//===-- AMDILISelDAGToDAG.cpp - A dag to dag inst selector for AMDIL ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //==-----------------------------------------------------------------------===// // /// \file /// \brief Defines an instruction selector for the AMDGPU target. // //===----------------------------------------------------------------------===// #include "AMDGPUInstrInfo.h" #include "AMDGPUISelLowering.h" // For AMDGPUISD #include "AMDGPURegisterInfo.h" #include "R600InstrInfo.h" #include "SIISelLowering.h" #include "llvm/ADT/ValueMap.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Support/Compiler.h" #include #include using namespace llvm; //===----------------------------------------------------------------------===// // Instruction Selector Implementation //===----------------------------------------------------------------------===// namespace { /// AMDGPU specific code to select AMDGPU machine instructions for /// SelectionDAG operations. class AMDGPUDAGToDAGISel : public SelectionDAGISel { // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can // make the right decision when generating code for different targets. const AMDGPUSubtarget &Subtarget; public: AMDGPUDAGToDAGISel(TargetMachine &TM); virtual ~AMDGPUDAGToDAGISel(); SDNode *Select(SDNode *N); virtual const char *getPassName() const; virtual void PostprocessISelDAG(); private: inline SDValue getSmallIPtrImm(unsigned Imm); bool FoldOperand(SDValue &Src, SDValue &Sel, SDValue &Neg, SDValue &Abs, const R600InstrInfo *TII, std::vector Cst); bool FoldOperands(unsigned, const R600InstrInfo *, std::vector &); bool FoldDotOperands(unsigned, const R600InstrInfo *, std::vector &); // Complex pattern selectors bool SelectADDRParam(SDValue Addr, SDValue& R1, SDValue& R2); bool SelectADDR(SDValue N, SDValue &R1, SDValue &R2); bool SelectADDR64(SDValue N, SDValue &R1, SDValue &R2); static bool checkType(const Value *ptr, unsigned int addrspace); static bool isGlobalStore(const StoreSDNode *N); static bool isPrivateStore(const StoreSDNode *N); static bool isLocalStore(const StoreSDNode *N); static bool isRegionStore(const StoreSDNode *N); bool isCPLoad(const LoadSDNode *N) const; bool isConstantLoad(const LoadSDNode *N, int cbID) const; bool isGlobalLoad(const LoadSDNode *N) const; bool isParamLoad(const LoadSDNode *N) const; bool isPrivateLoad(const LoadSDNode *N) const; bool isLocalLoad(const LoadSDNode *N) const; bool isRegionLoad(const LoadSDNode *N) const; bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr); bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg, SDValue& Offset); bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset); bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset); // Include the pieces autogenerated from the target description. #include "AMDGPUGenDAGISel.inc" }; } // end anonymous namespace /// \brief This pass converts a legalized DAG into a AMDGPU-specific // DAG, ready for instruction scheduling. FunctionPass *llvm::createAMDGPUISelDag(TargetMachine &TM ) { return new AMDGPUDAGToDAGISel(TM); } AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel(TargetMachine &TM) : SelectionDAGISel(TM), Subtarget(TM.getSubtarget()) { } AMDGPUDAGToDAGISel::~AMDGPUDAGToDAGISel() { } SDValue AMDGPUDAGToDAGISel::getSmallIPtrImm(unsigned int Imm) { return CurDAG->getTargetConstant(Imm, MVT::i32); } bool AMDGPUDAGToDAGISel::SelectADDRParam( SDValue Addr, SDValue& R1, SDValue& R2) { if (Addr.getOpcode() == ISD::FrameIndex) { if (FrameIndexSDNode *FIN = dyn_cast(Addr)) { R1 = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i32); R2 = CurDAG->getTargetConstant(0, MVT::i32); } else { R1 = Addr; R2 = CurDAG->getTargetConstant(0, MVT::i32); } } else if (Addr.getOpcode() == ISD::ADD) { R1 = Addr.getOperand(0); R2 = Addr.getOperand(1); } else { R1 = Addr; R2 = CurDAG->getTargetConstant(0, MVT::i32); } return true; } bool AMDGPUDAGToDAGISel::SelectADDR(SDValue Addr, SDValue& R1, SDValue& R2) { if (Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress) { return false; } return SelectADDRParam(Addr, R1, R2); } bool AMDGPUDAGToDAGISel::SelectADDR64(SDValue Addr, SDValue& R1, SDValue& R2) { if (Addr.getOpcode() == ISD::TargetExternalSymbol || Addr.getOpcode() == ISD::TargetGlobalAddress) { return false; } if (Addr.getOpcode() == ISD::FrameIndex) { if (FrameIndexSDNode *FIN = dyn_cast(Addr)) { R1 = CurDAG->getTargetFrameIndex(FIN->getIndex(), MVT::i64); R2 = CurDAG->getTargetConstant(0, MVT::i64); } else { R1 = Addr; R2 = CurDAG->getTargetConstant(0, MVT::i64); } } else if (Addr.getOpcode() == ISD::ADD) { R1 = Addr.getOperand(0); R2 = Addr.getOperand(1); } else { R1 = Addr; R2 = CurDAG->getTargetConstant(0, MVT::i64); } return true; } SDNode *AMDGPUDAGToDAGISel::Select(SDNode *N) { unsigned int Opc = N->getOpcode(); if (N->isMachineOpcode()) { return NULL; // Already selected. } switch (Opc) { default: break; case ISD::BUILD_VECTOR: { const AMDGPUSubtarget &ST = TM.getSubtarget(); if (ST.getGeneration() > AMDGPUSubtarget::NORTHERN_ISLANDS) { break; } // BUILD_VECTOR is usually lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG // that adds a 128 bits reg copy when going through TwoAddressInstructions // pass. We want to avoid 128 bits copies as much as possible because they // can't be bundled by our scheduler. SDValue RegSeqArgs[9] = { CurDAG->getTargetConstant(AMDGPU::R600_Reg128RegClassID, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub2, MVT::i32), SDValue(), CurDAG->getTargetConstant(AMDGPU::sub3, MVT::i32) }; bool IsRegSeq = true; for (unsigned i = 0; i < N->getNumOperands(); i++) { if (dyn_cast(N->getOperand(i))) { IsRegSeq = false; break; } RegSeqArgs[2 * i + 1] = N->getOperand(i); } if (!IsRegSeq) break; return CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs, 2 * N->getNumOperands() + 1); } case ISD::BUILD_PAIR: { SDValue RC, SubReg0, SubReg1; const AMDGPUSubtarget &ST = TM.getSubtarget(); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) { break; } if (N->getValueType(0) == MVT::i128) { RC = CurDAG->getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, MVT::i32); } else if (N->getValueType(0) == MVT::i64) { RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, MVT::i32); SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, MVT::i32); SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, MVT::i32); } else { llvm_unreachable("Unhandled value type for BUILD_PAIR"); } const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, N->getOperand(1), SubReg1 }; return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SDLoc(N), N->getValueType(0), Ops); } case ISD::ConstantFP: case ISD::Constant: { const AMDGPUSubtarget &ST = TM.getSubtarget(); // XXX: Custom immediate lowering not implemented yet. Instead we use // pseudo instructions defined in SIInstructions.td if (ST.getGeneration() > AMDGPUSubtarget::NORTHERN_ISLANDS) { break; } const R600InstrInfo *TII = static_cast(TM.getInstrInfo()); uint64_t ImmValue = 0; unsigned ImmReg = AMDGPU::ALU_LITERAL_X; if (N->getOpcode() == ISD::ConstantFP) { // XXX: 64-bit Immediates not supported yet assert(N->getValueType(0) != MVT::f64); ConstantFPSDNode *C = dyn_cast(N); APFloat Value = C->getValueAPF(); float FloatValue = Value.convertToFloat(); if (FloatValue == 0.0) { ImmReg = AMDGPU::ZERO; } else if (FloatValue == 0.5) { ImmReg = AMDGPU::HALF; } else if (FloatValue == 1.0) { ImmReg = AMDGPU::ONE; } else { ImmValue = Value.bitcastToAPInt().getZExtValue(); } } else { // XXX: 64-bit Immediates not supported yet assert(N->getValueType(0) != MVT::i64); ConstantSDNode *C = dyn_cast(N); if (C->getZExtValue() == 0) { ImmReg = AMDGPU::ZERO; } else if (C->getZExtValue() == 1) { ImmReg = AMDGPU::ONE_INT; } else { ImmValue = C->getZExtValue(); } } for (SDNode::use_iterator Use = N->use_begin(), Next = llvm::next(Use); Use != SDNode::use_end(); Use = Next) { Next = llvm::next(Use); std::vector Ops; for (unsigned i = 0; i < Use->getNumOperands(); ++i) { Ops.push_back(Use->getOperand(i)); } if (!Use->isMachineOpcode()) { if (ImmReg == AMDGPU::ALU_LITERAL_X) { // We can only use literal constants (e.g. AMDGPU::ZERO, // AMDGPU::ONE, etc) in machine opcodes. continue; } } else { if (!TII->isALUInstr(Use->getMachineOpcode()) || (TII->get(Use->getMachineOpcode()).TSFlags & R600_InstFlag::VECTOR)) { continue; } int ImmIdx = TII->getOperandIdx(Use->getMachineOpcode(), R600Operands::IMM); assert(ImmIdx != -1); // subtract one from ImmIdx, because the DST operand is usually index // 0 for MachineInstrs, but we have no DST in the Ops vector. ImmIdx--; // Check that we aren't already using an immediate. // XXX: It's possible for an instruction to have more than one // immediate operand, but this is not supported yet. if (ImmReg == AMDGPU::ALU_LITERAL_X) { ConstantSDNode *C = dyn_cast(Use->getOperand(ImmIdx)); assert(C); if (C->getZExtValue() != 0) { // This instruction is already using an immediate. continue; } // Set the immediate value Ops[ImmIdx] = CurDAG->getTargetConstant(ImmValue, MVT::i32); } } // Set the immediate register Ops[Use.getOperandNo()] = CurDAG->getRegister(ImmReg, MVT::i32); CurDAG->UpdateNodeOperands(*Use, Ops.data(), Use->getNumOperands()); } break; } } SDNode *Result = SelectCode(N); // Fold operands of selected node const AMDGPUSubtarget &ST = TM.getSubtarget(); if (ST.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) { const R600InstrInfo *TII = static_cast(TM.getInstrInfo()); if (Result && Result->isMachineOpcode() && Result->getMachineOpcode() == AMDGPU::DOT_4) { bool IsModified = false; do { std::vector Ops; for(SDNode::op_iterator I = Result->op_begin(), E = Result->op_end(); I != E; ++I) Ops.push_back(*I); IsModified = FoldDotOperands(Result->getMachineOpcode(), TII, Ops); if (IsModified) { Result = CurDAG->UpdateNodeOperands(Result, Ops.data(), Ops.size()); } } while (IsModified); } if (Result && Result->isMachineOpcode() && !(TII->get(Result->getMachineOpcode()).TSFlags & R600_InstFlag::VECTOR) && TII->isALUInstr(Result->getMachineOpcode())) { // Fold FNEG/FABS/CONST_ADDRESS // TODO: Isel can generate multiple MachineInst, we need to recursively // parse Result bool IsModified = false; do { std::vector Ops; for(SDNode::op_iterator I = Result->op_begin(), E = Result->op_end(); I != E; ++I) Ops.push_back(*I); IsModified = FoldOperands(Result->getMachineOpcode(), TII, Ops); if (IsModified) { Result = CurDAG->UpdateNodeOperands(Result, Ops.data(), Ops.size()); } } while (IsModified); // If node has a single use which is CLAMP_R600, folds it if (Result->hasOneUse() && Result->isMachineOpcode()) { SDNode *PotentialClamp = *Result->use_begin(); if (PotentialClamp->isMachineOpcode() && PotentialClamp->getMachineOpcode() == AMDGPU::CLAMP_R600) { unsigned ClampIdx = TII->getOperandIdx(Result->getMachineOpcode(), R600Operands::CLAMP); std::vector Ops; unsigned NumOp = Result->getNumOperands(); for (unsigned i = 0; i < NumOp; ++i) { Ops.push_back(Result->getOperand(i)); } Ops[ClampIdx - 1] = CurDAG->getTargetConstant(1, MVT::i32); Result = CurDAG->SelectNodeTo(PotentialClamp, Result->getMachineOpcode(), PotentialClamp->getVTList(), Ops.data(), NumOp); } } } } return Result; } bool AMDGPUDAGToDAGISel::FoldOperand(SDValue &Src, SDValue &Sel, SDValue &Neg, SDValue &Abs, const R600InstrInfo *TII, std::vector Consts) { switch (Src.getOpcode()) { case AMDGPUISD::CONST_ADDRESS: { SDValue CstOffset; if (Src.getValueType().isVector() || !SelectGlobalValueConstantOffset(Src.getOperand(0), CstOffset)) return false; ConstantSDNode *Cst = dyn_cast(CstOffset); Consts.push_back(Cst->getZExtValue()); if (!TII->fitsConstReadLimitations(Consts)) return false; Src = CurDAG->getRegister(AMDGPU::ALU_CONST, MVT::f32); Sel = CstOffset; return true; } case ISD::FNEG: Src = Src.getOperand(0); Neg = CurDAG->getTargetConstant(1, MVT::i32); return true; case ISD::FABS: if (!Abs.getNode()) return false; Src = Src.getOperand(0); Abs = CurDAG->getTargetConstant(1, MVT::i32); return true; case ISD::BITCAST: Src = Src.getOperand(0); return true; default: return false; } } bool AMDGPUDAGToDAGISel::FoldOperands(unsigned Opcode, const R600InstrInfo *TII, std::vector &Ops) { int OperandIdx[] = { TII->getOperandIdx(Opcode, R600Operands::SRC0), TII->getOperandIdx(Opcode, R600Operands::SRC1), TII->getOperandIdx(Opcode, R600Operands::SRC2) }; int SelIdx[] = { TII->getOperandIdx(Opcode, R600Operands::SRC0_SEL), TII->getOperandIdx(Opcode, R600Operands::SRC1_SEL), TII->getOperandIdx(Opcode, R600Operands::SRC2_SEL) }; int NegIdx[] = { TII->getOperandIdx(Opcode, R600Operands::SRC0_NEG), TII->getOperandIdx(Opcode, R600Operands::SRC1_NEG), TII->getOperandIdx(Opcode, R600Operands::SRC2_NEG) }; int AbsIdx[] = { TII->getOperandIdx(Opcode, R600Operands::SRC0_ABS), TII->getOperandIdx(Opcode, R600Operands::SRC1_ABS), -1 }; // Gather constants values std::vector Consts; for (unsigned j = 0; j < 3; j++) { int SrcIdx = OperandIdx[j]; if (SrcIdx < 0) break; if (RegisterSDNode *Reg = dyn_cast(Ops[SrcIdx - 1])) { if (Reg->getReg() == AMDGPU::ALU_CONST) { ConstantSDNode *Cst = dyn_cast(Ops[SelIdx[j] - 1]); Consts.push_back(Cst->getZExtValue()); } } } for (unsigned i = 0; i < 3; i++) { if (OperandIdx[i] < 0) return false; SDValue &Src = Ops[OperandIdx[i] - 1]; SDValue &Sel = Ops[SelIdx[i] - 1]; SDValue &Neg = Ops[NegIdx[i] - 1]; SDValue FakeAbs; SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs; if (FoldOperand(Src, Sel, Neg, Abs, TII, Consts)) return true; } return false; } bool AMDGPUDAGToDAGISel::FoldDotOperands(unsigned Opcode, const R600InstrInfo *TII, std::vector &Ops) { int OperandIdx[] = { TII->getOperandIdx(Opcode, R600Operands::SRC0_X), TII->getOperandIdx(Opcode, R600Operands::SRC0_Y), TII->getOperandIdx(Opcode, R600Operands::SRC0_Z), TII->getOperandIdx(Opcode, R600Operands::SRC0_W), TII->getOperandIdx(Opcode, R600Operands::SRC1_X), TII->getOperandIdx(Opcode, R600Operands::SRC1_Y), TII->getOperandIdx(Opcode, R600Operands::SRC1_Z), TII->getOperandIdx(Opcode, R600Operands::SRC1_W) }; int SelIdx[] = { TII->getOperandIdx(Opcode, R600Operands::SRC0_SEL_X), TII->getOperandIdx(Opcode, R600Operands::SRC0_SEL_Y), TII->getOperandIdx(Opcode, R600Operands::SRC0_SEL_Z), TII->getOperandIdx(Opcode, R600Operands::SRC0_SEL_W), TII->getOperandIdx(Opcode, R600Operands::SRC1_SEL_X), TII->getOperandIdx(Opcode, R600Operands::SRC1_SEL_Y), TII->getOperandIdx(Opcode, R600Operands::SRC1_SEL_Z), TII->getOperandIdx(Opcode, R600Operands::SRC1_SEL_W) }; int NegIdx[] = { TII->getOperandIdx(Opcode, R600Operands::SRC0_NEG_X), TII->getOperandIdx(Opcode, R600Operands::SRC0_NEG_Y), TII->getOperandIdx(Opcode, R600Operands::SRC0_NEG_Z), TII->getOperandIdx(Opcode, R600Operands::SRC0_NEG_W), TII->getOperandIdx(Opcode, R600Operands::SRC1_NEG_X), TII->getOperandIdx(Opcode, R600Operands::SRC1_NEG_Y), TII->getOperandIdx(Opcode, R600Operands::SRC1_NEG_Z), TII->getOperandIdx(Opcode, R600Operands::SRC1_NEG_W) }; int AbsIdx[] = { TII->getOperandIdx(Opcode, R600Operands::SRC0_ABS_X), TII->getOperandIdx(Opcode, R600Operands::SRC0_ABS_Y), TII->getOperandIdx(Opcode, R600Operands::SRC0_ABS_Z), TII->getOperandIdx(Opcode, R600Operands::SRC0_ABS_W), TII->getOperandIdx(Opcode, R600Operands::SRC1_ABS_X), TII->getOperandIdx(Opcode, R600Operands::SRC1_ABS_Y), TII->getOperandIdx(Opcode, R600Operands::SRC1_ABS_Z), TII->getOperandIdx(Opcode, R600Operands::SRC1_ABS_W) }; // Gather constants values std::vector Consts; for (unsigned j = 0; j < 8; j++) { int SrcIdx = OperandIdx[j]; if (SrcIdx < 0) break; if (RegisterSDNode *Reg = dyn_cast(Ops[SrcIdx - 1])) { if (Reg->getReg() == AMDGPU::ALU_CONST) { ConstantSDNode *Cst = dyn_cast(Ops[SelIdx[j] - 1]); Consts.push_back(Cst->getZExtValue()); } } } for (unsigned i = 0; i < 8; i++) { if (OperandIdx[i] < 0) return false; SDValue &Src = Ops[OperandIdx[i] - 1]; SDValue &Sel = Ops[SelIdx[i] - 1]; SDValue &Neg = Ops[NegIdx[i] - 1]; SDValue &Abs = Ops[AbsIdx[i] - 1]; if (FoldOperand(Src, Sel, Neg, Abs, TII, Consts)) return true; } return false; } bool AMDGPUDAGToDAGISel::checkType(const Value *ptr, unsigned int addrspace) { if (!ptr) { return false; } Type *ptrType = ptr->getType(); return dyn_cast(ptrType)->getAddressSpace() == addrspace; } bool AMDGPUDAGToDAGISel::isGlobalStore(const StoreSDNode *N) { return checkType(N->getSrcValue(), AMDGPUAS::GLOBAL_ADDRESS); } bool AMDGPUDAGToDAGISel::isPrivateStore(const StoreSDNode *N) { return (!checkType(N->getSrcValue(), AMDGPUAS::LOCAL_ADDRESS) && !checkType(N->getSrcValue(), AMDGPUAS::GLOBAL_ADDRESS) && !checkType(N->getSrcValue(), AMDGPUAS::REGION_ADDRESS)); } bool AMDGPUDAGToDAGISel::isLocalStore(const StoreSDNode *N) { return checkType(N->getSrcValue(), AMDGPUAS::LOCAL_ADDRESS); } bool AMDGPUDAGToDAGISel::isRegionStore(const StoreSDNode *N) { return checkType(N->getSrcValue(), AMDGPUAS::REGION_ADDRESS); } bool AMDGPUDAGToDAGISel::isConstantLoad(const LoadSDNode *N, int cbID) const { if (checkType(N->getSrcValue(), AMDGPUAS::CONSTANT_ADDRESS)) { return true; } const DataLayout *DL = TM.getDataLayout(); MachineMemOperand *MMO = N->getMemOperand(); const Value *V = MMO->getValue(); const Value *BV = GetUnderlyingObject(V, DL, 0); if (MMO && MMO->getValue() && ((V && dyn_cast(V)) || (BV && dyn_cast( GetUnderlyingObject(MMO->getValue(), DL, 0))))) { return checkType(N->getSrcValue(), AMDGPUAS::PRIVATE_ADDRESS); } else { return false; } } bool AMDGPUDAGToDAGISel::isGlobalLoad(const LoadSDNode *N) const { return checkType(N->getSrcValue(), AMDGPUAS::GLOBAL_ADDRESS); } bool AMDGPUDAGToDAGISel::isParamLoad(const LoadSDNode *N) const { return checkType(N->getSrcValue(), AMDGPUAS::PARAM_I_ADDRESS); } bool AMDGPUDAGToDAGISel::isLocalLoad(const LoadSDNode *N) const { return checkType(N->getSrcValue(), AMDGPUAS::LOCAL_ADDRESS); } bool AMDGPUDAGToDAGISel::isRegionLoad(const LoadSDNode *N) const { return checkType(N->getSrcValue(), AMDGPUAS::REGION_ADDRESS); } bool AMDGPUDAGToDAGISel::isCPLoad(const LoadSDNode *N) const { MachineMemOperand *MMO = N->getMemOperand(); if (checkType(N->getSrcValue(), AMDGPUAS::PRIVATE_ADDRESS)) { if (MMO) { const Value *V = MMO->getValue(); const PseudoSourceValue *PSV = dyn_cast(V); if (PSV && PSV == PseudoSourceValue::getConstantPool()) { return true; } } } return false; } bool AMDGPUDAGToDAGISel::isPrivateLoad(const LoadSDNode *N) const { if (checkType(N->getSrcValue(), AMDGPUAS::PRIVATE_ADDRESS)) { // Check to make sure we are not a constant pool load or a constant load // that is marked as a private load if (isCPLoad(N) || isConstantLoad(N, -1)) { return false; } } if (!checkType(N->getSrcValue(), AMDGPUAS::LOCAL_ADDRESS) && !checkType(N->getSrcValue(), AMDGPUAS::GLOBAL_ADDRESS) && !checkType(N->getSrcValue(), AMDGPUAS::REGION_ADDRESS) && !checkType(N->getSrcValue(), AMDGPUAS::CONSTANT_ADDRESS) && !checkType(N->getSrcValue(), AMDGPUAS::PARAM_D_ADDRESS) && !checkType(N->getSrcValue(), AMDGPUAS::PARAM_I_ADDRESS)) { return true; } return false; } const char *AMDGPUDAGToDAGISel::getPassName() const { return "AMDGPU DAG->DAG Pattern Instruction Selection"; } #ifdef DEBUGTMP #undef INT64_C #endif #undef DEBUGTMP ///==== AMDGPU Functions ====/// bool AMDGPUDAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr) { if (ConstantSDNode *Cst = dyn_cast(Addr)) { IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, true); return true; } return false; } bool AMDGPUDAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr, SDValue& BaseReg, SDValue &Offset) { if (!dyn_cast(Addr)) { BaseReg = Addr; Offset = CurDAG->getIntPtrConstant(0, true); return true; } return false; } bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset) { ConstantSDNode * IMMOffset; if (Addr.getOpcode() == ISD::ADD && (IMMOffset = dyn_cast(Addr.getOperand(1))) && isInt<16>(IMMOffset->getZExtValue())) { Base = Addr.getOperand(0); Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), MVT::i32); return true; // If the pointer address is constant, we can move it to the offset field. } else if ((IMMOffset = dyn_cast(Addr)) && isInt<16>(IMMOffset->getZExtValue())) { Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(CurDAG->getEntryNode()), AMDGPU::ZERO, MVT::i32); Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), MVT::i32); return true; } // Default case, no offset Base = Addr; Offset = CurDAG->getTargetConstant(0, MVT::i32); return true; } bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset) { ConstantSDNode *C; if ((C = dyn_cast(Addr))) { Base = CurDAG->getRegister(AMDGPU::INDIRECT_BASE_ADDR, MVT::i32); Offset = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32); } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && (C = dyn_cast(Addr.getOperand(1)))) { Base = Addr.getOperand(0); Offset = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32); } else { Base = Addr; Offset = CurDAG->getTargetConstant(0, MVT::i32); } return true; } void AMDGPUDAGToDAGISel::PostprocessISelDAG() { if (Subtarget.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS) { return; } // Go over all selected nodes and try to fold them a bit more const AMDGPUTargetLowering& Lowering = (*(const AMDGPUTargetLowering*)getTargetLowering()); for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), E = CurDAG->allnodes_end(); I != E; ++I) { SDNode *Node = I; switch (Node->getOpcode()) { // Fix the register class in copy to CopyToReg nodes - ISel will always // use SReg classes for 64-bit copies, but this is not always what we want. case ISD::CopyToReg: { unsigned Reg = cast(Node->getOperand(1))->getReg(); SDValue Val = Node->getOperand(2); const TargetRegisterClass *RC = RegInfo->getRegClass(Reg); if (RC != &AMDGPU::SReg_64RegClass) { continue; } if (!Val.getNode()->isMachineOpcode() || Val.getNode()->getMachineOpcode() == AMDGPU::IMPLICIT_DEF) { continue; } const MCInstrDesc Desc = TM.getInstrInfo()->get(Val.getNode()->getMachineOpcode()); const TargetRegisterInfo *TRI = TM.getRegisterInfo(); RegInfo->setRegClass(Reg, TRI->getRegClass(Desc.OpInfo[0].RegClass)); continue; } } MachineSDNode *MachineNode = dyn_cast(I); if (!MachineNode) continue; SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); if (ResNode != Node) { ReplaceUses(Node, ResNode); } } }