//===-- PPCMCCodeEmitter.cpp - Convert PPC code to machine code -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the PPCMCCodeEmitter class. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/PPCMCTargetDesc.h" #include "MCTargetDesc/PPCFixupKinds.h" #include "llvm/ADT/Statistic.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetOpcodes.h" using namespace llvm; #define DEBUG_TYPE "mccodeemitter" STATISTIC(MCNumEmitted, "Number of MC instructions emitted"); namespace { class PPCMCCodeEmitter : public MCCodeEmitter { PPCMCCodeEmitter(const PPCMCCodeEmitter &) LLVM_DELETED_FUNCTION; void operator=(const PPCMCCodeEmitter &) LLVM_DELETED_FUNCTION; const MCInstrInfo &MCII; const MCContext &CTX; bool IsLittleEndian; public: PPCMCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx, bool isLittle) : MCII(mcii), CTX(ctx), IsLittleEndian(isLittle) { } ~PPCMCCodeEmitter() {} unsigned getDirectBrEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getCondBrEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getAbsDirectBrEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getAbsCondBrEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getImm16Encoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getMemRIEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getMemRIXEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getTLSRegEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned getTLSCallEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; unsigned get_crbitm_encoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; /// getMachineOpValue - Return binary encoding of operand. If the machine /// operand requires relocation, record the relocation and return zero. unsigned getMachineOpValue(const MCInst &MI,const MCOperand &MO, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; // getBinaryCodeForInstr - TableGen'erated function for getting the // binary encoding for an instruction. uint64_t getBinaryCodeForInstr(const MCInst &MI, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; void EncodeInstruction(const MCInst &MI, raw_ostream &OS, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const override { // For fast-isel, a float COPY_TO_REGCLASS can survive this long. // It's just a nop to keep the register classes happy, so don't // generate anything. unsigned Opcode = MI.getOpcode(); const MCInstrDesc &Desc = MCII.get(Opcode); if (Opcode == TargetOpcode::COPY_TO_REGCLASS) return; uint64_t Bits = getBinaryCodeForInstr(MI, Fixups, STI); // Output the constant in big/little endian byte order. unsigned Size = Desc.getSize(); switch (Size) { case 4: if (IsLittleEndian) { OS << (char)(Bits); OS << (char)(Bits >> 8); OS << (char)(Bits >> 16); OS << (char)(Bits >> 24); } else { OS << (char)(Bits >> 24); OS << (char)(Bits >> 16); OS << (char)(Bits >> 8); OS << (char)(Bits); } break; case 8: // If we emit a pair of instructions, the first one is // always in the top 32 bits, even on little-endian. if (IsLittleEndian) { OS << (char)(Bits >> 32); OS << (char)(Bits >> 40); OS << (char)(Bits >> 48); OS << (char)(Bits >> 56); OS << (char)(Bits); OS << (char)(Bits >> 8); OS << (char)(Bits >> 16); OS << (char)(Bits >> 24); } else { OS << (char)(Bits >> 56); OS << (char)(Bits >> 48); OS << (char)(Bits >> 40); OS << (char)(Bits >> 32); OS << (char)(Bits >> 24); OS << (char)(Bits >> 16); OS << (char)(Bits >> 8); OS << (char)(Bits); } break; default: llvm_unreachable ("Invalid instruction size"); } ++MCNumEmitted; // Keep track of the # of mi's emitted. } }; } // end anonymous namespace MCCodeEmitter *llvm::createPPCMCCodeEmitter(const MCInstrInfo &MCII, const MCRegisterInfo &MRI, const MCSubtargetInfo &STI, MCContext &Ctx) { Triple TT(STI.getTargetTriple()); bool IsLittleEndian = TT.getArch() == Triple::ppc64le; return new PPCMCCodeEmitter(MCII, Ctx, IsLittleEndian); } unsigned PPCMCCodeEmitter:: getDirectBrEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI); // Add a fixup for the branch target. Fixups.push_back(MCFixup::Create(0, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_br24)); return 0; } unsigned PPCMCCodeEmitter::getCondBrEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI); // Add a fixup for the branch target. Fixups.push_back(MCFixup::Create(0, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_brcond14)); return 0; } unsigned PPCMCCodeEmitter:: getAbsDirectBrEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI); // Add a fixup for the branch target. Fixups.push_back(MCFixup::Create(0, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_br24abs)); return 0; } unsigned PPCMCCodeEmitter:: getAbsCondBrEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI); // Add a fixup for the branch target. Fixups.push_back(MCFixup::Create(0, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_brcond14abs)); return 0; } unsigned PPCMCCodeEmitter::getImm16Encoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI); // Add a fixup for the immediate field. Fixups.push_back(MCFixup::Create(IsLittleEndian? 0 : 2, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_half16)); return 0; } unsigned PPCMCCodeEmitter::getMemRIEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Encode (imm, reg) as a memri, which has the low 16-bits as the // displacement and the next 5 bits as the register #. assert(MI.getOperand(OpNo+1).isReg()); unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 16; const MCOperand &MO = MI.getOperand(OpNo); if (MO.isImm()) return (getMachineOpValue(MI, MO, Fixups, STI) & 0xFFFF) | RegBits; // Add a fixup for the displacement field. Fixups.push_back(MCFixup::Create(IsLittleEndian? 0 : 2, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_half16)); return RegBits; } unsigned PPCMCCodeEmitter::getMemRIXEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // Encode (imm, reg) as a memrix, which has the low 14-bits as the // displacement and the next 5 bits as the register #. assert(MI.getOperand(OpNo+1).isReg()); unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo+1), Fixups, STI) << 14; const MCOperand &MO = MI.getOperand(OpNo); if (MO.isImm()) return ((getMachineOpValue(MI, MO, Fixups, STI) >> 2) & 0x3FFF) | RegBits; // Add a fixup for the displacement field. Fixups.push_back(MCFixup::Create(IsLittleEndian? 0 : 2, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_half16ds)); return RegBits; } unsigned PPCMCCodeEmitter::getTLSRegEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); if (MO.isReg()) return getMachineOpValue(MI, MO, Fixups, STI); // Add a fixup for the TLS register, which simply provides a relocation // hint to the linker that this statement is part of a relocation sequence. // Return the thread-pointer register's encoding. Fixups.push_back(MCFixup::Create(0, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_nofixup)); Triple TT(STI.getTargetTriple()); bool isPPC64 = TT.getArch() == Triple::ppc64 || TT.getArch() == Triple::ppc64le; return CTX.getRegisterInfo()->getEncodingValue(isPPC64 ? PPC::X13 : PPC::R2); } unsigned PPCMCCodeEmitter::getTLSCallEncoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { // For special TLS calls, we need two fixups; one for the branch target // (__tls_get_addr), which we create via getDirectBrEncoding as usual, // and one for the TLSGD or TLSLD symbol, which is emitted here. const MCOperand &MO = MI.getOperand(OpNo+1); Fixups.push_back(MCFixup::Create(0, MO.getExpr(), (MCFixupKind)PPC::fixup_ppc_nofixup)); return getDirectBrEncoding(MI, OpNo, Fixups, STI); } unsigned PPCMCCodeEmitter:: get_crbitm_encoding(const MCInst &MI, unsigned OpNo, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { const MCOperand &MO = MI.getOperand(OpNo); assert((MI.getOpcode() == PPC::MTOCRF || MI.getOpcode() == PPC::MTOCRF8 || MI.getOpcode() == PPC::MFOCRF || MI.getOpcode() == PPC::MFOCRF8) && (MO.getReg() >= PPC::CR0 && MO.getReg() <= PPC::CR7)); return 0x80 >> CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); } unsigned PPCMCCodeEmitter:: getMachineOpValue(const MCInst &MI, const MCOperand &MO, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { if (MO.isReg()) { // MTOCRF/MFOCRF should go through get_crbitm_encoding for the CR operand. // The GPR operand should come through here though. assert((MI.getOpcode() != PPC::MTOCRF && MI.getOpcode() != PPC::MTOCRF8 && MI.getOpcode() != PPC::MFOCRF && MI.getOpcode() != PPC::MFOCRF8) || MO.getReg() < PPC::CR0 || MO.getReg() > PPC::CR7); return CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); } assert(MO.isImm() && "Relocation required in an instruction that we cannot encode!"); return MO.getImm(); } #include "PPCGenMCCodeEmitter.inc"