//===- PTXInstrInfo.td - PTX Instruction defs -----------------*- tblgen-*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the PTX instructions in TableGen format. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Instruction format superclass //===----------------------------------------------------------------------===// include "PTXInstrFormats.td" //===----------------------------------------------------------------------===// // Code Generation Predicates //===----------------------------------------------------------------------===// // Shader Model Support def FDivNeedsRoundingMode : Predicate<"getSubtarget().fdivNeedsRoundingMode()">; def FDivNoRoundingMode : Predicate<"!getSubtarget().fdivNeedsRoundingMode()">; def FMadNeedsRoundingMode : Predicate<"getSubtarget().fmadNeedsRoundingMode()">; def FMadNoRoundingMode : Predicate<"!getSubtarget().fmadNeedsRoundingMode()">; // PTX Version Support def SupportsPTX21 : Predicate<"getSubtarget().supportsPTX21()">; def DoesNotSupportPTX21 : Predicate<"!getSubtarget().supportsPTX21()">; def SupportsPTX22 : Predicate<"getSubtarget().supportsPTX22()">; def DoesNotSupportPTX22 : Predicate<"!getSubtarget().supportsPTX22()">; def SupportsPTX23 : Predicate<"getSubtarget().supportsPTX23()">; def DoesNotSupportPTX23 : Predicate<"!getSubtarget().supportsPTX23()">; // Fused-Multiply Add def SupportsFMA : Predicate<"getSubtarget().supportsFMA()">; def DoesNotSupportFMA : Predicate<"!getSubtarget().supportsFMA()">; // def SDT_PTXCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>; // def SDT_PTXCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; // def PTXcallseq_start : SDNode<"ISD::CALLSEQ_START", SDT_PTXCallSeqStart, // [SDNPHasChain, SDNPOutGlue]>; // def PTXcallseq_end : SDNode<"ISD::CALLSEQ_END", SDT_PTXCallSeqEnd, // [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def PTXcall : SDNode<"PTXISD::CALL", SDTNone, [SDNPHasChain, SDNPVariadic, SDNPOptInGlue, SDNPOutGlue]>; // Branch & call targets have OtherVT type. def brtarget : Operand; def calltarget : Operand; //===----------------------------------------------------------------------===// // PTX Specific Node Definitions //===----------------------------------------------------------------------===// // PTX allow generic 3-reg shifts like shl r0, r1, r2 def PTXshl : SDNode<"ISD::SHL", SDTIntBinOp>; def PTXsrl : SDNode<"ISD::SRL", SDTIntBinOp>; def PTXsra : SDNode<"ISD::SRA", SDTIntBinOp>; def PTXexit : SDNode<"PTXISD::EXIT", SDTNone, [SDNPHasChain]>; def PTXret : SDNode<"PTXISD::RET", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def PTXcopyaddress : SDNode<"PTXISD::COPY_ADDRESS", SDTypeProfile<1, 1, []>, []>; //===----------------------------------------------------------------------===// // Instruction Class Templates //===----------------------------------------------------------------------===// // For floating-point instructions, we cannot just embed the pattern into the // instruction definition since we need to muck around with the rounding mode, // and I do not know how to insert constants into instructions directly from // pattern matches. //===- Floating-Point Instructions - 2 Operand Form -----------------------===// multiclass PTX_FLOAT_2OP { def rr32 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegF32:$a), !strconcat(opcstr, "$r.f32\t$d, $a"), []>; def ri32 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, f32imm:$a), !strconcat(opcstr, "$r.f32\t$d, $a"), []>; def rr64 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegF64:$a), !strconcat(opcstr, "$r.f64\t$d, $a"), []>; def ri64 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, f64imm:$a), !strconcat(opcstr, "$r.f64\t$d, $a"), []>; } //===- Floating-Point Instructions - 3 Operand Form -----------------------===// multiclass PTX_FLOAT_3OP { def rr32 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegF32:$a, RegF32:$b), !strconcat(opcstr, "$r.f32\t$d, $a, $b"), []>; def ri32 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegF32:$a, f32imm:$b), !strconcat(opcstr, "$r.f32\t$d, $a, $b"), []>; def rr64 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegF64:$a, RegF64:$b), !strconcat(opcstr, "$r.f64\t$d, $a, $b"), []>; def ri64 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegF64:$a, f64imm:$b), !strconcat(opcstr, "$r.f64\t$d, $a, $b"), []>; } //===- Floating-Point Instructions - 4 Operand Form -----------------------===// multiclass PTX_FLOAT_4OP { def rrr32 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegF32:$a, RegF32:$b, RegF32:$c), !strconcat(opcstr, "$r.f32\t$d, $a, $b, $c"), []>; def rri32 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegF32:$a, RegF32:$b, f32imm:$c), !strconcat(opcstr, "$r.f32\t$d, $a, $b, $c"), []>; def rii32 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegF32:$a, f32imm:$b, f32imm:$c), !strconcat(opcstr, "$r.f32\t$d, $a, $b, $c"), []>; def rrr64 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegF64:$a, RegF64:$b, RegF64:$c), !strconcat(opcstr, "$r.f64\t$d, $a, $b, $c"), []>; def rri64 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegF64:$a, RegF64:$b, f64imm:$c), !strconcat(opcstr, "$r.f64\t$d, $a, $b, $c"), []>; def rii64 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegF64:$a, f64imm:$b, f64imm:$c), !strconcat(opcstr, "$r.f64\t$d, $a, $b, $c"), []>; } //===- Integer Instructions - 3 Operand Form ------------------------------===// multiclass PTX_INT3 { def rr16 : InstPTX<(outs RegI16:$d), (ins RegI16:$a, RegI16:$b), !strconcat(opcstr, ".u16\t$d, $a, $b"), [(set RegI16:$d, (opnode RegI16:$a, RegI16:$b))]>; def ri16 : InstPTX<(outs RegI16:$d), (ins RegI16:$a, i16imm:$b), !strconcat(opcstr, ".u16\t$d, $a, $b"), [(set RegI16:$d, (opnode RegI16:$a, imm:$b))]>; def rr32 : InstPTX<(outs RegI32:$d), (ins RegI32:$a, RegI32:$b), !strconcat(opcstr, ".u32\t$d, $a, $b"), [(set RegI32:$d, (opnode RegI32:$a, RegI32:$b))]>; def ri32 : InstPTX<(outs RegI32:$d), (ins RegI32:$a, i32imm:$b), !strconcat(opcstr, ".u32\t$d, $a, $b"), [(set RegI32:$d, (opnode RegI32:$a, imm:$b))]>; def rr64 : InstPTX<(outs RegI64:$d), (ins RegI64:$a, RegI64:$b), !strconcat(opcstr, ".u64\t$d, $a, $b"), [(set RegI64:$d, (opnode RegI64:$a, RegI64:$b))]>; def ri64 : InstPTX<(outs RegI64:$d), (ins RegI64:$a, i64imm:$b), !strconcat(opcstr, ".u64\t$d, $a, $b"), [(set RegI64:$d, (opnode RegI64:$a, imm:$b))]>; } //===- Integer Instructions - 3 Operand Form (Signed) ---------------------===// multiclass PTX_INT3_SIGNED { def rr16 : InstPTX<(outs RegI16:$d), (ins RegI16:$a, RegI16:$b), !strconcat(opcstr, ".s16\t$d, $a, $b"), [(set RegI16:$d, (opnode RegI16:$a, RegI16:$b))]>; def ri16 : InstPTX<(outs RegI16:$d), (ins RegI16:$a, i16imm:$b), !strconcat(opcstr, ".s16\t$d, $a, $b"), [(set RegI16:$d, (opnode RegI16:$a, imm:$b))]>; def rr32 : InstPTX<(outs RegI32:$d), (ins RegI32:$a, RegI32:$b), !strconcat(opcstr, ".s32\t$d, $a, $b"), [(set RegI32:$d, (opnode RegI32:$a, RegI32:$b))]>; def ri32 : InstPTX<(outs RegI32:$d), (ins RegI32:$a, i32imm:$b), !strconcat(opcstr, ".s32\t$d, $a, $b"), [(set RegI32:$d, (opnode RegI32:$a, imm:$b))]>; def rr64 : InstPTX<(outs RegI64:$d), (ins RegI64:$a, RegI64:$b), !strconcat(opcstr, ".s64\t$d, $a, $b"), [(set RegI64:$d, (opnode RegI64:$a, RegI64:$b))]>; def ri64 : InstPTX<(outs RegI64:$d), (ins RegI64:$a, i64imm:$b), !strconcat(opcstr, ".s64\t$d, $a, $b"), [(set RegI64:$d, (opnode RegI64:$a, imm:$b))]>; } //===- Bitwise Logic Instructions - 3 Operand Form ------------------------===// multiclass PTX_LOGIC { def ripreds : InstPTX<(outs RegPred:$d), (ins RegPred:$a, i1imm:$b), !strconcat(opcstr, ".pred\t$d, $a, $b"), [(set RegPred:$d, (opnode RegPred:$a, imm:$b))]>; def rrpreds : InstPTX<(outs RegPred:$d), (ins RegPred:$a, RegPred:$b), !strconcat(opcstr, ".pred\t$d, $a, $b"), [(set RegPred:$d, (opnode RegPred:$a, RegPred:$b))]>; def rr16 : InstPTX<(outs RegI16:$d), (ins RegI16:$a, RegI16:$b), !strconcat(opcstr, ".b16\t$d, $a, $b"), [(set RegI16:$d, (opnode RegI16:$a, RegI16:$b))]>; def ri16 : InstPTX<(outs RegI16:$d), (ins RegI16:$a, i16imm:$b), !strconcat(opcstr, ".b16\t$d, $a, $b"), [(set RegI16:$d, (opnode RegI16:$a, imm:$b))]>; def rr32 : InstPTX<(outs RegI32:$d), (ins RegI32:$a, RegI32:$b), !strconcat(opcstr, ".b32\t$d, $a, $b"), [(set RegI32:$d, (opnode RegI32:$a, RegI32:$b))]>; def ri32 : InstPTX<(outs RegI32:$d), (ins RegI32:$a, i32imm:$b), !strconcat(opcstr, ".b32\t$d, $a, $b"), [(set RegI32:$d, (opnode RegI32:$a, imm:$b))]>; def rr64 : InstPTX<(outs RegI64:$d), (ins RegI64:$a, RegI64:$b), !strconcat(opcstr, ".b64\t$d, $a, $b"), [(set RegI64:$d, (opnode RegI64:$a, RegI64:$b))]>; def ri64 : InstPTX<(outs RegI64:$d), (ins RegI64:$a, i64imm:$b), !strconcat(opcstr, ".b64\t$d, $a, $b"), [(set RegI64:$d, (opnode RegI64:$a, imm:$b))]>; } //===- Integer Shift Instructions - 3 Operand Form ------------------------===// multiclass PTX_INT3ntnc { def rr16 : InstPTX<(outs RegI16:$d), (ins RegI16:$a, RegI16:$b), !strconcat(opcstr, "16\t$d, $a, $b"), [(set RegI16:$d, (opnode RegI16:$a, RegI16:$b))]>; def rr32 : InstPTX<(outs RegI32:$d), (ins RegI32:$a, RegI32:$b), !strconcat(opcstr, "32\t$d, $a, $b"), [(set RegI32:$d, (opnode RegI32:$a, RegI32:$b))]>; def rr64 : InstPTX<(outs RegI64:$d), (ins RegI64:$a, RegI64:$b), !strconcat(opcstr, "64\t$d, $a, $b"), [(set RegI64:$d, (opnode RegI64:$a, RegI64:$b))]>; def ri16 : InstPTX<(outs RegI16:$d), (ins RegI16:$a, i16imm:$b), !strconcat(opcstr, "16\t$d, $a, $b"), [(set RegI16:$d, (opnode RegI16:$a, imm:$b))]>; def ri32 : InstPTX<(outs RegI32:$d), (ins RegI32:$a, i32imm:$b), !strconcat(opcstr, "32\t$d, $a, $b"), [(set RegI32:$d, (opnode RegI32:$a, imm:$b))]>; def ri64 : InstPTX<(outs RegI64:$d), (ins RegI64:$a, i64imm:$b), !strconcat(opcstr, "64\t$d, $a, $b"), [(set RegI64:$d, (opnode RegI64:$a, imm:$b))]>; def ir16 : InstPTX<(outs RegI16:$d), (ins i16imm:$a, RegI16:$b), !strconcat(opcstr, "16\t$d, $a, $b"), [(set RegI16:$d, (opnode imm:$a, RegI16:$b))]>; def ir32 : InstPTX<(outs RegI32:$d), (ins i32imm:$a, RegI32:$b), !strconcat(opcstr, "32\t$d, $a, $b"), [(set RegI32:$d, (opnode imm:$a, RegI32:$b))]>; def ir64 : InstPTX<(outs RegI64:$d), (ins i64imm:$a, RegI64:$b), !strconcat(opcstr, "64\t$d, $a, $b"), [(set RegI64:$d, (opnode imm:$a, RegI64:$b))]>; } //===- Set Predicate Instructions (Int) - 3/4 Operand Forms ---------------===// multiclass PTX_SETP_I { // TODO support 5-operand format: p|q, a, b, c def rr : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b), !strconcat("setp.", cmpstr, ".", regclsname, "\t$p, $a, $b"), [(set RegPred:$p, (setcc RC:$a, RC:$b, cmp))]>; def ri : InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b), !strconcat("setp.", cmpstr, ".", regclsname, "\t$p, $a, $b"), [(set RegPred:$p, (setcc RC:$a, imm:$b, cmp))]>; def rr_and_r : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".and.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (and (setcc RC:$a, RC:$b, cmp), RegPred:$c))]>; def ri_and_r : InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".and.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (and (setcc RC:$a, imm:$b, cmp), RegPred:$c))]>; def rr_or_r : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".or.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (or (setcc RC:$a, RC:$b, cmp), RegPred:$c))]>; def ri_or_r : InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".or.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (or (setcc RC:$a, imm:$b, cmp), RegPred:$c))]>; def rr_xor_r : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".xor.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (xor (setcc RC:$a, RC:$b, cmp), RegPred:$c))]>; def ri_xor_r : InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".xor.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (xor (setcc RC:$a, imm:$b, cmp), RegPred:$c))]>; def rr_and_not_r : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".and.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (and (setcc RC:$a, RC:$b, cmp), (not RegPred:$c)))]>; def ri_and_not_r : InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".and.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (and (setcc RC:$a, imm:$b, cmp), (not RegPred:$c)))]>; def rr_or_not_r : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".or.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (or (setcc RC:$a, RC:$b, cmp), (not RegPred:$c)))]>; def ri_or_not_r : InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".or.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (or (setcc RC:$a, imm:$b, cmp), (not RegPred:$c)))]>; def rr_xor_not_r : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".xor.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (xor (setcc RC:$a, RC:$b, cmp), (not RegPred:$c)))]>; def ri_xor_not_r : InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".xor.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (xor (setcc RC:$a, imm:$b, cmp), (not RegPred:$c)))]>; } //===- Set Predicate Instructions (FP) - 3/4 Operand Form -----------------===// multiclass PTX_SETP_FP { // TODO support 5-operand format: p|q, a, b, c def rr_u : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b), !strconcat("setp.", cmpstr, "u.", regclsname, "\t$p, $a, $b"), [(set RegPred:$p, (setcc RC:$a, RC:$b, ucmp))]>; def rr_o : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b), !strconcat("setp.", cmpstr, ".", regclsname, "\t$p, $a, $b"), [(set RegPred:$p, (setcc RC:$a, RC:$b, ocmp))]>; def ri_u : InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b), !strconcat("setp.", cmpstr, "u.", regclsname, "\t$p, $a, $b"), [(set RegPred:$p, (setcc RC:$a, fpimm:$b, ucmp))]>; def ri_o : InstPTX<(outs RegPred:$p), (ins RC:$a, immcls:$b), !strconcat("setp.", cmpstr, ".", regclsname, "\t$p, $a, $b"), [(set RegPred:$p, (setcc RC:$a, fpimm:$b, ocmp))]>; def rr_and_r_u : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, "u.and.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (and (setcc RC:$a, RC:$b, ucmp), RegPred:$c))]>; def rr_and_r_o : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".and.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (and (setcc RC:$a, RC:$b, ocmp), RegPred:$c))]>; def rr_or_r_u : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, "u.or.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (or (setcc RC:$a, RC:$b, ucmp), RegPred:$c))]>; def rr_or_r_o : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".or.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (or (setcc RC:$a, RC:$b, ocmp), RegPred:$c))]>; def rr_xor_r_u : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, "u.xor.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (xor (setcc RC:$a, RC:$b, ucmp), RegPred:$c))]>; def rr_xor_r_o : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".xor.", regclsname, "\t$p, $a, $b, $c"), [(set RegPred:$p, (xor (setcc RC:$a, RC:$b, ocmp), RegPred:$c))]>; def rr_and_not_r_u : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, "u.and.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (and (setcc RC:$a, RC:$b, ucmp), (not RegPred:$c)))]>; def rr_and_not_r_o : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".and.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (and (setcc RC:$a, RC:$b, ocmp), (not RegPred:$c)))]>; def rr_or_not_r_u : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, "u.or.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (or (setcc RC:$a, RC:$b, ucmp), (not RegPred:$c)))]>; def rr_or_not_r_o : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".or.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (or (setcc RC:$a, RC:$b, ocmp), (not RegPred:$c)))]>; def rr_xor_not_r_u : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, "u.xor.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (xor (setcc RC:$a, RC:$b, ucmp), (not RegPred:$c)))]>; def rr_xor_not_r_o : InstPTX<(outs RegPred:$p), (ins RC:$a, RC:$b, RegPred:$c), !strconcat("setp.", cmpstr, ".xor.", regclsname, "\t$p, $a, $b, !$c"), [(set RegPred:$p, (xor (setcc RC:$a, RC:$b, ocmp), (not RegPred:$c)))]>; } //===- Select Predicate Instructions - 4 Operand Form ---------------------===// multiclass PTX_SELP { def rr : InstPTX<(outs RC:$r), (ins RegPred:$a, RC:$b, RC:$c), !strconcat("selp.", regclsname, "\t$r, $b, $c, $a"), [(set RC:$r, (select RegPred:$a, RC:$b, RC:$c))]>; def ri : InstPTX<(outs RC:$r), (ins RegPred:$a, RC:$b, immcls:$c), !strconcat("selp.", regclsname, "\t$r, $b, $c, $a"), [(set RC:$r, (select RegPred:$a, RC:$b, immnode:$c))]>; def ii : InstPTX<(outs RC:$r), (ins RegPred:$a, immcls:$b, immcls:$c), !strconcat("selp.", regclsname, "\t$r, $b, $c, $a"), [(set RC:$r, (select RegPred:$a, immnode:$b, immnode:$c))]>; } //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// ///===- Integer Arithmetic Instructions -----------------------------------===// defm ADD : PTX_INT3<"add", add>; defm SUB : PTX_INT3<"sub", sub>; defm MUL : PTX_INT3<"mul.lo", mul>; // FIXME: Allow 32x32 -> 64 multiplies defm DIV : PTX_INT3<"div", udiv>; defm SDIV : PTX_INT3_SIGNED<"div", sdiv>; defm REM : PTX_INT3<"rem", urem>; ///===- Floating-Point Arithmetic Instructions ----------------------------===// // FNEG defm FNEG : PTX_FLOAT_2OP<"neg">; // Standard Binary Operations defm FADD : PTX_FLOAT_3OP<"add">; defm FSUB : PTX_FLOAT_3OP<"sub">; defm FMUL : PTX_FLOAT_3OP<"mul">; defm FDIV : PTX_FLOAT_3OP<"div">; // Multi-operation hybrid instructions defm FMAD : PTX_FLOAT_4OP<"mad">, Requires<[SupportsFMA]>; ///===- Floating-Point Intrinsic Instructions -----------------------------===// // SQRT def FSQRTrr32 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegF32:$a), "sqrt$r.f32\t$d, $a", []>; def FSQRTri32 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, f32imm:$a), "sqrt$r.f32\t$d, $a", []>; def FSQRTrr64 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegF64:$a), "sqrt$r.f64\t$d, $a", []>; def FSQRTri64 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, f64imm:$a), "sqrt$r.f64\t$d, $a", []>; // SIN def FSINrr32 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegF32:$a), "sin$r.f32\t$d, $a", []>; def FSINri32 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, f32imm:$a), "sin$r.f32\t$d, $a", []>; def FSINrr64 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegF64:$a), "sin$r.f64\t$d, $a", []>; def FSINri64 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, f64imm:$a), "sin$r.f64\t$d, $a", []>; // COS def FCOSrr32 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegF32:$a), "cos$r.f32\t$d, $a", []>; def FCOSri32 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, f32imm:$a), "cos$r.f32\t$d, $a", []>; def FCOSrr64 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegF64:$a), "cos$r.f64\t$d, $a", []>; def FCOSri64 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, f64imm:$a), "cos$r.f64\t$d, $a", []>; ///===- Comparison and Selection Instructions -----------------------------===// // .setp // Compare u16 defm SETPEQu16 : PTX_SETP_I; defm SETPNEu16 : PTX_SETP_I; defm SETPLTu16 : PTX_SETP_I; defm SETPLEu16 : PTX_SETP_I; defm SETPGTu16 : PTX_SETP_I; defm SETPGEu16 : PTX_SETP_I; defm SETPLTs16 : PTX_SETP_I; defm SETPLEs16 : PTX_SETP_I; defm SETPGTs16 : PTX_SETP_I; defm SETPGEs16 : PTX_SETP_I; // Compare u32 defm SETPEQu32 : PTX_SETP_I; defm SETPNEu32 : PTX_SETP_I; defm SETPLTu32 : PTX_SETP_I; defm SETPLEu32 : PTX_SETP_I; defm SETPGTu32 : PTX_SETP_I; defm SETPGEu32 : PTX_SETP_I; defm SETPLTs32 : PTX_SETP_I; defm SETPLEs32 : PTX_SETP_I; defm SETPGTs32 : PTX_SETP_I; defm SETPGEs32 : PTX_SETP_I; // Compare u64 defm SETPEQu64 : PTX_SETP_I; defm SETPNEu64 : PTX_SETP_I; defm SETPLTu64 : PTX_SETP_I; defm SETPLEu64 : PTX_SETP_I; defm SETPGTu64 : PTX_SETP_I; defm SETPGEu64 : PTX_SETP_I; defm SETPLTs64 : PTX_SETP_I; defm SETPLEs64 : PTX_SETP_I; defm SETPGTs64 : PTX_SETP_I; defm SETPGEs64 : PTX_SETP_I; // Compare f32 defm SETPEQf32 : PTX_SETP_FP; defm SETPNEf32 : PTX_SETP_FP; defm SETPLTf32 : PTX_SETP_FP; defm SETPLEf32 : PTX_SETP_FP; defm SETPGTf32 : PTX_SETP_FP; defm SETPGEf32 : PTX_SETP_FP; // Compare f64 defm SETPEQf64 : PTX_SETP_FP; defm SETPNEf64 : PTX_SETP_FP; defm SETPLTf64 : PTX_SETP_FP; defm SETPLEf64 : PTX_SETP_FP; defm SETPGTf64 : PTX_SETP_FP; defm SETPGEf64 : PTX_SETP_FP; // .selp defm SELPi16 : PTX_SELP; defm SELPi32 : PTX_SELP; defm SELPi64 : PTX_SELP; defm SELPf32 : PTX_SELP; defm SELPf64 : PTX_SELP; ///===- Logic and Shift Instructions --------------------------------------===// defm SHL : PTX_INT3ntnc<"shl.b", PTXshl>; defm SRL : PTX_INT3ntnc<"shr.u", PTXsrl>; defm SRA : PTX_INT3ntnc<"shr.s", PTXsra>; defm AND : PTX_LOGIC<"and", and>; defm OR : PTX_LOGIC<"or", or>; defm XOR : PTX_LOGIC<"xor", xor>; ///===- Data Movement and Conversion Instructions -------------------------===// // any_extend // Implement the anyext instruction in terms of the PTX cvt instructions. //def : Pat<(i32 (anyext RegI16:$a)), (CVT_u32_u16 RegI16:$a)>; //def : Pat<(i64 (anyext RegI16:$a)), (CVT_u64_u16 RegI16:$a)>; //def : Pat<(i64 (anyext RegI32:$a)), (CVT_u64_u32 RegI32:$a)>; // bitconvert // These instructions implement the bit-wise conversion between integer and // floating-point types. def MOVi32f32 : InstPTX<(outs RegI32:$d), (ins RegF32:$a), "mov.b32\t$d, $a", []>; def MOVf32i32 : InstPTX<(outs RegF32:$d), (ins RegI32:$a), "mov.b32\t$d, $a", []>; def MOVi64f64 : InstPTX<(outs RegI64:$d), (ins RegF64:$a), "mov.b64\t$d, $a", []>; def MOVf64i64 : InstPTX<(outs RegF64:$d), (ins RegI64:$a), "mov.b64\t$d, $a", []>; let neverHasSideEffects = 1 in { def MOVPREDrr : InstPTX<(outs RegPred:$d), (ins RegPred:$a), "mov.pred\t$d, $a", []>; def MOVU16rr : InstPTX<(outs RegI16:$d), (ins RegI16:$a), "mov.u16\t$d, $a", []>; def MOVU32rr : InstPTX<(outs RegI32:$d), (ins RegI32:$a), "mov.u32\t$d, $a", []>; def MOVU64rr : InstPTX<(outs RegI64:$d), (ins RegI64:$a), "mov.u64\t$d, $a", []>; def MOVF32rr : InstPTX<(outs RegF32:$d), (ins RegF32:$a), "mov.f32\t$d, $a", []>; def MOVF64rr : InstPTX<(outs RegF64:$d), (ins RegF64:$a), "mov.f64\t$d, $a", []>; } let isReMaterializable = 1, isAsCheapAsAMove = 1 in { def MOVPREDri : InstPTX<(outs RegPred:$d), (ins i1imm:$a), "mov.pred\t$d, $a", [(set RegPred:$d, imm:$a)]>; def MOVU16ri : InstPTX<(outs RegI16:$d), (ins i16imm:$a), "mov.u16\t$d, $a", [(set RegI16:$d, imm:$a)]>; def MOVU32ri : InstPTX<(outs RegI32:$d), (ins i32imm:$a), "mov.u32\t$d, $a", [(set RegI32:$d, imm:$a)]>; def MOVU64ri : InstPTX<(outs RegI64:$d), (ins i64imm:$a), "mov.u64\t$d, $a", [(set RegI64:$d, imm:$a)]>; def MOVF32ri : InstPTX<(outs RegF32:$d), (ins f32imm:$a), "mov.f32\t$d, $a", [(set RegF32:$d, fpimm:$a)]>; def MOVF64ri : InstPTX<(outs RegF64:$d), (ins f64imm:$a), "mov.f64\t$d, $a", [(set RegF64:$d, fpimm:$a)]>; } let isReMaterializable = 1, isAsCheapAsAMove = 1 in { def MOVaddr32 : InstPTX<(outs RegI32:$d), (ins i32imm:$a), "mov.u32\t$d, $a", [(set RegI32:$d, (PTXcopyaddress tglobaladdr:$a))]>; def MOVaddr64 : InstPTX<(outs RegI64:$d), (ins i64imm:$a), "mov.u64\t$d, $a", [(set RegI64:$d, (PTXcopyaddress tglobaladdr:$a))]>; def MOVframe32 : InstPTX<(outs RegI32:$d), (ins i32imm:$a), "cvta.local.u32\t$d, $a", [(set RegI32:$d, (PTXcopyaddress frameindex:$a))]>; def MOVframe64 : InstPTX<(outs RegI64:$d), (ins i64imm:$a), "cvta.local.u64\t$d, $a", [(set RegI64:$d, (PTXcopyaddress frameindex:$a))]>; } // PTX cvt instructions // Note all of these may actually be used, we just define all possible patterns // here (that make sense). // FIXME: Can we collapse this somehow into a multiclass def? // To i16 def CVTu16u32 : InstPTX<(outs RegI16:$d), (ins RegI32:$a), "cvt.u16.u32\t$d, $a", []>; def CVTu16u64 : InstPTX<(outs RegI16:$d), (ins RegI64:$a), "cvt.u16.u64\t$d, $a", []>; def CVTu16f32 : InstPTX<(outs RegI16:$d), (ins RndMode:$r, RegF32:$a), "cvt$r.u16.f32\t$d, $a", []>; def CVTs16f32 : InstPTX<(outs RegI16:$d), (ins RndMode:$r, RegF32:$a), "cvt$r.s16.f32\t$d, $a", []>; def CVTu16f64 : InstPTX<(outs RegI16:$d), (ins RndMode:$r, RegF64:$a), "cvt$r.u16.f64\t$d, $a", []>; def CVTs16f64 : InstPTX<(outs RegI16:$d), (ins RndMode:$r, RegF64:$a), "cvt$r.s16.f64\t$d, $a", []>; // To i32 def CVTu32u16 : InstPTX<(outs RegI32:$d), (ins RegI16:$a), "cvt.u32.u16\t$d, $a", []>; def CVTs32s16 : InstPTX<(outs RegI32:$d), (ins RegI16:$a), "cvt.s32.s16\t$d, $a", []>; def CVTu32u64 : InstPTX<(outs RegI32:$d), (ins RegI64:$a), "cvt.u32.u64\t$d, $a", []>; def CVTu32f32 : InstPTX<(outs RegI32:$d), (ins RndMode:$r, RegF32:$a), "cvt$r.u32.f32\t$d, $a", []>; def CVTs32f32 : InstPTX<(outs RegI32:$d), (ins RndMode:$r, RegF32:$a), "cvt$r.s32.f32\t$d, $a", []>; def CVTu32f64 : InstPTX<(outs RegI32:$d), (ins RndMode:$r, RegF64:$a), "cvt$r.u32.f64\t$d, $a", []>; def CVTs32f64 : InstPTX<(outs RegI32:$d), (ins RndMode:$r, RegF64:$a), "cvt$r.s32.f64\t$d, $a", []>; // To i64 def CVTu64u16 : InstPTX<(outs RegI64:$d), (ins RegI16:$a), "cvt.u64.u16\t$d, $a", []>; def CVTs64s16 : InstPTX<(outs RegI64:$d), (ins RegI16:$a), "cvt.s64.s16\t$d, $a", []>; def CVTu64u32 : InstPTX<(outs RegI64:$d), (ins RegI32:$a), "cvt.u64.u32\t$d, $a", []>; def CVTs64s32 : InstPTX<(outs RegI64:$d), (ins RegI32:$a), "cvt.s64.s32\t$d, $a", []>; def CVTu64f32 : InstPTX<(outs RegI64:$d), (ins RndMode:$r, RegF32:$a), "cvt$r.u64.f32\t$d, $a", []>; def CVTs64f32 : InstPTX<(outs RegI64:$d), (ins RndMode:$r, RegF32:$a), "cvt$r.s64.f32\t$d, $a", []>; def CVTu64f64 : InstPTX<(outs RegI64:$d), (ins RndMode:$r, RegF64:$a), "cvt$r.u64.f64\t$d, $a", []>; def CVTs64f64 : InstPTX<(outs RegI64:$d), (ins RndMode:$r, RegF64:$a), "cvt$r.s64.f64\t$d, $a", []>; // To f32 def CVTf32u16 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegI16:$a), "cvt$r.f32.u16\t$d, $a", []>; def CVTf32s16 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegI16:$a), "cvt$r.f32.s16\t$d, $a", []>; def CVTf32u32 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegI32:$a), "cvt$r.f32.u32\t$d, $a", []>; def CVTf32s32 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegI32:$a), "cvt$r.f32.s32\t$d, $a", []>; def CVTf32u64 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegI64:$a), "cvt$r.f32.u64\t$d, $a", []>; def CVTf32s64 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegI64:$a), "cvt$r.f32.s64\t$d, $a", []>; def CVTf32f64 : InstPTX<(outs RegF32:$d), (ins RndMode:$r, RegF64:$a), "cvt$r.f32.f64\t$d, $a", []>; // To f64 def CVTf64u16 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegI16:$a), "cvt$r.f64.u16\t$d, $a", []>; def CVTf64s16 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegI16:$a), "cvt$r.f64.s16\t$d, $a", []>; def CVTf64u32 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegI32:$a), "cvt$r.f64.u32\t$d, $a", []>; def CVTf64s32 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegI32:$a), "cvt$r.f64.s32\t$d, $a", []>; def CVTf64u64 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegI64:$a), "cvt$r.f64.u64\t$d, $a", []>; def CVTf64s64 : InstPTX<(outs RegF64:$d), (ins RndMode:$r, RegI64:$a), "cvt$r.f64.s64\t$d, $a", []>; def CVTf64f32 : InstPTX<(outs RegF64:$d), (ins RegF32:$a), "cvt.f64.f32\t$d, $a", []>; ///===- Control Flow Instructions -----------------------------------------===// let isBranch = 1, isTerminator = 1, isBarrier = 1 in { def BRAd : InstPTX<(outs), (ins brtarget:$d), "bra\t$d", [(br bb:$d)]>; } let isBranch = 1, isTerminator = 1 in { // FIXME: The pattern part is blank because I cannot (or do not yet know // how to) use the first operand of PredicateOperand (a RegPred register) here def BRAdp : InstPTX<(outs), (ins brtarget:$d), "bra\t$d", [/*(brcond pred:$_p, bb:$d)*/]>; } let isReturn = 1, isTerminator = 1, isBarrier = 1 in { def EXIT : InstPTX<(outs), (ins), "exit", [(PTXexit)]>; def RET : InstPTX<(outs), (ins), "ret", [(PTXret)]>; } let hasSideEffects = 1 in { def CALL : InstPTX<(outs), (ins), "call", [(PTXcall)]>; } ///===- Parameter Passing Pseudo-Instructions -----------------------------===// def READPARAMPRED : InstPTX<(outs RegPred:$a), (ins i32imm:$b), "mov.pred\t$a, %arg$b", []>; def READPARAMI16 : InstPTX<(outs RegI16:$a), (ins i32imm:$b), "mov.b16\t$a, %arg$b", []>; def READPARAMI32 : InstPTX<(outs RegI32:$a), (ins i32imm:$b), "mov.b32\t$a, %arg$b", []>; def READPARAMI64 : InstPTX<(outs RegI64:$a), (ins i32imm:$b), "mov.b64\t$a, %arg$b", []>; def READPARAMF32 : InstPTX<(outs RegF32:$a), (ins i32imm:$b), "mov.f32\t$a, %arg$b", []>; def READPARAMF64 : InstPTX<(outs RegF64:$a), (ins i32imm:$b), "mov.f64\t$a, %arg$b", []>; def WRITEPARAMPRED : InstPTX<(outs), (ins RegPred:$a), "//w", []>; def WRITEPARAMI16 : InstPTX<(outs), (ins RegI16:$a), "//w", []>; def WRITEPARAMI32 : InstPTX<(outs), (ins RegI32:$a), "//w", []>; def WRITEPARAMI64 : InstPTX<(outs), (ins RegI64:$a), "//w", []>; def WRITEPARAMF32 : InstPTX<(outs), (ins RegF32:$a), "//w", []>; def WRITEPARAMF64 : InstPTX<(outs), (ins RegF64:$a), "//w", []>; //===----------------------------------------------------------------------===// // Instruction Selection Patterns //===----------------------------------------------------------------------===// // FADD def : Pat<(f32 (fadd RegF32:$a, RegF32:$b)), (FADDrr32 RndDefault, RegF32:$a, RegF32:$b)>; def : Pat<(f32 (fadd RegF32:$a, fpimm:$b)), (FADDri32 RndDefault, RegF32:$a, fpimm:$b)>; def : Pat<(f64 (fadd RegF64:$a, RegF64:$b)), (FADDrr64 RndDefault, RegF64:$a, RegF64:$b)>; def : Pat<(f64 (fadd RegF64:$a, fpimm:$b)), (FADDri64 RndDefault, RegF64:$a, fpimm:$b)>; // FSUB def : Pat<(f32 (fsub RegF32:$a, RegF32:$b)), (FSUBrr32 RndDefault, RegF32:$a, RegF32:$b)>; def : Pat<(f32 (fsub RegF32:$a, fpimm:$b)), (FSUBri32 RndDefault, RegF32:$a, fpimm:$b)>; def : Pat<(f64 (fsub RegF64:$a, RegF64:$b)), (FSUBrr64 RndDefault, RegF64:$a, RegF64:$b)>; def : Pat<(f64 (fsub RegF64:$a, fpimm:$b)), (FSUBri64 RndDefault, RegF64:$a, fpimm:$b)>; // FMUL def : Pat<(f32 (fmul RegF32:$a, RegF32:$b)), (FMULrr32 RndDefault, RegF32:$a, RegF32:$b)>; def : Pat<(f32 (fmul RegF32:$a, fpimm:$b)), (FMULri32 RndDefault, RegF32:$a, fpimm:$b)>; def : Pat<(f64 (fmul RegF64:$a, RegF64:$b)), (FMULrr64 RndDefault, RegF64:$a, RegF64:$b)>; def : Pat<(f64 (fmul RegF64:$a, fpimm:$b)), (FMULri64 RndDefault, RegF64:$a, fpimm:$b)>; // FDIV def : Pat<(f32 (fdiv RegF32:$a, RegF32:$b)), (FDIVrr32 RndDefault, RegF32:$a, RegF32:$b)>; def : Pat<(f32 (fdiv RegF32:$a, fpimm:$b)), (FDIVri32 RndDefault, RegF32:$a, fpimm:$b)>; def : Pat<(f64 (fdiv RegF64:$a, RegF64:$b)), (FDIVrr64 RndDefault, RegF64:$a, RegF64:$b)>; def : Pat<(f64 (fdiv RegF64:$a, fpimm:$b)), (FDIVri64 RndDefault, RegF64:$a, fpimm:$b)>; // FMUL+FADD def : Pat<(f32 (fadd (fmul RegF32:$a, RegF32:$b), RegF32:$c)), (FMADrrr32 RndDefault, RegF32:$a, RegF32:$b, RegF32:$c)>, Requires<[SupportsFMA]>; def : Pat<(f32 (fadd (fmul RegF32:$a, RegF32:$b), fpimm:$c)), (FMADrri32 RndDefault, RegF32:$a, RegF32:$b, fpimm:$c)>, Requires<[SupportsFMA]>; def : Pat<(f32 (fadd (fmul RegF32:$a, fpimm:$b), fpimm:$c)), (FMADrrr32 RndDefault, RegF32:$a, fpimm:$b, fpimm:$c)>, Requires<[SupportsFMA]>; def : Pat<(f32 (fadd (fmul RegF32:$a, RegF32:$b), fpimm:$c)), (FMADrri32 RndDefault, RegF32:$a, RegF32:$b, fpimm:$c)>, Requires<[SupportsFMA]>; def : Pat<(f64 (fadd (fmul RegF64:$a, RegF64:$b), RegF64:$c)), (FMADrrr64 RndDefault, RegF64:$a, RegF64:$b, RegF64:$c)>, Requires<[SupportsFMA]>; def : Pat<(f64 (fadd (fmul RegF64:$a, RegF64:$b), fpimm:$c)), (FMADrri64 RndDefault, RegF64:$a, RegF64:$b, fpimm:$c)>, Requires<[SupportsFMA]>; def : Pat<(f64 (fadd (fmul RegF64:$a, fpimm:$b), fpimm:$c)), (FMADrri64 RndDefault, RegF64:$a, fpimm:$b, fpimm:$c)>, Requires<[SupportsFMA]>; // FNEG def : Pat<(f32 (fneg RegF32:$a)), (FNEGrr32 RndDefault, RegF32:$a)>; def : Pat<(f32 (fneg fpimm:$a)), (FNEGri32 RndDefault, fpimm:$a)>; def : Pat<(f64 (fneg RegF64:$a)), (FNEGrr64 RndDefault, RegF64:$a)>; def : Pat<(f64 (fneg fpimm:$a)), (FNEGri64 RndDefault, fpimm:$a)>; // FSQRT def : Pat<(f32 (fsqrt RegF32:$a)), (FSQRTrr32 RndDefault, RegF32:$a)>; def : Pat<(f32 (fsqrt fpimm:$a)), (FSQRTri32 RndDefault, fpimm:$a)>; def : Pat<(f64 (fsqrt RegF64:$a)), (FSQRTrr64 RndDefault, RegF64:$a)>; def : Pat<(f64 (fsqrt fpimm:$a)), (FSQRTri64 RndDefault, fpimm:$a)>; // FSIN def : Pat<(f32 (fsin RegF32:$a)), (FSINrr32 RndDefault, RegF32:$a)>; def : Pat<(f32 (fsin fpimm:$a)), (FSINri32 RndDefault, fpimm:$a)>; def : Pat<(f64 (fsin RegF64:$a)), (FSINrr64 RndDefault, RegF64:$a)>; def : Pat<(f64 (fsin fpimm:$a)), (FSINri64 RndDefault, fpimm:$a)>; // FCOS def : Pat<(f32 (fcos RegF32:$a)), (FCOSrr32 RndDefault, RegF32:$a)>; def : Pat<(f32 (fcos fpimm:$a)), (FCOSri32 RndDefault, fpimm:$a)>; def : Pat<(f64 (fcos RegF64:$a)), (FCOSrr64 RndDefault, RegF64:$a)>; def : Pat<(f64 (fcos fpimm:$a)), (FCOSri64 RndDefault, fpimm:$a)>; // Type conversion notes: // - PTX does not directly support converting a predicate to a value, so we // use a select instruction to select either 0 or 1 (integer or fp) based // on the truth value of the predicate. // - PTX does not directly support converting to a predicate type, so we fake it // by performing a greater-than test between the value and zero. This follows // the C convention that any non-zero value is equivalent to 'true'. // Conversion to pred def : Pat<(i1 (trunc RegI16:$a)), (SETPGTu16ri RegI16:$a, 0)>; def : Pat<(i1 (trunc RegI32:$a)), (SETPGTu32ri RegI32:$a, 0)>; def : Pat<(i1 (trunc RegI64:$a)), (SETPGTu64ri RegI64:$a, 0)>; def : Pat<(i1 (fp_to_uint RegF32:$a)), (SETPGTu32ri (MOVi32f32 RegF32:$a), 0)>; def : Pat<(i1 (fp_to_uint RegF64:$a)), (SETPGTu64ri (MOVi64f64 RegF64:$a), 0)>; // Conversion to u16 def : Pat<(i16 (anyext RegPred:$a)), (SELPi16ii RegPred:$a, 1, 0)>; def : Pat<(i16 (sext RegPred:$a)), (SELPi16ii RegPred:$a, 0xFFFF, 0)>; def : Pat<(i16 (zext RegPred:$a)), (SELPi16ii RegPred:$a, 1, 0)>; def : Pat<(i16 (trunc RegI32:$a)), (CVTu16u32 RegI32:$a)>; def : Pat<(i16 (trunc RegI64:$a)), (CVTu16u64 RegI64:$a)>; def : Pat<(i16 (fp_to_uint RegF32:$a)), (CVTu16f32 RndDefault, RegF32:$a)>; def : Pat<(i16 (fp_to_sint RegF32:$a)), (CVTs16f32 RndDefault, RegF32:$a)>; def : Pat<(i16 (fp_to_uint RegF64:$a)), (CVTu16f64 RndDefault, RegF64:$a)>; def : Pat<(i16 (fp_to_sint RegF64:$a)), (CVTs16f64 RndDefault, RegF64:$a)>; // Conversion to u32 def : Pat<(i32 (anyext RegPred:$a)), (SELPi32ii RegPred:$a, 1, 0)>; def : Pat<(i32 (sext RegPred:$a)), (SELPi32ii RegPred:$a, 0xFFFFFFFF, 0)>; def : Pat<(i32 (zext RegPred:$a)), (SELPi32ii RegPred:$a, 1, 0)>; def : Pat<(i32 (anyext RegI16:$a)), (CVTu32u16 RegI16:$a)>; def : Pat<(i32 (sext RegI16:$a)), (CVTs32s16 RegI16:$a)>; def : Pat<(i32 (zext RegI16:$a)), (CVTu32u16 RegI16:$a)>; def : Pat<(i32 (trunc RegI64:$a)), (CVTu32u64 RegI64:$a)>; def : Pat<(i32 (fp_to_uint RegF32:$a)), (CVTu32f32 RndDefault, RegF32:$a)>; def : Pat<(i32 (fp_to_sint RegF32:$a)), (CVTs32f32 RndDefault, RegF32:$a)>; def : Pat<(i32 (fp_to_uint RegF64:$a)), (CVTu32f64 RndDefault, RegF64:$a)>; def : Pat<(i32 (fp_to_sint RegF64:$a)), (CVTs32f64 RndDefault, RegF64:$a)>; def : Pat<(i32 (bitconvert RegF32:$a)), (MOVi32f32 RegF32:$a)>; // Conversion to u64 def : Pat<(i64 (anyext RegPred:$a)), (SELPi64ii RegPred:$a, 1, 0)>; def : Pat<(i64 (sext RegPred:$a)), (SELPi64ii RegPred:$a, 0xFFFFFFFFFFFFFFFF, 0)>; def : Pat<(i64 (zext RegPred:$a)), (SELPi64ii RegPred:$a, 1, 0)>; def : Pat<(i64 (anyext RegI16:$a)), (CVTu64u16 RegI16:$a)>; def : Pat<(i64 (sext RegI16:$a)), (CVTs64s16 RegI16:$a)>; def : Pat<(i64 (zext RegI16:$a)), (CVTu64u16 RegI16:$a)>; def : Pat<(i64 (anyext RegI32:$a)), (CVTu64u32 RegI32:$a)>; def : Pat<(i64 (sext RegI32:$a)), (CVTs64s32 RegI32:$a)>; def : Pat<(i64 (zext RegI32:$a)), (CVTu64u32 RegI32:$a)>; def : Pat<(i64 (fp_to_uint RegF32:$a)), (CVTu64f32 RndDefault, RegF32:$a)>; def : Pat<(i64 (fp_to_sint RegF32:$a)), (CVTs64f32 RndDefault, RegF32:$a)>; def : Pat<(i64 (fp_to_uint RegF64:$a)), (CVTu64f64 RndDefault, RegF64:$a)>; def : Pat<(i64 (fp_to_sint RegF64:$a)), (CVTs64f64 RndDefault, RegF64:$a)>; def : Pat<(i64 (bitconvert RegF64:$a)), (MOVi64f64 RegF64:$a)>; // Conversion to f32 def : Pat<(f32 (uint_to_fp RegPred:$a)), (SELPf32rr RegPred:$a, (MOVf32i32 0x3F800000), (MOVf32i32 0))>; def : Pat<(f32 (uint_to_fp RegI16:$a)), (CVTf32u16 RndDefault, RegI16:$a)>; def : Pat<(f32 (sint_to_fp RegI16:$a)), (CVTf32s16 RndDefault, RegI16:$a)>; def : Pat<(f32 (uint_to_fp RegI32:$a)), (CVTf32u32 RndDefault, RegI32:$a)>; def : Pat<(f32 (sint_to_fp RegI32:$a)), (CVTf32s32 RndDefault, RegI32:$a)>; def : Pat<(f32 (uint_to_fp RegI64:$a)), (CVTf32u64 RndDefault, RegI64:$a)>; def : Pat<(f32 (sint_to_fp RegI64:$a)), (CVTf32s64 RndDefault, RegI64:$a)>; def : Pat<(f32 (fround RegF64:$a)), (CVTf32f64 RndDefault, RegF64:$a)>; def : Pat<(f32 (bitconvert RegI32:$a)), (MOVf32i32 RegI32:$a)>; // Conversion to f64 def : Pat<(f64 (uint_to_fp RegPred:$a)), (SELPf64rr RegPred:$a, (MOVf64i64 0x3F80000000000000), (MOVf64i64 0))>; def : Pat<(f64 (uint_to_fp RegI16:$a)), (CVTf64u16 RndDefault, RegI16:$a)>; def : Pat<(f64 (sint_to_fp RegI16:$a)), (CVTf64s16 RndDefault, RegI16:$a)>; def : Pat<(f64 (uint_to_fp RegI32:$a)), (CVTf64u32 RndDefault, RegI32:$a)>; def : Pat<(f64 (sint_to_fp RegI32:$a)), (CVTf64s32 RndDefault, RegI32:$a)>; def : Pat<(f64 (uint_to_fp RegI64:$a)), (CVTf64u64 RndDefault, RegI64:$a)>; def : Pat<(f64 (sint_to_fp RegI64:$a)), (CVTf64s64 RndDefault, RegI64:$a)>; def : Pat<(f64 (fextend RegF32:$a)), (CVTf64f32 RegF32:$a)>; def : Pat<(f64 (bitconvert RegI64:$a)), (MOVf64i64 RegI64:$a)>; ///===- Intrinsic Instructions --------------------------------------------===// include "PTXIntrinsicInstrInfo.td" ///===- Load/Store Instructions -------------------------------------------===// include "PTXInstrLoadStore.td"