//===- SchedGraph.cpp - Scheduling Graph Implementation -------------------===// // // Scheduling graph based on SSA graph plus extra dependence edges capturing // dependences due to machine resources (machine registers, CC registers, and // any others). // //===----------------------------------------------------------------------===// #include "SchedGraph.h" #include "llvm/Function.h" #include "llvm/iOther.h" #include "llvm/CodeGen/MachineCodeForInstruction.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegInfo.h" #include "Support/STLExtras.h" //*********************** Internal Data Structures *************************/ // The following two types need to be classes, not typedefs, so we can use // opaque declarations in SchedGraph.h // struct RefVec: public std::vector > { typedef std::vector >::iterator iterator; typedef std::vector >::const_iterator const_iterator; }; struct RegToRefVecMap: public hash_map { typedef hash_map:: iterator iterator; typedef hash_map::const_iterator const_iterator; }; struct ValueToDefVecMap: public hash_map { typedef hash_map:: iterator iterator; typedef hash_map::const_iterator const_iterator; }; // // class SchedGraphNode // SchedGraphNode::SchedGraphNode(unsigned NID, MachineBasicBlock *mbb, int indexInBB, const TargetMachine& Target) : SchedGraphNodeCommon(NID,indexInBB), MBB(mbb), MI(mbb ? (*mbb)[indexInBB] : 0) { if (MI) { MachineOpCode mopCode = MI->getOpCode(); latency = Target.getInstrInfo().hasResultInterlock(mopCode) ? Target.getInstrInfo().minLatency(mopCode) : Target.getInstrInfo().maxLatency(mopCode); } } // // Method: SchedGraphNode Destructor // // Description: // Free memory allocated by the SchedGraphNode object. // // Notes: // Do not delete the edges here. The base class will take care of that. // Only handle subclass specific stuff here (where currently there is // none). // SchedGraphNode::~SchedGraphNode() { } // // class SchedGraph // SchedGraph::SchedGraph(MachineBasicBlock &mbb, const TargetMachine& target) : MBB(mbb) { buildGraph(target); } // // Method: SchedGraph Destructor // // Description: // This method deletes memory allocated by the SchedGraph object. // // Notes: // Do not delete the graphRoot or graphLeaf here. The base class handles // that bit of work. // SchedGraph::~SchedGraph() { for (const_iterator I = begin(); I != end(); ++I) delete I->second; } void SchedGraph::dump() const { std::cerr << " Sched Graph for Basic Block: "; std::cerr << MBB.getBasicBlock()->getName() << " (" << MBB.getBasicBlock() << ")"; std::cerr << "\n\n Actual Root nodes : "; for (unsigned i=0, N=graphRoot->outEdges.size(); i < N; i++) std::cerr << graphRoot->outEdges[i]->getSink()->getNodeId() << ((i == N-1)? "" : ", "); std::cerr << "\n Graph Nodes:\n"; for (const_iterator I=begin(); I != end(); ++I) std::cerr << "\n" << *I->second; std::cerr << "\n"; } void SchedGraph::addDummyEdges() { assert(graphRoot->outEdges.size() == 0); for (const_iterator I=begin(); I != end(); ++I) { SchedGraphNode* node = (*I).second; assert(node != graphRoot && node != graphLeaf); if (node->beginInEdges() == node->endInEdges()) (void) new SchedGraphEdge(graphRoot, node, SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0); if (node->beginOutEdges() == node->endOutEdges()) (void) new SchedGraphEdge(node, graphLeaf, SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0); } } void SchedGraph::addCDEdges(const TerminatorInst* term, const TargetMachine& target) { const TargetInstrInfo& mii = target.getInstrInfo(); MachineCodeForInstruction &termMvec = MachineCodeForInstruction::get(term); // Find the first branch instr in the sequence of machine instrs for term // unsigned first = 0; while (! mii.isBranch(termMvec[first]->getOpCode()) && ! mii.isReturn(termMvec[first]->getOpCode())) ++first; assert(first < termMvec.size() && "No branch instructions for terminator? Ok, but weird!"); if (first == termMvec.size()) return; SchedGraphNode* firstBrNode = getGraphNodeForInstr(termMvec[first]); // Add CD edges from each instruction in the sequence to the // *last preceding* branch instr. in the sequence // Use a latency of 0 because we only need to prevent out-of-order issue. // for (unsigned i = termMvec.size(); i > first+1; --i) { SchedGraphNode* toNode = getGraphNodeForInstr(termMvec[i-1]); assert(toNode && "No node for instr generated for branch/ret?"); for (unsigned j = i-1; j != 0; --j) if (mii.isBranch(termMvec[j-1]->getOpCode()) || mii.isReturn(termMvec[j-1]->getOpCode())) { SchedGraphNode* brNode = getGraphNodeForInstr(termMvec[j-1]); assert(brNode && "No node for instr generated for branch/ret?"); (void) new SchedGraphEdge(brNode, toNode, SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0); break; // only one incoming edge is enough } } // Add CD edges from each instruction preceding the first branch // to the first branch. Use a latency of 0 as above. // for (unsigned i = first; i != 0; --i) { SchedGraphNode* fromNode = getGraphNodeForInstr(termMvec[i-1]); assert(fromNode && "No node for instr generated for branch?"); (void) new SchedGraphEdge(fromNode, firstBrNode, SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0); } // Now add CD edges to the first branch instruction in the sequence from // all preceding instructions in the basic block. Use 0 latency again. // for (unsigned i=0, N=MBB.size(); i < N; i++) { if (MBB[i] == termMvec[first]) // reached the first branch break; SchedGraphNode* fromNode = this->getGraphNodeForInstr(MBB[i]); if (fromNode == NULL) continue; // dummy instruction, e.g., PHI (void) new SchedGraphEdge(fromNode, firstBrNode, SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0); // If we find any other machine instructions (other than due to // the terminator) that also have delay slots, add an outgoing edge // from the instruction to the instructions in the delay slots. // unsigned d = mii.getNumDelaySlots(MBB[i]->getOpCode()); assert(i+d < N && "Insufficient delay slots for instruction?"); for (unsigned j=1; j <= d; j++) { SchedGraphNode* toNode = this->getGraphNodeForInstr(MBB[i+j]); assert(toNode && "No node for machine instr in delay slot?"); (void) new SchedGraphEdge(fromNode, toNode, SchedGraphEdge::CtrlDep, SchedGraphEdge::NonDataDep, 0); } } } static const int SG_LOAD_REF = 0; static const int SG_STORE_REF = 1; static const int SG_CALL_REF = 2; static const unsigned int SG_DepOrderArray[][3] = { { SchedGraphEdge::NonDataDep, SchedGraphEdge::AntiDep, SchedGraphEdge::AntiDep }, { SchedGraphEdge::TrueDep, SchedGraphEdge::OutputDep, SchedGraphEdge::TrueDep | SchedGraphEdge::OutputDep }, { SchedGraphEdge::TrueDep, SchedGraphEdge::AntiDep | SchedGraphEdge::OutputDep, SchedGraphEdge::TrueDep | SchedGraphEdge::AntiDep | SchedGraphEdge::OutputDep } }; // Add a dependence edge between every pair of machine load/store/call // instructions, where at least one is a store or a call. // Use latency 1 just to ensure that memory operations are ordered; // latency does not otherwise matter (true dependences enforce that). // void SchedGraph::addMemEdges(const std::vector& memNodeVec, const TargetMachine& target) { const TargetInstrInfo& mii = target.getInstrInfo(); // Instructions in memNodeVec are in execution order within the basic block, // so simply look at all pairs i]>. // for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++) { MachineOpCode fromOpCode = memNodeVec[im]->getOpCode(); int fromType = (mii.isCall(fromOpCode)? SG_CALL_REF : (mii.isLoad(fromOpCode)? SG_LOAD_REF : SG_STORE_REF)); for (unsigned jm=im+1; jm < NM; jm++) { MachineOpCode toOpCode = memNodeVec[jm]->getOpCode(); int toType = (mii.isCall(toOpCode)? SG_CALL_REF : (mii.isLoad(toOpCode)? SG_LOAD_REF : SG_STORE_REF)); if (fromType != SG_LOAD_REF || toType != SG_LOAD_REF) (void) new SchedGraphEdge(memNodeVec[im], memNodeVec[jm], SchedGraphEdge::MemoryDep, SG_DepOrderArray[fromType][toType], 1); } } } // Add edges from/to CC reg instrs to/from call instrs. // Essentially this prevents anything that sets or uses a CC reg from being // reordered w.r.t. a call. // Use a latency of 0 because we only need to prevent out-of-order issue, // like with control dependences. // void SchedGraph::addCallDepEdges(const std::vector& callDepNodeVec, const TargetMachine& target) { const TargetInstrInfo& mii = target.getInstrInfo(); // Instructions in memNodeVec are in execution order within the basic block, // so simply look at all pairs i]>. // for (unsigned ic=0, NC=callDepNodeVec.size(); ic < NC; ic++) if (mii.isCall(callDepNodeVec[ic]->getOpCode())) { // Add SG_CALL_REF edges from all preds to this instruction. for (unsigned jc=0; jc < ic; jc++) (void) new SchedGraphEdge(callDepNodeVec[jc], callDepNodeVec[ic], SchedGraphEdge::MachineRegister, MachineIntRegsRID, 0); // And do the same from this instruction to all successors. for (unsigned jc=ic+1; jc < NC; jc++) (void) new SchedGraphEdge(callDepNodeVec[ic], callDepNodeVec[jc], SchedGraphEdge::MachineRegister, MachineIntRegsRID, 0); } #ifdef CALL_DEP_NODE_VEC_CANNOT_WORK // Find the call instruction nodes and put them in a vector. std::vector callNodeVec; for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++) if (mii.isCall(memNodeVec[im]->getOpCode())) callNodeVec.push_back(memNodeVec[im]); // Now walk the entire basic block, looking for CC instructions *and* // call instructions, and keep track of the order of the instructions. // Use the call node vec to quickly find earlier and later call nodes // relative to the current CC instruction. // int lastCallNodeIdx = -1; for (unsigned i=0, N=bbMvec.size(); i < N; i++) if (mii.isCall(bbMvec[i]->getOpCode())) { ++lastCallNodeIdx; for ( ; lastCallNodeIdx < (int)callNodeVec.size(); ++lastCallNodeIdx) if (callNodeVec[lastCallNodeIdx]->getMachineInstr() == bbMvec[i]) break; assert(lastCallNodeIdx < (int)callNodeVec.size() && "Missed Call?"); } else if (mii.isCCInstr(bbMvec[i]->getOpCode())) { // Add incoming/outgoing edges from/to preceding/later calls SchedGraphNode* ccNode = this->getGraphNodeForInstr(bbMvec[i]); int j=0; for ( ; j <= lastCallNodeIdx; j++) (void) new SchedGraphEdge(callNodeVec[j], ccNode, MachineCCRegsRID, 0); for ( ; j < (int) callNodeVec.size(); j++) (void) new SchedGraphEdge(ccNode, callNodeVec[j], MachineCCRegsRID, 0); } #endif } void SchedGraph::addMachineRegEdges(RegToRefVecMap& regToRefVecMap, const TargetMachine& target) { // This code assumes that two registers with different numbers are // not aliased! // for (RegToRefVecMap::iterator I = regToRefVecMap.begin(); I != regToRefVecMap.end(); ++I) { int regNum = (*I).first; RefVec& regRefVec = (*I).second; // regRefVec is ordered by control flow order in the basic block for (unsigned i=0; i < regRefVec.size(); ++i) { SchedGraphNode* node = regRefVec[i].first; unsigned int opNum = regRefVec[i].second; const MachineOperand& mop = node->getMachineInstr()->getExplOrImplOperand(opNum); bool isDef = mop.opIsDefOnly(); bool isDefAndUse = mop.opIsDefAndUse(); for (unsigned p=0; p < i; ++p) { SchedGraphNode* prevNode = regRefVec[p].first; if (prevNode != node) { unsigned int prevOpNum = regRefVec[p].second; const MachineOperand& prevMop = prevNode->getMachineInstr()->getExplOrImplOperand(prevOpNum); bool prevIsDef = prevMop.opIsDefOnly(); bool prevIsDefAndUse = prevMop.opIsDefAndUse(); if (isDef) { if (prevIsDef) new SchedGraphEdge(prevNode, node, regNum, SchedGraphEdge::OutputDep); if (!prevIsDef || prevIsDefAndUse) new SchedGraphEdge(prevNode, node, regNum, SchedGraphEdge::AntiDep); } if (prevIsDef) if (!isDef || isDefAndUse) new SchedGraphEdge(prevNode, node, regNum, SchedGraphEdge::TrueDep); } } } } } // Adds dependences to/from refNode from/to all other defs // in the basic block. refNode may be a use, a def, or both. // We do not consider other uses because we are not building use-use deps. // void SchedGraph::addEdgesForValue(SchedGraphNode* refNode, const RefVec& defVec, const Value* defValue, bool refNodeIsDef, bool refNodeIsDefAndUse, const TargetMachine& target) { bool refNodeIsUse = !refNodeIsDef || refNodeIsDefAndUse; // Add true or output dep edges from all def nodes before refNode in BB. // Add anti or output dep edges to all def nodes after refNode. for (RefVec::const_iterator I=defVec.begin(), E=defVec.end(); I != E; ++I) { if ((*I).first == refNode) continue; // Dont add any self-loops if ((*I).first->getOrigIndexInBB() < refNode->getOrigIndexInBB()) { // (*).first is before refNode if (refNodeIsDef) (void) new SchedGraphEdge((*I).first, refNode, defValue, SchedGraphEdge::OutputDep); if (refNodeIsUse) (void) new SchedGraphEdge((*I).first, refNode, defValue, SchedGraphEdge::TrueDep); } else { // (*).first is after refNode if (refNodeIsDef) (void) new SchedGraphEdge(refNode, (*I).first, defValue, SchedGraphEdge::OutputDep); if (refNodeIsUse) (void) new SchedGraphEdge(refNode, (*I).first, defValue, SchedGraphEdge::AntiDep); } } } void SchedGraph::addEdgesForInstruction(const MachineInstr& MI, const ValueToDefVecMap& valueToDefVecMap, const TargetMachine& target) { SchedGraphNode* node = getGraphNodeForInstr(&MI); if (node == NULL) return; // Add edges for all operands of the machine instruction. // for (unsigned i = 0, numOps = MI.getNumOperands(); i != numOps; ++i) { switch (MI.getOperand(i).getType()) { case MachineOperand::MO_VirtualRegister: case MachineOperand::MO_CCRegister: if (const Value* srcI = MI.getOperand(i).getVRegValue()) { ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI); if (I != valueToDefVecMap.end()) addEdgesForValue(node, I->second, srcI, MI.getOperand(i).opIsDefOnly(), MI.getOperand(i).opIsDefAndUse(), target); } break; case MachineOperand::MO_MachineRegister: break; case MachineOperand::MO_SignExtendedImmed: case MachineOperand::MO_UnextendedImmed: case MachineOperand::MO_PCRelativeDisp: break; // nothing to do for immediate fields default: assert(0 && "Unknown machine operand type in SchedGraph builder"); break; } } // Add edges for values implicitly used by the machine instruction. // Examples include function arguments to a Call instructions or the return // value of a Ret instruction. // for (unsigned i=0, N=MI.getNumImplicitRefs(); i < N; ++i) if (MI.getImplicitOp(i).opIsUse() || MI.getImplicitOp(i).opIsDefAndUse()) if (const Value* srcI = MI.getImplicitRef(i)) { ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI); if (I != valueToDefVecMap.end()) addEdgesForValue(node, I->second, srcI, MI.getImplicitOp(i).opIsDefOnly(), MI.getImplicitOp(i).opIsDefAndUse(), target); } } void SchedGraph::findDefUseInfoAtInstr(const TargetMachine& target, SchedGraphNode* node, std::vector& memNodeVec, std::vector& callDepNodeVec, RegToRefVecMap& regToRefVecMap, ValueToDefVecMap& valueToDefVecMap) { const TargetInstrInfo& mii = target.getInstrInfo(); MachineOpCode opCode = node->getOpCode(); if (mii.isCall(opCode) || mii.isCCInstr(opCode)) callDepNodeVec.push_back(node); if (mii.isLoad(opCode) || mii.isStore(opCode) || mii.isCall(opCode)) memNodeVec.push_back(node); // Collect the register references and value defs. for explicit operands // const MachineInstr& MI = *node->getMachineInstr(); for (int i=0, numOps = (int) MI.getNumOperands(); i < numOps; i++) { const MachineOperand& mop = MI.getOperand(i); // if this references a register other than the hardwired // "zero" register, record the reference. if (mop.hasAllocatedReg()) { int regNum = mop.getAllocatedRegNum(); // If this is not a dummy zero register, record the reference in order if (regNum != target.getRegInfo().getZeroRegNum()) regToRefVecMap[mop.getAllocatedRegNum()] .push_back(std::make_pair(node, i)); // If this is a volatile register, add the instruction to callDepVec // (only if the node is not already on the callDepVec!) if (callDepNodeVec.size() == 0 || callDepNodeVec.back() != node) { unsigned rcid; int regInClass = target.getRegInfo().getClassRegNum(regNum, rcid); if (target.getRegInfo().getMachineRegClass(rcid) ->isRegVolatile(regInClass)) callDepNodeVec.push_back(node); } continue; // nothing more to do } // ignore all other non-def operands if (!MI.getOperand(i).opIsDefOnly() && !MI.getOperand(i).opIsDefAndUse()) continue; // We must be defining a value. assert((mop.getType() == MachineOperand::MO_VirtualRegister || mop.getType() == MachineOperand::MO_CCRegister) && "Do not expect any other kind of operand to be defined!"); assert(mop.getVRegValue() != NULL && "Null value being defined?"); valueToDefVecMap[mop.getVRegValue()].push_back(std::make_pair(node, i)); } // // Collect value defs. for implicit operands. They may have allocated // physical registers also. // for (unsigned i=0, N = MI.getNumImplicitRefs(); i != N; ++i) { const MachineOperand& mop = MI.getImplicitOp(i); if (mop.hasAllocatedReg()) { int regNum = mop.getAllocatedRegNum(); if (regNum != target.getRegInfo().getZeroRegNum()) regToRefVecMap[mop.getAllocatedRegNum()] .push_back(std::make_pair(node, i + MI.getNumOperands())); continue; // nothing more to do } if (mop.opIsDefOnly() || mop.opIsDefAndUse()) { assert(MI.getImplicitRef(i) != NULL && "Null value being defined?"); valueToDefVecMap[MI.getImplicitRef(i)].push_back(std::make_pair(node, -i)); } } } void SchedGraph::buildNodesForBB(const TargetMachine& target, MachineBasicBlock& MBB, std::vector& memNodeVec, std::vector& callDepNodeVec, RegToRefVecMap& regToRefVecMap, ValueToDefVecMap& valueToDefVecMap) { const TargetInstrInfo& mii = target.getInstrInfo(); // Build graph nodes for each VM instruction and gather def/use info. // Do both those together in a single pass over all machine instructions. for (unsigned i=0; i < MBB.size(); i++) if (!mii.isDummyPhiInstr(MBB[i]->getOpCode())) { SchedGraphNode* node = new SchedGraphNode(getNumNodes(), &MBB, i, target); noteGraphNodeForInstr(MBB[i], node); // Remember all register references and value defs findDefUseInfoAtInstr(target, node, memNodeVec, callDepNodeVec, regToRefVecMap, valueToDefVecMap); } } void SchedGraph::buildGraph(const TargetMachine& target) { // Use this data structure to note all machine operands that compute // ordinary LLVM values. These must be computed defs (i.e., instructions). // Note that there may be multiple machine instructions that define // each Value. ValueToDefVecMap valueToDefVecMap; // Use this data structure to note all memory instructions. // We use this to add memory dependence edges without a second full walk. std::vector memNodeVec; // Use this data structure to note all instructions that access physical // registers that can be modified by a call (including call instructions) std::vector callDepNodeVec; // Use this data structure to note any uses or definitions of // machine registers so we can add edges for those later without // extra passes over the nodes. // The vector holds an ordered list of references to the machine reg, // ordered according to control-flow order. This only works for a // single basic block, hence the assertion. Each reference is identified // by the pair: . // RegToRefVecMap regToRefVecMap; // Make a dummy root node. We'll add edges to the real roots later. graphRoot = new SchedGraphNode(0, NULL, -1, target); graphLeaf = new SchedGraphNode(1, NULL, -1, target); //---------------------------------------------------------------- // First add nodes for all the machine instructions in the basic block // because this greatly simplifies identifying which edges to add. // Do this one VM instruction at a time since the SchedGraphNode needs that. // Also, remember the load/store instructions to add memory deps later. //---------------------------------------------------------------- buildNodesForBB(target, MBB, memNodeVec, callDepNodeVec, regToRefVecMap, valueToDefVecMap); //---------------------------------------------------------------- // Now add edges for the following (all are incoming edges except (4)): // (1) operands of the machine instruction, including hidden operands // (2) machine register dependences // (3) memory load/store dependences // (3) other resource dependences for the machine instruction, if any // (4) output dependences when multiple machine instructions define the // same value; all must have been generated from a single VM instrn // (5) control dependences to branch instructions generated for the // terminator instruction of the BB. Because of delay slots and // 2-way conditional branches, multiple CD edges are needed // (see addCDEdges for details). // Also, note any uses or defs of machine registers. // //---------------------------------------------------------------- // First, add edges to the terminator instruction of the basic block. this->addCDEdges(MBB.getBasicBlock()->getTerminator(), target); // Then add memory dep edges: store->load, load->store, and store->store. // Call instructions are treated as both load and store. this->addMemEdges(memNodeVec, target); // Then add edges between call instructions and CC set/use instructions this->addCallDepEdges(callDepNodeVec, target); // Then add incoming def-use (SSA) edges for each machine instruction. for (unsigned i=0, N=MBB.size(); i < N; i++) addEdgesForInstruction(*MBB[i], valueToDefVecMap, target); #ifdef NEED_SEPARATE_NONSSA_EDGES_CODE // Then add non-SSA edges for all VM instructions in the block. // We assume that all machine instructions that define a value are // generated from the VM instruction corresponding to that value. // TODO: This could probably be done much more efficiently. for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II) this->addNonSSAEdgesForValue(*II, target); #endif //NEED_SEPARATE_NONSSA_EDGES_CODE // Then add edges for dependences on machine registers this->addMachineRegEdges(regToRefVecMap, target); // Finally, add edges from the dummy root and to dummy leaf this->addDummyEdges(); } // // class SchedGraphSet // SchedGraphSet::SchedGraphSet(const Function* _function, const TargetMachine& target) : function(_function) { buildGraphsForMethod(function, target); } SchedGraphSet::~SchedGraphSet() { // delete all the graphs for(iterator I = begin(), E = end(); I != E; ++I) delete *I; // destructor is a friend } void SchedGraphSet::dump() const { std::cerr << "======== Sched graphs for function `" << function->getName() << "' ========\n\n"; for (const_iterator I=begin(); I != end(); ++I) (*I)->dump(); std::cerr << "\n====== End graphs for function `" << function->getName() << "' ========\n\n"; } void SchedGraphSet::buildGraphsForMethod(const Function *F, const TargetMachine& target) { MachineFunction &MF = MachineFunction::get(F); for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) addGraph(new SchedGraph(*I, target)); } void SchedGraphEdge::print(std::ostream &os) const { os << "edge [" << src->getNodeId() << "] -> [" << sink->getNodeId() << "] : "; switch(depType) { case SchedGraphEdge::CtrlDep: os<< "Control Dep"; break; case SchedGraphEdge::ValueDep: os<< "Reg Value " << val; break; case SchedGraphEdge::MemoryDep: os<< "Memory Dep"; break; case SchedGraphEdge::MachineRegister: os<< "Reg " << machineRegNum; break; case SchedGraphEdge::MachineResource: os<<"Resource "<< resourceId; break; default: assert(0); break; } os << " : delay = " << minDelay << "\n"; } void SchedGraphNode::print(std::ostream &os) const { os << std::string(8, ' ') << "Node " << ID << " : " << "latency = " << latency << "\n" << std::string(12, ' '); if (getMachineInstr() == NULL) os << "(Dummy node)\n"; else { os << *getMachineInstr() << "\n" << std::string(12, ' '); os << inEdges.size() << " Incoming Edges:\n"; for (unsigned i=0, N = inEdges.size(); i < N; i++) os << std::string(16, ' ') << *inEdges[i]; os << std::string(12, ' ') << outEdges.size() << " Outgoing Edges:\n"; for (unsigned i=0, N= outEdges.size(); i < N; i++) os << std::string(16, ' ') << *outEdges[i]; } }