//===- PPCInstrInfo.cpp - PowerPC32 Instruction Information -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the PowerPC implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "PPCInstrInfo.h" #include "PPCInstrBuilder.h" #include "PPCMachineFunctionInfo.h" #include "PPCPredicates.h" #include "PPCGenInstrInfo.inc" #include "PPCTargetMachine.h" #include "llvm/ADT/STLExtras.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/MC/MCAsmInfo.h" using namespace llvm; extern cl::opt EnablePPC32RS; // FIXME (64-bit): See PPCRegisterInfo.cpp. extern cl::opt EnablePPC64RS; // FIXME (64-bit): See PPCRegisterInfo.cpp. PPCInstrInfo::PPCInstrInfo(PPCTargetMachine &tm) : TargetInstrInfoImpl(PPCInsts, array_lengthof(PPCInsts)), TM(tm), RI(*TM.getSubtargetImpl(), *this) {} bool PPCInstrInfo::isMoveInstr(const MachineInstr& MI, unsigned& sourceReg, unsigned& destReg, unsigned& sourceSubIdx, unsigned& destSubIdx) const { sourceSubIdx = destSubIdx = 0; // No sub-registers. unsigned oc = MI.getOpcode(); if (oc == PPC::OR || oc == PPC::OR8 || oc == PPC::VOR || oc == PPC::OR4To8 || oc == PPC::OR8To4) { // or r1, r2, r2 assert(MI.getNumOperands() >= 3 && MI.getOperand(0).isReg() && MI.getOperand(1).isReg() && MI.getOperand(2).isReg() && "invalid PPC OR instruction!"); if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) { sourceReg = MI.getOperand(1).getReg(); destReg = MI.getOperand(0).getReg(); return true; } } else if (oc == PPC::ADDI) { // addi r1, r2, 0 assert(MI.getNumOperands() >= 3 && MI.getOperand(0).isReg() && MI.getOperand(2).isImm() && "invalid PPC ADDI instruction!"); if (MI.getOperand(1).isReg() && MI.getOperand(2).getImm() == 0) { sourceReg = MI.getOperand(1).getReg(); destReg = MI.getOperand(0).getReg(); return true; } } else if (oc == PPC::ORI) { // ori r1, r2, 0 assert(MI.getNumOperands() >= 3 && MI.getOperand(0).isReg() && MI.getOperand(1).isReg() && MI.getOperand(2).isImm() && "invalid PPC ORI instruction!"); if (MI.getOperand(2).getImm() == 0) { sourceReg = MI.getOperand(1).getReg(); destReg = MI.getOperand(0).getReg(); return true; } } else if (oc == PPC::FMRS || oc == PPC::FMRD || oc == PPC::FMRSD) { // fmr r1, r2 assert(MI.getNumOperands() >= 2 && MI.getOperand(0).isReg() && MI.getOperand(1).isReg() && "invalid PPC FMR instruction"); sourceReg = MI.getOperand(1).getReg(); destReg = MI.getOperand(0).getReg(); return true; } else if (oc == PPC::MCRF) { // mcrf cr1, cr2 assert(MI.getNumOperands() >= 2 && MI.getOperand(0).isReg() && MI.getOperand(1).isReg() && "invalid PPC MCRF instruction"); sourceReg = MI.getOperand(1).getReg(); destReg = MI.getOperand(0).getReg(); return true; } return false; } unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case PPC::LD: case PPC::LWZ: case PPC::LFS: case PPC::LFD: if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && MI->getOperand(2).isFI()) { FrameIndex = MI->getOperand(2).getIndex(); return MI->getOperand(0).getReg(); } break; } return 0; } unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const { switch (MI->getOpcode()) { default: break; case PPC::STD: case PPC::STW: case PPC::STFS: case PPC::STFD: if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && MI->getOperand(2).isFI()) { FrameIndex = MI->getOperand(2).getIndex(); return MI->getOperand(0).getReg(); } break; } return 0; } // commuteInstruction - We can commute rlwimi instructions, but only if the // rotate amt is zero. We also have to munge the immediates a bit. MachineInstr * PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { MachineFunction &MF = *MI->getParent()->getParent(); // Normal instructions can be commuted the obvious way. if (MI->getOpcode() != PPC::RLWIMI) return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); // Cannot commute if it has a non-zero rotate count. if (MI->getOperand(3).getImm() != 0) return 0; // If we have a zero rotate count, we have: // M = mask(MB,ME) // Op0 = (Op1 & ~M) | (Op2 & M) // Change this to: // M = mask((ME+1)&31, (MB-1)&31) // Op0 = (Op2 & ~M) | (Op1 & M) // Swap op1/op2 unsigned Reg0 = MI->getOperand(0).getReg(); unsigned Reg1 = MI->getOperand(1).getReg(); unsigned Reg2 = MI->getOperand(2).getReg(); bool Reg1IsKill = MI->getOperand(1).isKill(); bool Reg2IsKill = MI->getOperand(2).isKill(); bool ChangeReg0 = false; // If machine instrs are no longer in two-address forms, update // destination register as well. if (Reg0 == Reg1) { // Must be two address instruction! assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) && "Expecting a two-address instruction!"); Reg2IsKill = false; ChangeReg0 = true; } // Masks. unsigned MB = MI->getOperand(4).getImm(); unsigned ME = MI->getOperand(5).getImm(); if (NewMI) { // Create a new instruction. unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg(); bool Reg0IsDead = MI->getOperand(0).isDead(); return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) .addReg(Reg2, getKillRegState(Reg2IsKill)) .addReg(Reg1, getKillRegState(Reg1IsKill)) .addImm((ME+1) & 31) .addImm((MB-1) & 31); } if (ChangeReg0) MI->getOperand(0).setReg(Reg2); MI->getOperand(2).setReg(Reg1); MI->getOperand(1).setReg(Reg2); MI->getOperand(2).setIsKill(Reg1IsKill); MI->getOperand(1).setIsKill(Reg2IsKill); // Swap the mask around. MI->getOperand(4).setImm((ME+1) & 31); MI->getOperand(5).setImm((MB-1) & 31); return MI; } void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { DebugLoc DL = DebugLoc::getUnknownLoc(); if (MI != MBB.end()) DL = MI->getDebugLoc(); BuildMI(MBB, MI, DL, get(PPC::NOP)); } // Branch analysis. bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const { // If the block has no terminators, it just falls into the block after it. MachineBasicBlock::iterator I = MBB.end(); if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) return false; // Get the last instruction in the block. MachineInstr *LastInst = I; // If there is only one terminator instruction, process it. if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { if (LastInst->getOpcode() == PPC::B) { if (!LastInst->getOperand(0).isMBB()) return true; TBB = LastInst->getOperand(0).getMBB(); return false; } else if (LastInst->getOpcode() == PPC::BCC) { if (!LastInst->getOperand(2).isMBB()) return true; // Block ends with fall-through condbranch. TBB = LastInst->getOperand(2).getMBB(); Cond.push_back(LastInst->getOperand(0)); Cond.push_back(LastInst->getOperand(1)); return false; } // Otherwise, don't know what this is. return true; } // Get the instruction before it if it's a terminator. MachineInstr *SecondLastInst = I; // If there are three terminators, we don't know what sort of block this is. if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I)) return true; // If the block ends with PPC::B and PPC:BCC, handle it. if (SecondLastInst->getOpcode() == PPC::BCC && LastInst->getOpcode() == PPC::B) { if (!SecondLastInst->getOperand(2).isMBB() || !LastInst->getOperand(0).isMBB()) return true; TBB = SecondLastInst->getOperand(2).getMBB(); Cond.push_back(SecondLastInst->getOperand(0)); Cond.push_back(SecondLastInst->getOperand(1)); FBB = LastInst->getOperand(0).getMBB(); return false; } // If the block ends with two PPC:Bs, handle it. The second one is not // executed, so remove it. if (SecondLastInst->getOpcode() == PPC::B && LastInst->getOpcode() == PPC::B) { if (!SecondLastInst->getOperand(0).isMBB()) return true; TBB = SecondLastInst->getOperand(0).getMBB(); I = LastInst; if (AllowModify) I->eraseFromParent(); return false; } // Otherwise, can't handle this. return true; } unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { MachineBasicBlock::iterator I = MBB.end(); if (I == MBB.begin()) return 0; --I; if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC) return 0; // Remove the branch. I->eraseFromParent(); I = MBB.end(); if (I == MBB.begin()) return 1; --I; if (I->getOpcode() != PPC::BCC) return 1; // Remove the branch. I->eraseFromParent(); return 2; } unsigned PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl &Cond) const { // FIXME this should probably have a DebugLoc argument DebugLoc dl = DebugLoc::getUnknownLoc(); // Shouldn't be a fall through. assert(TBB && "InsertBranch must not be told to insert a fallthrough"); assert((Cond.size() == 2 || Cond.size() == 0) && "PPC branch conditions have two components!"); // One-way branch. if (FBB == 0) { if (Cond.empty()) // Unconditional branch BuildMI(&MBB, dl, get(PPC::B)).addMBB(TBB); else // Conditional branch BuildMI(&MBB, dl, get(PPC::BCC)) .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB); return 1; } // Two-way Conditional Branch. BuildMI(&MBB, dl, get(PPC::BCC)) .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB); BuildMI(&MBB, dl, get(PPC::B)).addMBB(FBB); return 2; } bool PPCInstrInfo::copyRegToReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, unsigned SrcReg, const TargetRegisterClass *DestRC, const TargetRegisterClass *SrcRC) const { if (DestRC != SrcRC) { // Not yet supported! return false; } DebugLoc DL = DebugLoc::getUnknownLoc(); if (MI != MBB.end()) DL = MI->getDebugLoc(); if (DestRC == PPC::GPRCRegisterClass) { BuildMI(MBB, MI, DL, get(PPC::OR), DestReg).addReg(SrcReg).addReg(SrcReg); } else if (DestRC == PPC::G8RCRegisterClass) { BuildMI(MBB, MI, DL, get(PPC::OR8), DestReg).addReg(SrcReg).addReg(SrcReg); } else if (DestRC == PPC::F4RCRegisterClass) { BuildMI(MBB, MI, DL, get(PPC::FMRS), DestReg).addReg(SrcReg); } else if (DestRC == PPC::F8RCRegisterClass) { BuildMI(MBB, MI, DL, get(PPC::FMRD), DestReg).addReg(SrcReg); } else if (DestRC == PPC::CRRCRegisterClass) { BuildMI(MBB, MI, DL, get(PPC::MCRF), DestReg).addReg(SrcReg); } else if (DestRC == PPC::VRRCRegisterClass) { BuildMI(MBB, MI, DL, get(PPC::VOR), DestReg).addReg(SrcReg).addReg(SrcReg); } else if (DestRC == PPC::CRBITRCRegisterClass) { BuildMI(MBB, MI, DL, get(PPC::CROR), DestReg).addReg(SrcReg).addReg(SrcReg); } else { // Attempt to copy register that is not GPR or FPR return false; } return true; } bool PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx, const TargetRegisterClass *RC, SmallVectorImpl &NewMIs) const{ DebugLoc DL = DebugLoc::getUnknownLoc(); if (RC == PPC::GPRCRegisterClass) { if (SrcReg != PPC::LR) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); } else { // FIXME: this spills LR immediately to memory in one step. To do this, // we use R11, which we know cannot be used in the prolog/epilog. This is // a hack. NewMIs.push_back(BuildMI(MF, DL, get(PPC::MFLR), PPC::R11)); NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) .addReg(PPC::R11, getKillRegState(isKill)), FrameIdx)); } } else if (RC == PPC::G8RCRegisterClass) { if (SrcReg != PPC::LR8) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); } else { // FIXME: this spills LR immediately to memory in one step. To do this, // we use R11, which we know cannot be used in the prolog/epilog. This is // a hack. NewMIs.push_back(BuildMI(MF, DL, get(PPC::MFLR8), PPC::X11)); NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) .addReg(PPC::X11, getKillRegState(isKill)), FrameIdx)); } } else if (RC == PPC::F8RCRegisterClass) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); } else if (RC == PPC::F4RCRegisterClass) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); } else if (RC == PPC::CRRCRegisterClass) { if ((EnablePPC32RS && !TM.getSubtargetImpl()->isPPC64()) || (EnablePPC64RS && TM.getSubtargetImpl()->isPPC64())) { // FIXME (64-bit): Enable NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx)); return true; } else { // FIXME: We use R0 here, because it isn't available for RA. We need to // store the CR in the low 4-bits of the saved value. First, issue a MFCR // to save all of the CRBits. NewMIs.push_back(BuildMI(MF, DL, get(PPC::MFCR), PPC::R0)); // If the saved register wasn't CR0, shift the bits left so that they are // in CR0's slot. if (SrcReg != PPC::CR0) { unsigned ShiftBits = PPCRegisterInfo::getRegisterNumbering(SrcReg)*4; // rlwinm r0, r0, ShiftBits, 0, 31. NewMIs.push_back(BuildMI(MF, DL, get(PPC::RLWINM), PPC::R0) .addReg(PPC::R0).addImm(ShiftBits).addImm(0).addImm(31)); } NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) .addReg(PPC::R0, getKillRegState(isKill)), FrameIdx)); } } else if (RC == PPC::CRBITRCRegisterClass) { // FIXME: We use CRi here because there is no mtcrf on a bit. Since the // backend currently only uses CR1EQ as an individual bit, this should // not cause any bug. If we need other uses of CR bits, the following // code may be invalid. unsigned Reg = 0; if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR0GT || SrcReg == PPC::CR0EQ || SrcReg == PPC::CR0UN) Reg = PPC::CR0; else if (SrcReg == PPC::CR1LT || SrcReg == PPC::CR1GT || SrcReg == PPC::CR1EQ || SrcReg == PPC::CR1UN) Reg = PPC::CR1; else if (SrcReg == PPC::CR2LT || SrcReg == PPC::CR2GT || SrcReg == PPC::CR2EQ || SrcReg == PPC::CR2UN) Reg = PPC::CR2; else if (SrcReg == PPC::CR3LT || SrcReg == PPC::CR3GT || SrcReg == PPC::CR3EQ || SrcReg == PPC::CR3UN) Reg = PPC::CR3; else if (SrcReg == PPC::CR4LT || SrcReg == PPC::CR4GT || SrcReg == PPC::CR4EQ || SrcReg == PPC::CR4UN) Reg = PPC::CR4; else if (SrcReg == PPC::CR5LT || SrcReg == PPC::CR5GT || SrcReg == PPC::CR5EQ || SrcReg == PPC::CR5UN) Reg = PPC::CR5; else if (SrcReg == PPC::CR6LT || SrcReg == PPC::CR6GT || SrcReg == PPC::CR6EQ || SrcReg == PPC::CR6UN) Reg = PPC::CR6; else if (SrcReg == PPC::CR7LT || SrcReg == PPC::CR7GT || SrcReg == PPC::CR7EQ || SrcReg == PPC::CR7UN) Reg = PPC::CR7; return StoreRegToStackSlot(MF, Reg, isKill, FrameIdx, PPC::CRRCRegisterClass, NewMIs); } else if (RC == PPC::VRRCRegisterClass) { // We don't have indexed addressing for vector loads. Emit: // R0 = ADDI FI# // STVX VAL, 0, R0 // // FIXME: We use R0 here, because it isn't available for RA. NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::ADDI), PPC::R0), FrameIdx, 0, 0)); NewMIs.push_back(BuildMI(MF, DL, get(PPC::STVX)) .addReg(SrcReg, getKillRegState(isKill)) .addReg(PPC::R0) .addReg(PPC::R0)); } else { llvm_unreachable("Unknown regclass!"); } return false; } void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, bool isKill, int FrameIdx, const TargetRegisterClass *RC) const { MachineFunction &MF = *MBB.getParent(); SmallVector NewMIs; if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs)) { PPCFunctionInfo *FuncInfo = MF.getInfo(); FuncInfo->setSpillsCR(); } for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) MBB.insert(MI, NewMIs[i]); } void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL, unsigned DestReg, int FrameIdx, const TargetRegisterClass *RC, SmallVectorImpl &NewMIs)const{ if (RC == PPC::GPRCRegisterClass) { if (DestReg != PPC::LR) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), DestReg), FrameIdx)); } else { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), PPC::R11), FrameIdx)); NewMIs.push_back(BuildMI(MF, DL, get(PPC::MTLR)).addReg(PPC::R11)); } } else if (RC == PPC::G8RCRegisterClass) { if (DestReg != PPC::LR8) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), FrameIdx)); } else { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), PPC::R11), FrameIdx)); NewMIs.push_back(BuildMI(MF, DL, get(PPC::MTLR8)).addReg(PPC::R11)); } } else if (RC == PPC::F8RCRegisterClass) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), FrameIdx)); } else if (RC == PPC::F4RCRegisterClass) { NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), FrameIdx)); } else if (RC == PPC::CRRCRegisterClass) { // FIXME: We use R0 here, because it isn't available for RA. NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), PPC::R0), FrameIdx)); // If the reloaded register isn't CR0, shift the bits right so that they are // in the right CR's slot. if (DestReg != PPC::CR0) { unsigned ShiftBits = PPCRegisterInfo::getRegisterNumbering(DestReg)*4; // rlwinm r11, r11, 32-ShiftBits, 0, 31. NewMIs.push_back(BuildMI(MF, DL, get(PPC::RLWINM), PPC::R0) .addReg(PPC::R0).addImm(32-ShiftBits).addImm(0).addImm(31)); } NewMIs.push_back(BuildMI(MF, DL, get(PPC::MTCRF), DestReg).addReg(PPC::R0)); } else if (RC == PPC::CRBITRCRegisterClass) { unsigned Reg = 0; if (DestReg == PPC::CR0LT || DestReg == PPC::CR0GT || DestReg == PPC::CR0EQ || DestReg == PPC::CR0UN) Reg = PPC::CR0; else if (DestReg == PPC::CR1LT || DestReg == PPC::CR1GT || DestReg == PPC::CR1EQ || DestReg == PPC::CR1UN) Reg = PPC::CR1; else if (DestReg == PPC::CR2LT || DestReg == PPC::CR2GT || DestReg == PPC::CR2EQ || DestReg == PPC::CR2UN) Reg = PPC::CR2; else if (DestReg == PPC::CR3LT || DestReg == PPC::CR3GT || DestReg == PPC::CR3EQ || DestReg == PPC::CR3UN) Reg = PPC::CR3; else if (DestReg == PPC::CR4LT || DestReg == PPC::CR4GT || DestReg == PPC::CR4EQ || DestReg == PPC::CR4UN) Reg = PPC::CR4; else if (DestReg == PPC::CR5LT || DestReg == PPC::CR5GT || DestReg == PPC::CR5EQ || DestReg == PPC::CR5UN) Reg = PPC::CR5; else if (DestReg == PPC::CR6LT || DestReg == PPC::CR6GT || DestReg == PPC::CR6EQ || DestReg == PPC::CR6UN) Reg = PPC::CR6; else if (DestReg == PPC::CR7LT || DestReg == PPC::CR7GT || DestReg == PPC::CR7EQ || DestReg == PPC::CR7UN) Reg = PPC::CR7; return LoadRegFromStackSlot(MF, DL, Reg, FrameIdx, PPC::CRRCRegisterClass, NewMIs); } else if (RC == PPC::VRRCRegisterClass) { // We don't have indexed addressing for vector loads. Emit: // R0 = ADDI FI# // Dest = LVX 0, R0 // // FIXME: We use R0 here, because it isn't available for RA. NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::ADDI), PPC::R0), FrameIdx, 0, 0)); NewMIs.push_back(BuildMI(MF, DL, get(PPC::LVX),DestReg).addReg(PPC::R0) .addReg(PPC::R0)); } else { llvm_unreachable("Unknown regclass!"); } } void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIdx, const TargetRegisterClass *RC) const { MachineFunction &MF = *MBB.getParent(); SmallVector NewMIs; DebugLoc DL = DebugLoc::getUnknownLoc(); if (MI != MBB.end()) DL = MI->getDebugLoc(); LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) MBB.insert(MI, NewMIs[i]); } /// foldMemoryOperand - PowerPC (like most RISC's) can only fold spills into /// copy instructions, turning them into load/store instructions. MachineInstr *PPCInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI, const SmallVectorImpl &Ops, int FrameIndex) const { if (Ops.size() != 1) return NULL; // Make sure this is a reg-reg copy. Note that we can't handle MCRF, because // it takes more than one instruction to store it. unsigned Opc = MI->getOpcode(); unsigned OpNum = Ops[0]; MachineInstr *NewMI = NULL; if ((Opc == PPC::OR && MI->getOperand(1).getReg() == MI->getOperand(2).getReg())) { if (OpNum == 0) { // move -> store unsigned InReg = MI->getOperand(1).getReg(); bool isKill = MI->getOperand(1).isKill(); bool isUndef = MI->getOperand(1).isUndef(); NewMI = addFrameReference(BuildMI(MF, MI->getDebugLoc(), get(PPC::STW)) .addReg(InReg, getKillRegState(isKill) | getUndefRegState(isUndef)), FrameIndex); } else { // move -> load unsigned OutReg = MI->getOperand(0).getReg(); bool isDead = MI->getOperand(0).isDead(); bool isUndef = MI->getOperand(0).isUndef(); NewMI = addFrameReference(BuildMI(MF, MI->getDebugLoc(), get(PPC::LWZ)) .addReg(OutReg, RegState::Define | getDeadRegState(isDead) | getUndefRegState(isUndef)), FrameIndex); } } else if ((Opc == PPC::OR8 && MI->getOperand(1).getReg() == MI->getOperand(2).getReg())) { if (OpNum == 0) { // move -> store unsigned InReg = MI->getOperand(1).getReg(); bool isKill = MI->getOperand(1).isKill(); bool isUndef = MI->getOperand(1).isUndef(); NewMI = addFrameReference(BuildMI(MF, MI->getDebugLoc(), get(PPC::STD)) .addReg(InReg, getKillRegState(isKill) | getUndefRegState(isUndef)), FrameIndex); } else { // move -> load unsigned OutReg = MI->getOperand(0).getReg(); bool isDead = MI->getOperand(0).isDead(); bool isUndef = MI->getOperand(0).isUndef(); NewMI = addFrameReference(BuildMI(MF, MI->getDebugLoc(), get(PPC::LD)) .addReg(OutReg, RegState::Define | getDeadRegState(isDead) | getUndefRegState(isUndef)), FrameIndex); } } else if (Opc == PPC::FMRD) { if (OpNum == 0) { // move -> store unsigned InReg = MI->getOperand(1).getReg(); bool isKill = MI->getOperand(1).isKill(); bool isUndef = MI->getOperand(1).isUndef(); NewMI = addFrameReference(BuildMI(MF, MI->getDebugLoc(), get(PPC::STFD)) .addReg(InReg, getKillRegState(isKill) | getUndefRegState(isUndef)), FrameIndex); } else { // move -> load unsigned OutReg = MI->getOperand(0).getReg(); bool isDead = MI->getOperand(0).isDead(); bool isUndef = MI->getOperand(0).isUndef(); NewMI = addFrameReference(BuildMI(MF, MI->getDebugLoc(), get(PPC::LFD)) .addReg(OutReg, RegState::Define | getDeadRegState(isDead) | getUndefRegState(isUndef)), FrameIndex); } } else if (Opc == PPC::FMRS) { if (OpNum == 0) { // move -> store unsigned InReg = MI->getOperand(1).getReg(); bool isKill = MI->getOperand(1).isKill(); bool isUndef = MI->getOperand(1).isUndef(); NewMI = addFrameReference(BuildMI(MF, MI->getDebugLoc(), get(PPC::STFS)) .addReg(InReg, getKillRegState(isKill) | getUndefRegState(isUndef)), FrameIndex); } else { // move -> load unsigned OutReg = MI->getOperand(0).getReg(); bool isDead = MI->getOperand(0).isDead(); bool isUndef = MI->getOperand(0).isUndef(); NewMI = addFrameReference(BuildMI(MF, MI->getDebugLoc(), get(PPC::LFS)) .addReg(OutReg, RegState::Define | getDeadRegState(isDead) | getUndefRegState(isUndef)), FrameIndex); } } return NewMI; } bool PPCInstrInfo::canFoldMemoryOperand(const MachineInstr *MI, const SmallVectorImpl &Ops) const { if (Ops.size() != 1) return false; // Make sure this is a reg-reg copy. Note that we can't handle MCRF, because // it takes more than one instruction to store it. unsigned Opc = MI->getOpcode(); if ((Opc == PPC::OR && MI->getOperand(1).getReg() == MI->getOperand(2).getReg())) return true; else if ((Opc == PPC::OR8 && MI->getOperand(1).getReg() == MI->getOperand(2).getReg())) return true; else if (Opc == PPC::FMRD || Opc == PPC::FMRS) return true; return false; } bool PPCInstrInfo::BlockHasNoFallThrough(const MachineBasicBlock &MBB) const { if (MBB.empty()) return false; switch (MBB.back().getOpcode()) { case PPC::BLR: // Return. case PPC::B: // Uncond branch. case PPC::BCTR: // Indirect branch. return true; default: return false; } } bool PPCInstrInfo:: ReverseBranchCondition(SmallVectorImpl &Cond) const { assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); // Leave the CR# the same, but invert the condition. Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); return false; } /// GetInstSize - Return the number of bytes of code the specified /// instruction may be. This returns the maximum number of bytes. /// unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { switch (MI->getOpcode()) { case PPC::INLINEASM: { // Inline Asm: Variable size. const MachineFunction *MF = MI->getParent()->getParent(); const char *AsmStr = MI->getOperand(0).getSymbolName(); return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); } case PPC::DBG_LABEL: case PPC::EH_LABEL: case PPC::GC_LABEL: return 0; default: return 4; // PowerPC instructions are all 4 bytes } }