//===-- SILowerControlFlow.cpp - Use predicates for control flow ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief This pass lowers the pseudo control flow instructions to real /// machine instructions. /// /// All control flow is handled using predicated instructions and /// a predicate stack. Each Scalar ALU controls the operations of 64 Vector /// ALUs. The Scalar ALU can update the predicate for any of the Vector ALUs /// by writting to the 64-bit EXEC register (each bit corresponds to a /// single vector ALU). Typically, for predicates, a vector ALU will write /// to its bit of the VCC register (like EXEC VCC is 64-bits, one for each /// Vector ALU) and then the ScalarALU will AND the VCC register with the /// EXEC to update the predicates. /// /// For example: /// %VCC = V_CMP_GT_F32 %VGPR1, %VGPR2 /// %SGPR0 = SI_IF %VCC /// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0 /// %SGPR0 = SI_ELSE %SGPR0 /// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR0 /// SI_END_CF %SGPR0 /// /// becomes: /// /// %SGPR0 = S_AND_SAVEEXEC_B64 %VCC // Save and update the exec mask /// %SGPR0 = S_XOR_B64 %SGPR0, %EXEC // Clear live bits from saved exec mask /// S_CBRANCH_EXECZ label0 // This instruction is an optional /// // optimization which allows us to /// // branch if all the bits of /// // EXEC are zero. /// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0 // Do the IF block of the branch /// /// label0: /// %SGPR0 = S_OR_SAVEEXEC_B64 %EXEC // Restore the exec mask for the Then block /// %EXEC = S_XOR_B64 %SGPR0, %EXEC // Clear live bits from saved exec mask /// S_BRANCH_EXECZ label1 // Use our branch optimization /// // instruction again. /// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR // Do the THEN block /// label1: /// %EXEC = S_OR_B64 %EXEC, %SGPR0 // Re-enable saved exec mask bits //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "SIInstrInfo.h" #include "SIMachineFunctionInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/Constants.h" using namespace llvm; namespace { class SILowerControlFlowPass : public MachineFunctionPass { private: static const unsigned SkipThreshold = 12; static char ID; const SIRegisterInfo *TRI; const SIInstrInfo *TII; bool shouldSkip(MachineBasicBlock *From, MachineBasicBlock *To); void Skip(MachineInstr &From, MachineOperand &To); void SkipIfDead(MachineInstr &MI); void If(MachineInstr &MI); void Else(MachineInstr &MI); void Break(MachineInstr &MI); void IfBreak(MachineInstr &MI); void ElseBreak(MachineInstr &MI); void Loop(MachineInstr &MI); void EndCf(MachineInstr &MI); void Kill(MachineInstr &MI); void Branch(MachineInstr &MI); void InitM0ForLDS(MachineBasicBlock::iterator MI); void LoadM0(MachineInstr &MI, MachineInstr *MovRel); void IndirectSrc(MachineInstr &MI); void IndirectDst(MachineInstr &MI); public: SILowerControlFlowPass(TargetMachine &tm) : MachineFunctionPass(ID), TRI(nullptr), TII(nullptr) { } bool runOnMachineFunction(MachineFunction &MF) override; const char *getPassName() const override { return "SI Lower control flow instructions"; } }; } // End anonymous namespace char SILowerControlFlowPass::ID = 0; FunctionPass *llvm::createSILowerControlFlowPass(TargetMachine &tm) { return new SILowerControlFlowPass(tm); } bool SILowerControlFlowPass::shouldSkip(MachineBasicBlock *From, MachineBasicBlock *To) { unsigned NumInstr = 0; for (MachineBasicBlock *MBB = From; MBB != To && !MBB->succ_empty(); MBB = *MBB->succ_begin()) { for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); NumInstr < SkipThreshold && I != E; ++I) { if (I->isBundle() || !I->isBundled()) if (++NumInstr >= SkipThreshold) return true; } } return false; } void SILowerControlFlowPass::Skip(MachineInstr &From, MachineOperand &To) { if (!shouldSkip(*From.getParent()->succ_begin(), To.getMBB())) return; DebugLoc DL = From.getDebugLoc(); BuildMI(*From.getParent(), &From, DL, TII->get(AMDGPU::S_CBRANCH_EXECZ)) .addOperand(To) .addReg(AMDGPU::EXEC); } void SILowerControlFlowPass::SkipIfDead(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); if (MBB.getParent()->getInfo()->ShaderType != ShaderType::PIXEL || !shouldSkip(&MBB, &MBB.getParent()->back())) return; MachineBasicBlock::iterator Insert = &MI; ++Insert; // If the exec mask is non-zero, skip the next two instructions BuildMI(MBB, Insert, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) .addImm(3) .addReg(AMDGPU::EXEC); // Exec mask is zero: Export to NULL target... BuildMI(MBB, Insert, DL, TII->get(AMDGPU::EXP)) .addImm(0) .addImm(0x09) // V_008DFC_SQ_EXP_NULL .addImm(0) .addImm(1) .addImm(1) .addReg(AMDGPU::VGPR0) .addReg(AMDGPU::VGPR0) .addReg(AMDGPU::VGPR0) .addReg(AMDGPU::VGPR0); // ... and terminate wavefront BuildMI(MBB, Insert, DL, TII->get(AMDGPU::S_ENDPGM)); } void SILowerControlFlowPass::If(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Reg = MI.getOperand(0).getReg(); unsigned Vcc = MI.getOperand(1).getReg(); BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), Reg) .addReg(Vcc); BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_XOR_B64), Reg) .addReg(AMDGPU::EXEC) .addReg(Reg); Skip(MI, MI.getOperand(2)); MI.eraseFromParent(); } void SILowerControlFlowPass::Else(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Dst = MI.getOperand(0).getReg(); unsigned Src = MI.getOperand(1).getReg(); BuildMI(MBB, MBB.getFirstNonPHI(), DL, TII->get(AMDGPU::S_OR_SAVEEXEC_B64), Dst) .addReg(Src); // Saved EXEC BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC) .addReg(AMDGPU::EXEC) .addReg(Dst); Skip(MI, MI.getOperand(2)); MI.eraseFromParent(); } void SILowerControlFlowPass::Break(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Dst = MI.getOperand(0).getReg(); unsigned Src = MI.getOperand(1).getReg(); BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst) .addReg(AMDGPU::EXEC) .addReg(Src); MI.eraseFromParent(); } void SILowerControlFlowPass::IfBreak(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Dst = MI.getOperand(0).getReg(); unsigned Vcc = MI.getOperand(1).getReg(); unsigned Src = MI.getOperand(2).getReg(); BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst) .addReg(Vcc) .addReg(Src); MI.eraseFromParent(); } void SILowerControlFlowPass::ElseBreak(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Dst = MI.getOperand(0).getReg(); unsigned Saved = MI.getOperand(1).getReg(); unsigned Src = MI.getOperand(2).getReg(); BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst) .addReg(Saved) .addReg(Src); MI.eraseFromParent(); } void SILowerControlFlowPass::Loop(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Src = MI.getOperand(0).getReg(); BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_ANDN2_B64), AMDGPU::EXEC) .addReg(AMDGPU::EXEC) .addReg(Src); BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) .addOperand(MI.getOperand(1)) .addReg(AMDGPU::EXEC); MI.eraseFromParent(); } void SILowerControlFlowPass::EndCf(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Reg = MI.getOperand(0).getReg(); BuildMI(MBB, MBB.getFirstNonPHI(), DL, TII->get(AMDGPU::S_OR_B64), AMDGPU::EXEC) .addReg(AMDGPU::EXEC) .addReg(Reg); MI.eraseFromParent(); } void SILowerControlFlowPass::Branch(MachineInstr &MI) { if (MI.getOperand(0).getMBB() == MI.getParent()->getNextNode()) MI.eraseFromParent(); // If these aren't equal, this is probably an infinite loop. } void SILowerControlFlowPass::Kill(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); const MachineOperand &Op = MI.getOperand(0); // Kill is only allowed in pixel / geometry shaders assert(MBB.getParent()->getInfo()->ShaderType == ShaderType::PIXEL || MBB.getParent()->getInfo()->ShaderType == ShaderType::GEOMETRY); // Clear this thread from the exec mask if the operand is negative if ((Op.isImm() || Op.isFPImm())) { // Constant operand: Set exec mask to 0 or do nothing if (Op.isImm() ? (Op.getImm() & 0x80000000) : Op.getFPImm()->isNegative()) { BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC) .addImm(0); } } else { BuildMI(MBB, &MI, DL, TII->get(AMDGPU::V_CMPX_LE_F32_e32), AMDGPU::VCC) .addImm(0) .addOperand(Op); } MI.eraseFromParent(); } /// The m0 register stores the maximum allowable address for LDS reads and /// writes. Its value must be at least the size in bytes of LDS allocated by /// the shader. For simplicity, we set it to the maximum possible value. void SILowerControlFlowPass::InitM0ForLDS(MachineBasicBlock::iterator MI) { BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0).addImm(0xffffffff); } void SILowerControlFlowPass::LoadM0(MachineInstr &MI, MachineInstr *MovRel) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); MachineBasicBlock::iterator I = MI; unsigned Save = MI.getOperand(1).getReg(); unsigned Idx = MI.getOperand(3).getReg(); if (AMDGPU::SReg_32RegClass.contains(Idx)) { BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) .addReg(Idx); MBB.insert(I, MovRel); } else { assert(AMDGPU::SReg_64RegClass.contains(Save)); assert(AMDGPU::VReg_32RegClass.contains(Idx)); // Save the EXEC mask BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B64), Save) .addReg(AMDGPU::EXEC); // Read the next variant into VCC (lower 32 bits) <- also loop target BuildMI(MBB, &MI, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), AMDGPU::VCC_LO) .addReg(Idx); // Move index from VCC into M0 BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) .addReg(AMDGPU::VCC_LO); // Compare the just read M0 value to all possible Idx values BuildMI(MBB, &MI, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e32), AMDGPU::VCC) .addReg(AMDGPU::M0) .addReg(Idx); // Update EXEC, save the original EXEC value to VCC BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), AMDGPU::VCC) .addReg(AMDGPU::VCC); // Do the actual move MBB.insert(I, MovRel); // Update EXEC, switch all done bits to 0 and all todo bits to 1 BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC) .addReg(AMDGPU::EXEC) .addReg(AMDGPU::VCC); // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) .addImm(-7) .addReg(AMDGPU::EXEC); // Restore EXEC BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC) .addReg(Save); } // FIXME: Are there any values other than the LDS address clamp that need to // be stored in the m0 register and may be live for more than a few // instructions? If so, we should save the m0 register at the beginning // of this function and restore it here. // FIXME: Add support for LDS direct loads. InitM0ForLDS(&MI); MI.eraseFromParent(); } void SILowerControlFlowPass::IndirectSrc(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Dst = MI.getOperand(0).getReg(); unsigned Vec = MI.getOperand(2).getReg(); unsigned Off = MI.getOperand(4).getImm(); unsigned SubReg = TRI->getSubReg(Vec, AMDGPU::sub0); if (!SubReg) SubReg = Vec; MachineInstr *MovRel = BuildMI(*MBB.getParent(), DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) .addReg(SubReg + Off) .addReg(AMDGPU::M0, RegState::Implicit) .addReg(Vec, RegState::Implicit); LoadM0(MI, MovRel); } void SILowerControlFlowPass::IndirectDst(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Dst = MI.getOperand(0).getReg(); unsigned Off = MI.getOperand(4).getImm(); unsigned Val = MI.getOperand(5).getReg(); unsigned SubReg = TRI->getSubReg(Dst, AMDGPU::sub0); if (!SubReg) SubReg = Dst; MachineInstr *MovRel = BuildMI(*MBB.getParent(), DL, TII->get(AMDGPU::V_MOVRELD_B32_e32)) .addReg(SubReg + Off, RegState::Define) .addReg(Val) .addReg(AMDGPU::M0, RegState::Implicit) .addReg(Dst, RegState::Implicit); LoadM0(MI, MovRel); } bool SILowerControlFlowPass::runOnMachineFunction(MachineFunction &MF) { TII = static_cast(MF.getTarget().getInstrInfo()); TRI = static_cast(MF.getTarget().getRegisterInfo()); SIMachineFunctionInfo *MFI = MF.getInfo(); bool HaveKill = false; bool NeedM0 = false; bool NeedWQM = false; unsigned Depth = 0; for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; ++BI) { MachineBasicBlock &MBB = *BI; MachineBasicBlock::iterator I, Next; for (I = MBB.begin(); I != MBB.end(); I = Next) { Next = std::next(I); MachineInstr &MI = *I; if (TII->isDS(MI.getOpcode())) { NeedM0 = true; NeedWQM = true; } switch (MI.getOpcode()) { default: break; case AMDGPU::SI_IF: ++Depth; If(MI); break; case AMDGPU::SI_ELSE: Else(MI); break; case AMDGPU::SI_BREAK: Break(MI); break; case AMDGPU::SI_IF_BREAK: IfBreak(MI); break; case AMDGPU::SI_ELSE_BREAK: ElseBreak(MI); break; case AMDGPU::SI_LOOP: ++Depth; Loop(MI); break; case AMDGPU::SI_END_CF: if (--Depth == 0 && HaveKill) { SkipIfDead(MI); HaveKill = false; } EndCf(MI); break; case AMDGPU::SI_KILL: if (Depth == 0) SkipIfDead(MI); else HaveKill = true; Kill(MI); break; case AMDGPU::S_BRANCH: Branch(MI); break; case AMDGPU::SI_INDIRECT_SRC: IndirectSrc(MI); break; case AMDGPU::SI_INDIRECT_DST_V1: case AMDGPU::SI_INDIRECT_DST_V2: case AMDGPU::SI_INDIRECT_DST_V4: case AMDGPU::SI_INDIRECT_DST_V8: case AMDGPU::SI_INDIRECT_DST_V16: IndirectDst(MI); break; case AMDGPU::V_INTERP_P1_F32: case AMDGPU::V_INTERP_P2_F32: case AMDGPU::V_INTERP_MOV_F32: NeedWQM = true; break; } } } if (NeedM0) { MachineBasicBlock &MBB = MF.front(); // Initialize M0 to a value that won't cause LDS access to be discarded // due to offset clamping InitM0ForLDS(MBB.getFirstNonPHI()); } if (NeedWQM && MFI->ShaderType == ShaderType::PIXEL) { MachineBasicBlock &MBB = MF.front(); BuildMI(MBB, MBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WQM_B64), AMDGPU::EXEC).addReg(AMDGPU::EXEC); } return true; }