//===-- PPCBranchSelector.cpp - Emit long conditional branches-----*- C++ -*-=// // // The LLVM Compiler Infrastructure // // This file was developed by Nate Baegeman and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a pass that scans a machine function to determine which // conditional branches need more than 16 bits of displacement to reach their // target basic block. It does this in two passes; a calculation of basic block // positions pass, and a branch psuedo op to machine branch opcode pass. This // pass should be run last, just before the assembly printer. // //===----------------------------------------------------------------------===// #include "PPC.h" #include "PPCInstrBuilder.h" #include "PPCInstrInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include using namespace llvm; namespace { struct PPCBSel : public MachineFunctionPass { // OffsetMap - Mapping between BB and byte offset from start of function std::map OffsetMap; virtual bool runOnMachineFunction(MachineFunction &Fn); virtual const char *getPassName() const { return "PowerPC Branch Selection"; } }; } /// createPPCBranchSelectionPass - returns an instance of the Branch Selection /// Pass /// FunctionPass *llvm::createPPCBranchSelectionPass() { return new PPCBSel(); } /// getNumBytesForInstruction - Return the number of bytes of code the specified /// instruction may be. This returns the maximum number of bytes. /// static unsigned getNumBytesForInstruction(MachineInstr *MI) { switch (MI->getOpcode()) { case PPC::COND_BRANCH: // while this will be 4 most of the time, if we emit 8 it is just a // minor pessimization that saves us from having to worry about // keeping the offsets up to date later when we emit long branch glue. return 8; case PPC::IMPLICIT_DEF_GPR: // no asm emitted case PPC::IMPLICIT_DEF_F4: // no asm emitted case PPC::IMPLICIT_DEF_F8: // no asm emitted return 0; case PPC::INLINEASM: // Inline Asm: Variable size. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) if (MI->getOperand(i).isExternalSymbol()) { const char *AsmStr = MI->getOperand(i).getSymbolName(); // Count the number of newline's in the asm string. unsigned NumInstrs = 0; for (; *AsmStr; ++AsmStr) NumInstrs += *AsmStr == '\n'; return NumInstrs*4; } assert(0 && "INLINEASM didn't have format string??"); default: return 4; // PowerPC instructions are all 4 bytes } } bool PPCBSel::runOnMachineFunction(MachineFunction &Fn) { // Running total of instructions encountered since beginning of function unsigned ByteCount = 0; // For each MBB, add its offset to the offset map, and count up its // instructions for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E; ++MFI) { MachineBasicBlock *MBB = MFI; OffsetMap[MBB] = ByteCount; for (MachineBasicBlock::iterator MBBI = MBB->begin(), EE = MBB->end(); MBBI != EE; ++MBBI) ByteCount += getNumBytesForInstruction(MBBI); } // We're about to run over the MBB's again, so reset the ByteCount ByteCount = 0; // For each MBB, find the conditional branch pseudo instructions, and // calculate the difference between the target MBB and the current ICount // to decide whether or not to emit a short or long branch. // // short branch: // bCC .L_TARGET_MBB // // long branch: // bInverseCC $PC+8 // b .L_TARGET_MBB for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E; ++MFI) { MachineBasicBlock *MBB = MFI; for (MachineBasicBlock::iterator MBBI = MBB->begin(), EE = MBB->end(); MBBI != EE; ++MBBI) { // We may end up deleting the MachineInstr that MBBI points to, so // remember its opcode now so we can refer to it after calling erase() unsigned ByteSize = getNumBytesForInstruction(MBBI); if (MBBI->getOpcode() == PPC::COND_BRANCH) { MachineBasicBlock::iterator MBBJ = MBBI; ++MBBJ; // condbranch operands: // 0. CR0 register // 1. bc opcode // 2. target MBB // 3. fallthrough MBB MachineBasicBlock *trueMBB = MBBI->getOperand(2).getMachineBasicBlock(); int Displacement = OffsetMap[trueMBB] - ByteCount; unsigned Opcode = MBBI->getOperand(1).getImmedValue(); unsigned CRReg = MBBI->getOperand(0).getReg(); unsigned Inverted = PPCInstrInfo::invertPPCBranchOpcode(Opcode); if (Displacement >= -32768 && Displacement <= 32767) { BuildMI(*MBB, MBBJ, Opcode, 2).addReg(CRReg).addMBB(trueMBB); } else { BuildMI(*MBB, MBBJ, Inverted, 2).addReg(CRReg).addSImm(8); BuildMI(*MBB, MBBJ, PPC::B, 1).addMBB(trueMBB); } // Erase the psuedo COND_BRANCH instruction, and then back up the // iterator so that when the for loop increments it, we end up in // the correct place rather than iterating off the end. MBB->erase(MBBI); MBBI = --MBBJ; } ByteCount += ByteSize; } } OffsetMap.clear(); return true; }