//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the Sparc instructions in TableGen format. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Instruction format superclass //===----------------------------------------------------------------------===// include "SparcInstrFormats.td" //===----------------------------------------------------------------------===// // Feature predicates. //===----------------------------------------------------------------------===// // True when generating 32-bit code. def Is32Bit : Predicate<"!Subtarget.is64Bit()">; // True when generating 64-bit code. This also implies HasV9. def Is64Bit : Predicate<"Subtarget.is64Bit()">; // HasV9 - This predicate is true when the target processor supports V9 // instructions. Note that the machine may be running in 32-bit mode. def HasV9 : Predicate<"Subtarget.isV9()">, AssemblerPredicate<"FeatureV9">; // HasNoV9 - This predicate is true when the target doesn't have V9 // instructions. Use of this is just a hack for the isel not having proper // costs for V8 instructions that are more expensive than their V9 ones. def HasNoV9 : Predicate<"!Subtarget.isV9()">; // HasVIS - This is true when the target processor has VIS extensions. def HasVIS : Predicate<"Subtarget.isVIS()">; // HasHardQuad - This is true when the target processor supports quad floating // point instructions. def HasHardQuad : Predicate<"Subtarget.hasHardQuad()">; // UseDeprecatedInsts - This predicate is true when the target processor is a // V8, or when it is V9 but the V8 deprecated instructions are efficient enough // to use when appropriate. In either of these cases, the instruction selector // will pick deprecated instructions. def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">; //===----------------------------------------------------------------------===// // Instruction Pattern Stuff //===----------------------------------------------------------------------===// def simm11 : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>; def simm13 : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>; def LO10 : SDNodeXFormgetTargetConstant((unsigned)N->getZExtValue() & 1023, MVT::i32); }]>; def HI22 : SDNodeXFormgetTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32); }]>; def SETHIimm : PatLeaf<(imm), [{ return isShiftedUInt<22, 10>(N->getZExtValue()); }], HI22>; // Addressing modes. def ADDRrr : ComplexPattern; def ADDRri : ComplexPattern; // Address operands def SparcMEMrrAsmOperand : AsmOperandClass { let Name = "MEMrr"; let ParserMethod = "parseMEMOperand"; } def SparcMEMriAsmOperand : AsmOperandClass { let Name = "MEMri"; let ParserMethod = "parseMEMOperand"; } def MEMrr : Operand { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops ptr_rc, ptr_rc); let ParserMatchClass = SparcMEMrrAsmOperand; } def MEMri : Operand { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops ptr_rc, i32imm); let ParserMatchClass = SparcMEMriAsmOperand; } def TLSSym : Operand; // Branch targets have OtherVT type. def brtarget : Operand { let EncoderMethod = "getBranchTargetOpValue"; } def bprtarget : Operand { let EncoderMethod = "getBranchPredTargetOpValue"; } def calltarget : Operand { let EncoderMethod = "getCallTargetOpValue"; let DecoderMethod = "DecodeCall"; } def simm13Op : Operand { let DecoderMethod = "DecodeSIMM13"; } // Operand for printing out a condition code. let PrintMethod = "printCCOperand" in def CCOp : Operand; def SDTSPcmpicc : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>; def SDTSPcmpfcc : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>; def SDTSPbrcc : SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>; def SDTSPselectcc : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>; def SDTSPFTOI : SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>; def SDTSPITOF : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>; def SDTSPFTOX : SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>; def SDTSPXTOF : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>; def SDTSPtlsadd : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; def SDTSPtlsld : SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>; def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>; def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>; def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>; def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>; def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>; def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>; def SPftox : SDNode<"SPISD::FTOX", SDTSPFTOX>; def SPxtof : SDNode<"SPISD::XTOF", SDTSPXTOF>; def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>; def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>; def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>; // These are target-independent nodes, but have target-specific formats. def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>; def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>; def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart, [SDNPHasChain, SDNPOutGlue]>; def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; def SDT_SPCall : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>; def call : SDNode<"SPISD::CALL", SDT_SPCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def SDT_SPRet : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; def retflag : SDNode<"SPISD::RET_FLAG", SDT_SPRet, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def flushw : SDNode<"SPISD::FLUSHW", SDTNone, [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>; def tlsadd : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>; def tlsld : SDNode<"SPISD::TLS_LD", SDTSPtlsld>; def tlscall : SDNode<"SPISD::TLS_CALL", SDT_SPCall, [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; def getPCX : Operand { let PrintMethod = "printGetPCX"; } //===----------------------------------------------------------------------===// // SPARC Flag Conditions //===----------------------------------------------------------------------===// // Note that these values must be kept in sync with the CCOp::CondCode enum // values. class ICC_VAL : PatLeaf<(i32 N)>; def ICC_NE : ICC_VAL< 9>; // Not Equal def ICC_E : ICC_VAL< 1>; // Equal def ICC_G : ICC_VAL<10>; // Greater def ICC_LE : ICC_VAL< 2>; // Less or Equal def ICC_GE : ICC_VAL<11>; // Greater or Equal def ICC_L : ICC_VAL< 3>; // Less def ICC_GU : ICC_VAL<12>; // Greater Unsigned def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned def ICC_POS : ICC_VAL<14>; // Positive def ICC_NEG : ICC_VAL< 6>; // Negative def ICC_VC : ICC_VAL<15>; // Overflow Clear def ICC_VS : ICC_VAL< 7>; // Overflow Set class FCC_VAL : PatLeaf<(i32 N)>; def FCC_U : FCC_VAL<23>; // Unordered def FCC_G : FCC_VAL<22>; // Greater def FCC_UG : FCC_VAL<21>; // Unordered or Greater def FCC_L : FCC_VAL<20>; // Less def FCC_UL : FCC_VAL<19>; // Unordered or Less def FCC_LG : FCC_VAL<18>; // Less or Greater def FCC_NE : FCC_VAL<17>; // Not Equal def FCC_E : FCC_VAL<25>; // Equal def FCC_UE : FCC_VAL<24>; // Unordered or Equal def FCC_GE : FCC_VAL<25>; // Greater or Equal def FCC_UGE : FCC_VAL<26>; // Unordered or Greater or Equal def FCC_LE : FCC_VAL<27>; // Less or Equal def FCC_ULE : FCC_VAL<28>; // Unordered or Less or Equal def FCC_O : FCC_VAL<29>; // Ordered //===----------------------------------------------------------------------===// // Instruction Class Templates //===----------------------------------------------------------------------===// /// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot. multiclass F3_12 Op3Val, SDNode OpNode, RegisterClass RC, ValueType Ty, Operand immOp> { def rr : F3_1<2, Op3Val, (outs RC:$rd), (ins RC:$rs1, RC:$rs2), !strconcat(OpcStr, " $rs1, $rs2, $rd"), [(set Ty:$rd, (OpNode Ty:$rs1, Ty:$rs2))]>; def ri : F3_2<2, Op3Val, (outs RC:$rd), (ins RC:$rs1, immOp:$simm13), !strconcat(OpcStr, " $rs1, $simm13, $rd"), [(set Ty:$rd, (OpNode Ty:$rs1, (Ty simm13:$simm13)))]>; } /// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no /// pattern. multiclass F3_12np Op3Val> { def rr : F3_1<2, Op3Val, (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), !strconcat(OpcStr, " $rs1, $rs2, $rd"), []>; def ri : F3_2<2, Op3Val, (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), !strconcat(OpcStr, " $rs1, $simm13, $rd"), []>; } // Load multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot. multiclass Load Op3Val, SDPatternOperator OpNode, RegisterClass RC, ValueType Ty> { def rr : F3_1<3, Op3Val, (outs RC:$dst), (ins MEMrr:$addr), !strconcat(OpcStr, " [$addr], $dst"), [(set Ty:$dst, (OpNode ADDRrr:$addr))]>; def ri : F3_2<3, Op3Val, (outs RC:$dst), (ins MEMri:$addr), !strconcat(OpcStr, " [$addr], $dst"), [(set Ty:$dst, (OpNode ADDRri:$addr))]>; } // Store multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot. multiclass Store Op3Val, SDPatternOperator OpNode, RegisterClass RC, ValueType Ty> { def rr : F3_1<3, Op3Val, (outs), (ins MEMrr:$addr, RC:$rd), !strconcat(OpcStr, " $rd, [$addr]"), [(OpNode Ty:$rd, ADDRrr:$addr)]>; def ri : F3_2<3, Op3Val, (outs), (ins MEMri:$addr, RC:$rd), !strconcat(OpcStr, " $rd, [$addr]"), [(OpNode Ty:$rd, ADDRri:$addr)]>; } //===----------------------------------------------------------------------===// // Instructions //===----------------------------------------------------------------------===// // Pseudo instructions. class Pseudo pattern> : InstSP { let isCodeGenOnly = 1; let isPseudo = 1; } // GETPCX for PIC let Defs = [O7] in { def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >; } let Defs = [O6], Uses = [O6] in { def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt), "!ADJCALLSTACKDOWN $amt", [(callseq_start timm:$amt)]>; def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), "!ADJCALLSTACKUP $amt1", [(callseq_end timm:$amt1, timm:$amt2)]>; } let hasSideEffects = 1, mayStore = 1 in { let rd = 0, rs1 = 0, rs2 = 0 in def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins), "flushw", [(flushw)]>, Requires<[HasV9]>; let rd = 0, rs1 = 1, simm13 = 3 in def TA3 : F3_2<0b10, 0b111010, (outs), (ins), "ta 3", [(flushw)]>; } let isBarrier = 1, isTerminator = 1, rd = 0b1000, rs1 = 0, simm13 = 5 in def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>; let rd = 0 in def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22), "unimp $imm22", []>; // SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after // instruction selection into a branch sequence. This has to handle all // permutations of selection between i32/f32/f64 on ICC and FCC. // Expanded after instruction selection. let Uses = [ICC], usesCustomInserter = 1 in { def SELECT_CC_Int_ICC : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), "; SELECT_CC_Int_ICC PSEUDO!", [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>; def SELECT_CC_FP_ICC : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), "; SELECT_CC_FP_ICC PSEUDO!", [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>; def SELECT_CC_DFP_ICC : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), "; SELECT_CC_DFP_ICC PSEUDO!", [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>; def SELECT_CC_QFP_ICC : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond), "; SELECT_CC_QFP_ICC PSEUDO!", [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>; } let usesCustomInserter = 1, Uses = [FCC0] in { def SELECT_CC_Int_FCC : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), "; SELECT_CC_Int_FCC PSEUDO!", [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>; def SELECT_CC_FP_FCC : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), "; SELECT_CC_FP_FCC PSEUDO!", [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>; def SELECT_CC_DFP_FCC : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), "; SELECT_CC_DFP_FCC PSEUDO!", [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>; def SELECT_CC_QFP_FCC : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond), "; SELECT_CC_QFP_FCC PSEUDO!", [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>; } // JMPL Instruction. let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in { def JMPLrr: F3_1<2, 0b111000, (outs IntRegs:$dst), (ins MEMrr:$addr), "jmpl $addr, $dst", []>; def JMPLri: F3_2<2, 0b111000, (outs IntRegs:$dst), (ins MEMri:$addr), "jmpl $addr, $dst", []>; } // Section A.3 - Synthetic Instructions, p. 85 // special cases of JMPL: let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1, isCodeGenOnly = 1 in { let rd = 0, rs1 = 15 in def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val), "jmp %o7+$val", [(retflag simm13:$val)]>; let rd = 0, rs1 = 31 in def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val), "jmp %i7+$val", []>; } // Section B.1 - Load Integer Instructions, p. 90 let DecoderMethod = "DecodeLoadInt" in { defm LDSB : Load<"ldsb", 0b001001, sextloadi8, IntRegs, i32>; defm LDSH : Load<"ldsh", 0b001010, sextloadi16, IntRegs, i32>; defm LDUB : Load<"ldub", 0b000001, zextloadi8, IntRegs, i32>; defm LDUH : Load<"lduh", 0b000010, zextloadi16, IntRegs, i32>; defm LD : Load<"ld", 0b000000, load, IntRegs, i32>; } // Section B.2 - Load Floating-point Instructions, p. 92 let DecoderMethod = "DecodeLoadFP" in defm LDF : Load<"ld", 0b100000, load, FPRegs, f32>; let DecoderMethod = "DecodeLoadDFP" in defm LDDF : Load<"ldd", 0b100011, load, DFPRegs, f64>; let DecoderMethod = "DecodeLoadQFP" in defm LDQF : Load<"ldq", 0b100010, load, QFPRegs, f128>, Requires<[HasV9, HasHardQuad]>; // Section B.4 - Store Integer Instructions, p. 95 let DecoderMethod = "DecodeStoreInt" in { defm STB : Store<"stb", 0b000101, truncstorei8, IntRegs, i32>; defm STH : Store<"sth", 0b000110, truncstorei16, IntRegs, i32>; defm ST : Store<"st", 0b000100, store, IntRegs, i32>; } // Section B.5 - Store Floating-point Instructions, p. 97 let DecoderMethod = "DecodeStoreFP" in defm STF : Store<"st", 0b100100, store, FPRegs, f32>; let DecoderMethod = "DecodeStoreDFP" in defm STDF : Store<"std", 0b100111, store, DFPRegs, f64>; let DecoderMethod = "DecodeStoreQFP" in defm STQF : Store<"stq", 0b100110, store, QFPRegs, f128>, Requires<[HasV9, HasHardQuad]>; // Section B.9 - SETHI Instruction, p. 104 def SETHIi: F2_1<0b100, (outs IntRegs:$rd), (ins i32imm:$imm22), "sethi $imm22, $rd", [(set i32:$rd, SETHIimm:$imm22)]>; // Section B.10 - NOP Instruction, p. 105 // (It's a special case of SETHI) let rd = 0, imm22 = 0 in def NOP : F2_1<0b100, (outs), (ins), "nop", []>; // Section B.11 - Logical Instructions, p. 106 defm AND : F3_12<"and", 0b000001, and, IntRegs, i32, simm13Op>; def ANDNrr : F3_1<2, 0b000101, (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), "andn $rs1, $rs2, $rd", [(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>; def ANDNri : F3_2<2, 0b000101, (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), "andn $rs1, $simm13, $rd", []>; defm OR : F3_12<"or", 0b000010, or, IntRegs, i32, simm13Op>; def ORNrr : F3_1<2, 0b000110, (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), "orn $rs1, $rs2, $rd", [(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>; def ORNri : F3_2<2, 0b000110, (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), "orn $rs1, $simm13, $rd", []>; defm XOR : F3_12<"xor", 0b000011, xor, IntRegs, i32, simm13Op>; def XNORrr : F3_1<2, 0b000111, (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), "xnor $rs1, $rs2, $rd", [(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>; def XNORri : F3_2<2, 0b000111, (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), "xnor $rs1, $simm13, $rd", []>; let Defs = [ICC] in { defm ANDCC : F3_12np<"andcc", 0b010001>; defm ANDNCC : F3_12np<"andncc", 0b010101>; defm ORCC : F3_12np<"orcc", 0b010010>; defm ORNCC : F3_12np<"orncc", 0b010110>; defm XORCC : F3_12np<"xorcc", 0b010011>; defm XNORCC : F3_12np<"xnorcc", 0b010111>; } // Section B.12 - Shift Instructions, p. 107 defm SLL : F3_12<"sll", 0b100101, shl, IntRegs, i32, simm13Op>; defm SRL : F3_12<"srl", 0b100110, srl, IntRegs, i32, simm13Op>; defm SRA : F3_12<"sra", 0b100111, sra, IntRegs, i32, simm13Op>; // Section B.13 - Add Instructions, p. 108 defm ADD : F3_12<"add", 0b000000, add, IntRegs, i32, simm13Op>; // "LEA" forms of add (patterns to make tblgen happy) let Predicates = [Is32Bit], isCodeGenOnly = 1 in def LEA_ADDri : F3_2<2, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr), "add ${addr:arith}, $dst", [(set iPTR:$dst, ADDRri:$addr)]>; let Defs = [ICC] in defm ADDCC : F3_12<"addcc", 0b010000, addc, IntRegs, i32, simm13Op>; let Uses = [ICC] in defm ADDC : F3_12np<"addx", 0b001000>; let Uses = [ICC], Defs = [ICC] in defm ADDE : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, simm13Op>; // Section B.15 - Subtract Instructions, p. 110 defm SUB : F3_12 <"sub" , 0b000100, sub, IntRegs, i32, simm13Op>; let Uses = [ICC], Defs = [ICC] in defm SUBE : F3_12 <"subxcc" , 0b011100, sube, IntRegs, i32, simm13Op>; let Defs = [ICC] in defm SUBCC : F3_12 <"subcc", 0b010100, subc, IntRegs, i32, simm13Op>; let Uses = [ICC] in defm SUBC : F3_12np <"subx", 0b001100>; let Defs = [ICC], rd = 0 in { def CMPrr : F3_1<2, 0b010100, (outs), (ins IntRegs:$rs1, IntRegs:$rs2), "cmp $rs1, $rs2", [(SPcmpicc i32:$rs1, i32:$rs2)]>; def CMPri : F3_2<2, 0b010100, (outs), (ins IntRegs:$rs1, simm13Op:$simm13), "cmp $rs1, $simm13", [(SPcmpicc i32:$rs1, (i32 simm13:$simm13))]>; } // Section B.18 - Multiply Instructions, p. 113 let Defs = [Y] in { defm UMUL : F3_12np<"umul", 0b001010>; defm SMUL : F3_12 <"smul", 0b001011, mul, IntRegs, i32, simm13Op>; } let Defs = [Y, ICC] in { defm UMULCC : F3_12np<"umulcc", 0b011010>; defm SMULCC : F3_12np<"smulcc", 0b011011>; } // Section B.19 - Divide Instructions, p. 115 let Defs = [Y] in { defm UDIV : F3_12np<"udiv", 0b001110>; defm SDIV : F3_12np<"sdiv", 0b001111>; } let Defs = [Y, ICC] in { defm UDIVCC : F3_12np<"udivcc", 0b011110>; defm SDIVCC : F3_12np<"sdivcc", 0b011111>; } // Section B.20 - SAVE and RESTORE, p. 117 defm SAVE : F3_12np<"save" , 0b111100>; defm RESTORE : F3_12np<"restore", 0b111101>; // Section B.21 - Branch on Integer Condition Codes Instructions, p. 119 // unconditional branch class. class BranchAlways pattern> : F2_2<0b010, 0, (outs), ins, asmstr, pattern> { let isBranch = 1; let isTerminator = 1; let hasDelaySlot = 1; let isBarrier = 1; } let cond = 8 in def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>; let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { // conditional branch class: class BranchSP pattern> : F2_2<0b010, 0, (outs), ins, asmstr, pattern>; // conditional branch with annul class: class BranchSPA pattern> : F2_2<0b010, 1, (outs), ins, asmstr, pattern>; // Conditional branch class on %icc|%xcc with predication: multiclass IPredBranch CCPattern> { def CC : F2_3<0b001, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond), !strconcat("b$cond ", !strconcat(regstr, ", $imm19")), CCPattern>; def CCA : F2_3<0b001, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond), !strconcat("b$cond,a ", !strconcat(regstr, ", $imm19")), []>; def CCNT : F2_3<0b001, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond), !strconcat("b$cond,pn ", !strconcat(regstr, ", $imm19")), []>; def CCANT : F2_3<0b001, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond), !strconcat("b$cond,a,pn ", !strconcat(regstr, ", $imm19")), []>; } } // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 // Indirect branch instructions. let isTerminator = 1, isBarrier = 1, hasDelaySlot = 1, isBranch =1, isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in { def BINDrr : F3_1<2, 0b111000, (outs), (ins MEMrr:$ptr), "jmp $ptr", [(brind ADDRrr:$ptr)]>; def BINDri : F3_2<2, 0b111000, (outs), (ins MEMri:$ptr), "jmp $ptr", [(brind ADDRri:$ptr)]>; } let Uses = [ICC] in { def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond), "b$cond $imm22", [(SPbricc bb:$imm22, imm:$cond)]>; def BCONDA : BranchSPA<(ins brtarget:$imm22, CCOp:$cond), "b$cond,a $imm22", []>; let Predicates = [HasV9], cc = 0b00 in defm BPI : IPredBranch<"%icc", []>; } // Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121 let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { // floating-point conditional branch class: class FPBranchSP pattern> : F2_2<0b110, 0, (outs), ins, asmstr, pattern>; // floating-point conditional branch with annul class: class FPBranchSPA pattern> : F2_2<0b110, 1, (outs), ins, asmstr, pattern>; // Conditional branch class on %fcc0-%fcc3 with predication: multiclass FPredBranch { def CC : F2_3<0b101, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond, FCCRegs:$cc), "fb$cond $cc, $imm19", []>; def CCA : F2_3<0b101, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond, FCCRegs:$cc), "fb$cond,a $cc, $imm19", []>; def CCNT : F2_3<0b101, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond, FCCRegs:$cc), "fb$cond,pn $cc, $imm19", []>; def CCANT : F2_3<0b101, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond, FCCRegs:$cc), "fb$cond,a,pn $cc, $imm19", []>; } } // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 let Uses = [FCC0] in { def FBCOND : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond), "fb$cond $imm22", [(SPbrfcc bb:$imm22, imm:$cond)]>; def FBCONDA : FPBranchSPA<(ins brtarget:$imm22, CCOp:$cond), "fb$cond,a $imm22", []>; } let Predicates = [HasV9] in defm BPF : FPredBranch; // Section B.24 - Call and Link Instruction, p. 125 // This is the only Format 1 instruction let Uses = [O6], hasDelaySlot = 1, isCall = 1 in { def CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops), "call $disp", []> { bits<30> disp; let op = 1; let Inst{29-0} = disp; } // indirect calls: special cases of JMPL. let isCodeGenOnly = 1, rd = 15 in { def CALLrr : F3_1<2, 0b111000, (outs), (ins MEMrr:$ptr, variable_ops), "call $ptr", [(call ADDRrr:$ptr)]>; def CALLri : F3_2<2, 0b111000, (outs), (ins MEMri:$ptr, variable_ops), "call $ptr", [(call ADDRri:$ptr)]>; } } // Section B.28 - Read State Register Instructions let Uses = [Y], rs1 = 0, rs2 = 0 in def RDY : F3_1<2, 0b101000, (outs IntRegs:$dst), (ins), "rd %y, $dst", []>; // Section B.29 - Write State Register Instructions let Defs = [Y], rd = 0 in { def WRYrr : F3_1<2, 0b110000, (outs), (ins IntRegs:$rs1, IntRegs:$rs2), "wr $rs1, $rs2, %y", []>; def WRYri : F3_2<2, 0b110000, (outs), (ins IntRegs:$rs1, simm13Op:$simm13), "wr $rs1, $simm13, %y", []>; } // Convert Integer to Floating-point Instructions, p. 141 def FITOS : F3_3u<2, 0b110100, 0b011000100, (outs FPRegs:$rd), (ins FPRegs:$rs2), "fitos $rs2, $rd", [(set FPRegs:$rd, (SPitof FPRegs:$rs2))]>; def FITOD : F3_3u<2, 0b110100, 0b011001000, (outs DFPRegs:$rd), (ins FPRegs:$rs2), "fitod $rs2, $rd", [(set DFPRegs:$rd, (SPitof FPRegs:$rs2))]>; def FITOQ : F3_3u<2, 0b110100, 0b011001100, (outs QFPRegs:$rd), (ins FPRegs:$rs2), "fitoq $rs2, $rd", [(set QFPRegs:$rd, (SPitof FPRegs:$rs2))]>, Requires<[HasHardQuad]>; // Convert Floating-point to Integer Instructions, p. 142 def FSTOI : F3_3u<2, 0b110100, 0b011010001, (outs FPRegs:$rd), (ins FPRegs:$rs2), "fstoi $rs2, $rd", [(set FPRegs:$rd, (SPftoi FPRegs:$rs2))]>; def FDTOI : F3_3u<2, 0b110100, 0b011010010, (outs FPRegs:$rd), (ins DFPRegs:$rs2), "fdtoi $rs2, $rd", [(set FPRegs:$rd, (SPftoi DFPRegs:$rs2))]>; def FQTOI : F3_3u<2, 0b110100, 0b011010011, (outs FPRegs:$rd), (ins QFPRegs:$rs2), "fqtoi $rs2, $rd", [(set FPRegs:$rd, (SPftoi QFPRegs:$rs2))]>, Requires<[HasHardQuad]>; // Convert between Floating-point Formats Instructions, p. 143 def FSTOD : F3_3u<2, 0b110100, 0b011001001, (outs DFPRegs:$rd), (ins FPRegs:$rs2), "fstod $rs2, $rd", [(set f64:$rd, (fextend f32:$rs2))]>; def FSTOQ : F3_3u<2, 0b110100, 0b011001101, (outs QFPRegs:$rd), (ins FPRegs:$rs2), "fstoq $rs2, $rd", [(set f128:$rd, (fextend f32:$rs2))]>, Requires<[HasHardQuad]>; def FDTOS : F3_3u<2, 0b110100, 0b011000110, (outs FPRegs:$rd), (ins DFPRegs:$rs2), "fdtos $rs2, $rd", [(set f32:$rd, (fround f64:$rs2))]>; def FDTOQ : F3_3u<2, 0b110100, 0b011001110, (outs QFPRegs:$rd), (ins DFPRegs:$rs2), "fdtoq $rs2, $rd", [(set f128:$rd, (fextend f64:$rs2))]>, Requires<[HasHardQuad]>; def FQTOS : F3_3u<2, 0b110100, 0b011000111, (outs FPRegs:$rd), (ins QFPRegs:$rs2), "fqtos $rs2, $rd", [(set f32:$rd, (fround f128:$rs2))]>, Requires<[HasHardQuad]>; def FQTOD : F3_3u<2, 0b110100, 0b011001011, (outs DFPRegs:$rd), (ins QFPRegs:$rs2), "fqtod $rs2, $rd", [(set f64:$rd, (fround f128:$rs2))]>, Requires<[HasHardQuad]>; // Floating-point Move Instructions, p. 144 def FMOVS : F3_3u<2, 0b110100, 0b000000001, (outs FPRegs:$rd), (ins FPRegs:$rs2), "fmovs $rs2, $rd", []>; def FNEGS : F3_3u<2, 0b110100, 0b000000101, (outs FPRegs:$rd), (ins FPRegs:$rs2), "fnegs $rs2, $rd", [(set f32:$rd, (fneg f32:$rs2))]>; def FABSS : F3_3u<2, 0b110100, 0b000001001, (outs FPRegs:$rd), (ins FPRegs:$rs2), "fabss $rs2, $rd", [(set f32:$rd, (fabs f32:$rs2))]>; // Floating-point Square Root Instructions, p.145 def FSQRTS : F3_3u<2, 0b110100, 0b000101001, (outs FPRegs:$rd), (ins FPRegs:$rs2), "fsqrts $rs2, $rd", [(set f32:$rd, (fsqrt f32:$rs2))]>; def FSQRTD : F3_3u<2, 0b110100, 0b000101010, (outs DFPRegs:$rd), (ins DFPRegs:$rs2), "fsqrtd $rs2, $rd", [(set f64:$rd, (fsqrt f64:$rs2))]>; def FSQRTQ : F3_3u<2, 0b110100, 0b000101011, (outs QFPRegs:$rd), (ins QFPRegs:$rs2), "fsqrtq $rs2, $rd", [(set f128:$rd, (fsqrt f128:$rs2))]>, Requires<[HasHardQuad]>; // Floating-point Add and Subtract Instructions, p. 146 def FADDS : F3_3<2, 0b110100, 0b001000001, (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), "fadds $rs1, $rs2, $rd", [(set f32:$rd, (fadd f32:$rs1, f32:$rs2))]>; def FADDD : F3_3<2, 0b110100, 0b001000010, (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), "faddd $rs1, $rs2, $rd", [(set f64:$rd, (fadd f64:$rs1, f64:$rs2))]>; def FADDQ : F3_3<2, 0b110100, 0b001000011, (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), "faddq $rs1, $rs2, $rd", [(set f128:$rd, (fadd f128:$rs1, f128:$rs2))]>, Requires<[HasHardQuad]>; def FSUBS : F3_3<2, 0b110100, 0b001000101, (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), "fsubs $rs1, $rs2, $rd", [(set f32:$rd, (fsub f32:$rs1, f32:$rs2))]>; def FSUBD : F3_3<2, 0b110100, 0b001000110, (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), "fsubd $rs1, $rs2, $rd", [(set f64:$rd, (fsub f64:$rs1, f64:$rs2))]>; def FSUBQ : F3_3<2, 0b110100, 0b001000111, (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), "fsubq $rs1, $rs2, $rd", [(set f128:$rd, (fsub f128:$rs1, f128:$rs2))]>, Requires<[HasHardQuad]>; // Floating-point Multiply and Divide Instructions, p. 147 def FMULS : F3_3<2, 0b110100, 0b001001001, (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), "fmuls $rs1, $rs2, $rd", [(set f32:$rd, (fmul f32:$rs1, f32:$rs2))]>; def FMULD : F3_3<2, 0b110100, 0b001001010, (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), "fmuld $rs1, $rs2, $rd", [(set f64:$rd, (fmul f64:$rs1, f64:$rs2))]>; def FMULQ : F3_3<2, 0b110100, 0b001001011, (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), "fmulq $rs1, $rs2, $rd", [(set f128:$rd, (fmul f128:$rs1, f128:$rs2))]>, Requires<[HasHardQuad]>; def FSMULD : F3_3<2, 0b110100, 0b001101001, (outs DFPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), "fsmuld $rs1, $rs2, $rd", [(set f64:$rd, (fmul (fextend f32:$rs1), (fextend f32:$rs2)))]>; def FDMULQ : F3_3<2, 0b110100, 0b001101110, (outs QFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), "fdmulq $rs1, $rs2, $rd", [(set f128:$rd, (fmul (fextend f64:$rs1), (fextend f64:$rs2)))]>, Requires<[HasHardQuad]>; def FDIVS : F3_3<2, 0b110100, 0b001001101, (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), "fdivs $rs1, $rs2, $rd", [(set f32:$rd, (fdiv f32:$rs1, f32:$rs2))]>; def FDIVD : F3_3<2, 0b110100, 0b001001110, (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), "fdivd $rs1, $rs2, $rd", [(set f64:$rd, (fdiv f64:$rs1, f64:$rs2))]>; def FDIVQ : F3_3<2, 0b110100, 0b001001111, (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), "fdivq $rs1, $rs2, $rd", [(set f128:$rd, (fdiv f128:$rs1, f128:$rs2))]>, Requires<[HasHardQuad]>; // Floating-point Compare Instructions, p. 148 // Note: the 2nd template arg is different for these guys. // Note 2: the result of a FCMP is not available until the 2nd cycle // after the instr is retired, but there is no interlock in Sparc V8. // This behavior is modeled with a forced noop after the instruction in // DelaySlotFiller. let Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in { def FCMPS : F3_3c<2, 0b110101, 0b001010001, (outs), (ins FPRegs:$rs1, FPRegs:$rs2), "fcmps $rs1, $rs2", [(SPcmpfcc f32:$rs1, f32:$rs2)]>; def FCMPD : F3_3c<2, 0b110101, 0b001010010, (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2), "fcmpd $rs1, $rs2", [(SPcmpfcc f64:$rs1, f64:$rs2)]>; def FCMPQ : F3_3c<2, 0b110101, 0b001010011, (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2), "fcmpq $rs1, $rs2", [(SPcmpfcc f128:$rs1, f128:$rs2)]>, Requires<[HasHardQuad]>; } //===----------------------------------------------------------------------===// // Instructions for Thread Local Storage(TLS). //===----------------------------------------------------------------------===// let isCodeGenOnly = 1, isAsmParserOnly = 1 in { def TLS_ADDrr : F3_1<2, 0b000000, (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, TLSSym:$sym), "add $rs1, $rs2, $rd, $sym", [(set i32:$rd, (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>; let mayLoad = 1 in def TLS_LDrr : F3_1<3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym), "ld [$addr], $dst, $sym", [(set i32:$dst, (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>; let Uses = [O6], isCall = 1, hasDelaySlot = 1 in def TLS_CALL : InstSP<(outs), (ins calltarget:$disp, TLSSym:$sym, variable_ops), "call $disp, $sym", [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)]> { bits<30> disp; let op = 1; let Inst{29-0} = disp; } } //===----------------------------------------------------------------------===// // V9 Instructions //===----------------------------------------------------------------------===// // V9 Conditional Moves. let Predicates = [HasV9], Constraints = "$f = $rd" in { // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual. let Uses = [ICC], intcc = 1, cc = 0b00 in { def MOVICCrr : F4_1<0b101100, (outs IntRegs:$rd), (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond), "mov$cond %icc, $rs2, $rd", [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>; def MOVICCri : F4_2<0b101100, (outs IntRegs:$rd), (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond), "mov$cond %icc, $simm11, $rd", [(set i32:$rd, (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>; } let Uses = [FCC0], intcc = 0, cc = 0b00 in { def MOVFCCrr : F4_1<0b101100, (outs IntRegs:$rd), (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond), "mov$cond %fcc0, $rs2, $rd", [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>; def MOVFCCri : F4_2<0b101100, (outs IntRegs:$rd), (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond), "mov$cond %fcc0, $simm11, $rd", [(set i32:$rd, (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>; } let Uses = [ICC], intcc = 1, opf_cc = 0b00 in { def FMOVS_ICC : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond), "fmovs$cond %icc, $rs2, $rd", [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>; def FMOVD_ICC : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), "fmovd$cond %icc, $rs2, $rd", [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>; def FMOVQ_ICC : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), "fmovq$cond %icc, $rs2, $rd", [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>, Requires<[HasHardQuad]>; } let Uses = [FCC0], intcc = 0, opf_cc = 0b00 in { def FMOVS_FCC : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond), "fmovs$cond %fcc0, $rs2, $rd", [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>; def FMOVD_FCC : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), "fmovd$cond %fcc0, $rs2, $rd", [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>; def FMOVQ_FCC : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), "fmovq$cond %fcc0, $rs2, $rd", [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>, Requires<[HasHardQuad]>; } } // Floating-Point Move Instructions, p. 164 of the V9 manual. let Predicates = [HasV9] in { def FMOVD : F3_3u<2, 0b110100, 0b000000010, (outs DFPRegs:$rd), (ins DFPRegs:$rs2), "fmovd $rs2, $rd", []>; def FMOVQ : F3_3u<2, 0b110100, 0b000000011, (outs QFPRegs:$rd), (ins QFPRegs:$rs2), "fmovq $rs2, $rd", []>, Requires<[HasHardQuad]>; def FNEGD : F3_3u<2, 0b110100, 0b000000110, (outs DFPRegs:$rd), (ins DFPRegs:$rs2), "fnegd $rs2, $rd", [(set f64:$rd, (fneg f64:$rs2))]>; def FNEGQ : F3_3u<2, 0b110100, 0b000000111, (outs QFPRegs:$rd), (ins QFPRegs:$rs2), "fnegq $rs2, $rd", [(set f128:$rd, (fneg f128:$rs2))]>, Requires<[HasHardQuad]>; def FABSD : F3_3u<2, 0b110100, 0b000001010, (outs DFPRegs:$rd), (ins DFPRegs:$rs2), "fabsd $rs2, $rd", [(set f64:$rd, (fabs f64:$rs2))]>; def FABSQ : F3_3u<2, 0b110100, 0b000001011, (outs QFPRegs:$rd), (ins QFPRegs:$rs2), "fabsq $rs2, $rd", [(set f128:$rd, (fabs f128:$rs2))]>, Requires<[HasHardQuad]>; } // Floating-point compare instruction with %fcc0-%fcc3. def V9FCMPS : F3_3c<2, 0b110101, 0b001010001, (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), "fcmps $rd, $rs1, $rs2", []>; def V9FCMPD : F3_3c<2, 0b110101, 0b001010010, (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), "fcmpd $rd, $rs1, $rs2", []>; def V9FCMPQ : F3_3c<2, 0b110101, 0b001010011, (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), "fcmpq $rd, $rs1, $rs2", []>, Requires<[HasHardQuad]>; // Floating point conditional move instrucitons with %fcc0-%fcc3. let Predicates = [HasV9] in { let Constraints = "$f = $rd", intcc = 0 in { def V9MOVFCCrr : F4_1<0b101100, (outs IntRegs:$rd), (ins FCCRegs:$cc, IntRegs:$rs2, IntRegs:$f, CCOp:$cond), "mov$cond $cc, $rs2, $rd", []>; def V9MOVFCCri : F4_2<0b101100, (outs IntRegs:$rd), (ins FCCRegs:$cc, i32imm:$simm11, IntRegs:$f, CCOp:$cond), "mov$cond $cc, $simm11, $rd", []>; def V9FMOVS_FCC : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), (ins FCCRegs:$opf_cc, FPRegs:$rs2, FPRegs:$f, CCOp:$cond), "fmovs$cond $opf_cc, $rs2, $rd", []>; def V9FMOVD_FCC : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), (ins FCCRegs:$opf_cc, DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), "fmovd$cond $opf_cc, $rs2, $rd", []>; def V9FMOVQ_FCC : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), (ins FCCRegs:$opf_cc, QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), "fmovq$cond $opf_cc, $rs2, $rd", []>, Requires<[HasHardQuad]>; } // Constraints = "$f = $rd", ... } // let Predicates = [hasV9] // POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear // the top 32-bits before using it. To do this clearing, we use a SRLri X,0. let rs1 = 0 in def POPCrr : F3_1<2, 0b101110, (outs IntRegs:$dst), (ins IntRegs:$src), "popc $src, $dst", []>, Requires<[HasV9]>; def : Pat<(ctpop i32:$src), (POPCrr (SRLri $src, 0))>; // Atomic swap. let hasSideEffects =1, rd = 0, rs1 = 0b01111, rs2 = 0 in def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>; let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in def MEMBARi : F3_2<2, 0b101000, (outs), (ins simm13Op:$simm13), "membar $simm13", []>; let Constraints = "$val = $dst" in { def SWAPrr : F3_1<3, 0b001111, (outs IntRegs:$dst), (ins MEMrr:$addr, IntRegs:$val), "swap [$addr], $dst", [(set i32:$dst, (atomic_swap_32 ADDRrr:$addr, i32:$val))]>; def SWAPri : F3_2<3, 0b001111, (outs IntRegs:$dst), (ins MEMri:$addr, IntRegs:$val), "swap [$addr], $dst", [(set i32:$dst, (atomic_swap_32 ADDRri:$addr, i32:$val))]>; } let Predicates = [HasV9], Constraints = "$swap = $rd" in def CASrr: F3_1_asi<3, 0b111100, 0b10000000, (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, IntRegs:$swap), "cas [$rs1], $rs2, $rd", [(set i32:$rd, (atomic_cmp_swap iPTR:$rs1, i32:$rs2, i32:$swap))]>; let Defs = [ICC] in { defm TADDCC : F3_12np<"taddcc", 0b100000>; defm TSUBCC : F3_12np<"tsubcc", 0b100001>; let hasSideEffects = 1 in { defm TADDCCTV : F3_12np<"taddcctv", 0b100010>; defm TSUBCCTV : F3_12np<"tsubcctv", 0b100011>; } } //===----------------------------------------------------------------------===// // Non-Instruction Patterns //===----------------------------------------------------------------------===// // Small immediates. def : Pat<(i32 simm13:$val), (ORri (i32 G0), imm:$val)>; // Arbitrary immediates. def : Pat<(i32 imm:$val), (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>; // Global addresses, constant pool entries let Predicates = [Is32Bit] in { def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>; def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>; def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>; def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>; // GlobalTLS addresses def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>; def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>; def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; // Blockaddress def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>; def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>; // Add reg, lo. This is used when taking the addr of a global/constpool entry. def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>; def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)), (ADDri $r, tconstpool:$in)>; def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)), (ADDri $r, tblockaddress:$in)>; } // Calls: def : Pat<(call tglobaladdr:$dst), (CALL tglobaladdr:$dst)>; def : Pat<(call texternalsym:$dst), (CALL texternalsym:$dst)>; // Map integer extload's to zextloads. def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>; def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>; def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>; // zextload bool -> zextload byte def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; // store 0, addr -> store %g0, addr def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>; def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>; // store bar for all atomic_fence in V8. let Predicates = [HasNoV9] in def : Pat<(atomic_fence imm, imm), (STBAR)>; // atomic_load_32 addr -> load addr def : Pat<(i32 (atomic_load ADDRrr:$src)), (LDrr ADDRrr:$src)>; def : Pat<(i32 (atomic_load ADDRri:$src)), (LDri ADDRri:$src)>; // atomic_store_32 val, addr -> store val, addr def : Pat<(atomic_store ADDRrr:$dst, i32:$val), (STrr ADDRrr:$dst, $val)>; def : Pat<(atomic_store ADDRri:$dst, i32:$val), (STri ADDRri:$dst, $val)>; include "SparcInstr64Bit.td" include "SparcInstrAliases.td"