_SPECIAL_REGISTER_R32<"ctaid.w", int_ptx_read_ctaid_w>; def PTX_READ_NCTAID_X : PTX_READ_SPECIAL_REGISTER_R32<"nctaid.x", int_ptx_read_nctaid_x>; def PTX_READ_NCTAID_Y : PTX_READ_SPECIAL_REGISTER_R32<"nctaid.y", int_ptx_read_nctaid_y>; def PTX_READ_NCTAID_Z : PTX_READ_SPECIAL_REGISTER_R32<"nctaid.z", int_ptx_read_nctaid_z>; def PTX_READ_NCTAID_W : PTX_READ_SPECIAL_REGISTER_R32<"nctaid.w", int_ptx_read_nctaid_w>; def PTX_READ_SMID : PTX_READ_SPECIAL_REGISTER_R32<"smid", int_ptx_read_smid>; def PTX_READ_NSMID : PTX_READ_SPECIAL_REGISTER_R32<"nsmid", int_ptx_read_nsmid>; def PTX_READ_GRIDID : PTX_READ_SPECIAL_REGISTER_R32<"gridid", int_ptx_read_gridid>; def PTX_READ_LANEMASK_EQ : PTX_READ_SPECIAL_REGISTER_R32<"lanemask_eq", int_ptx_read_lanemask_eq>; def PTX_READ_LANEMASK_LE : PTX_READ_SPECIAL_REGISTER_R32<"lanemask_le", int_ptx_read_lanemask_le>; def PTX_READ_LANEMASK_LT : PTX_READ_SPECIAL_REGISTER_R32<"lanemask_lt", int_ptx_read_lanemask_lt>; def PTX_READ_LANEMASK_GE : PTX_READ_SPECIAL_REGISTER_R32<"lanemask_ge", int_ptx_read_lanemask_ge>; def PTX_READ_LANEMASK_GT : PTX_READ_SPECIAL_REGISTER_R32<"lanemask_gt", int_ptx_read_lanemask_gt>; def PTX_READ_CLOCK : PTX_READ_SPECIAL_REGISTER_R32<"clock", int_ptx_read_clock>; def PTX_READ_CLOCK64 : PTX_READ_SPECIAL_REGISTER_R64<"clock64", int_ptx_read_clock64>; def PTX_READ_PM0 : PTX_READ_SPECIAL_REGISTER_R32<"pm0", int_ptx_read_pm0>; def PTX_READ_PM1 : PTX_READ_SPECIAL_REGISTER_R32<"pm1", int_ptx_read_pm1>; def PTX_READ_PM2 : PTX_READ_SPECIAL_REGISTER_R32<"pm2", int_ptx_read_pm2>; def PTX_READ_PM3 : PTX_READ_SPECIAL_REGISTER_R32<"pm3", int_ptx_read_pm3>; // PTX Parallel Synchronization and Communication Intrinsics def PTX_BAR_SYNC : NVPTXInst<(outs), (ins i32imm:$i), "bar.sync\t$i;", [(int_ptx_bar_sync imm:$i)]>;