//===-- ModuloScheduling.cpp - ModuloScheduling ----------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This ModuloScheduling pass is based on the Swing Modulo Scheduling // algorithm. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "ModuloSched" #include "ModuloScheduling.h" #include "llvm/Instructions.h" #include "llvm/Function.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Support/CFG.h" #include "llvm/Target/TargetSchedInfo.h" #include "Support/Debug.h" #include "Support/GraphWriter.h" #include "Support/StringExtras.h" #include #include #include #include #include #include "../../Target/SparcV9/MachineCodeForInstruction.h" #include "../../Target/SparcV9/SparcV9TmpInstr.h" #include "../../Target/SparcV9/SparcV9Internals.h" #include "../../Target/SparcV9/SparcV9RegisterInfo.h" using namespace llvm; /// Create ModuloSchedulingPass /// FunctionPass *llvm::createModuloSchedulingPass(TargetMachine & targ) { DEBUG(std::cerr << "Created ModuloSchedulingPass\n"); return new ModuloSchedulingPass(targ); } //Graph Traits for printing out the dependence graph template static void WriteGraphToFile(std::ostream &O, const std::string &GraphName, const GraphType >) { std::string Filename = GraphName + ".dot"; O << "Writing '" << Filename << "'..."; std::ofstream F(Filename.c_str()); if (F.good()) WriteGraph(F, GT); else O << " error opening file for writing!"; O << "\n"; }; //Graph Traits for printing out the dependence graph namespace llvm { template<> struct DOTGraphTraits : public DefaultDOTGraphTraits { static std::string getGraphName(MSchedGraph *F) { return "Dependence Graph"; } static std::string getNodeLabel(MSchedGraphNode *Node, MSchedGraph *Graph) { if (Node->getInst()) { std::stringstream ss; ss << *(Node->getInst()); return ss.str(); //((MachineInstr*)Node->getInst()); } else return "No Inst"; } static std::string getEdgeSourceLabel(MSchedGraphNode *Node, MSchedGraphNode::succ_iterator I) { //Label each edge with the type of dependence std::string edgelabel = ""; switch (I.getEdge().getDepOrderType()) { case MSchedGraphEdge::TrueDep: edgelabel = "True"; break; case MSchedGraphEdge::AntiDep: edgelabel = "Anti"; break; case MSchedGraphEdge::OutputDep: edgelabel = "Output"; break; default: edgelabel = "Unknown"; break; } //FIXME int iteDiff = I.getEdge().getIteDiff(); std::string intStr = "(IteDiff: "; intStr += itostr(iteDiff); intStr += ")"; edgelabel += intStr; return edgelabel; } }; } /// ModuloScheduling::runOnFunction - main transformation entry point /// The Swing Modulo Schedule algorithm has three basic steps: /// 1) Computation and Analysis of the dependence graph /// 2) Ordering of the nodes /// 3) Scheduling /// bool ModuloSchedulingPass::runOnFunction(Function &F) { bool Changed = false; DEBUG(std::cerr << "Creating ModuloSchedGraph for each valid BasicBlock in" + F.getName() + "\n"); //Get MachineFunction MachineFunction &MF = MachineFunction::get(&F); //Print out machine function DEBUG(MF.print(std::cerr)); //Worklist std::vector Worklist; //Iterate over BasicBlocks and put them into our worklist if they are valid for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); ++BI) if(MachineBBisValid(BI)) Worklist.push_back(&*BI); //Iterate over the worklist and perform scheduling for(std::vector::iterator BI = Worklist.begin(), BE = Worklist.end(); BI != BE; ++BI) { MSchedGraph *MSG = new MSchedGraph(*BI, target); //Write Graph out to file DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG)); //Print out BB for debugging DEBUG((*BI)->print(std::cerr)); //Calculate Resource II int ResMII = calculateResMII(*BI); //Calculate Recurrence II int RecMII = calculateRecMII(MSG, ResMII); //Our starting initiation interval is the maximum of RecMII and ResMII II = std::max(RecMII, ResMII); //Print out II, RecMII, and ResMII DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << "and ResMII=" << ResMII << "\n"); //Calculate Node Properties calculateNodeAttributes(MSG, ResMII); //Dump node properties if in debug mode DEBUG(for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I !=E; ++I) { std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: " << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth << " Height: " << I->second.height << "\n"; }); //Put nodes in order to schedule them computePartialOrder(); //Dump out partial order DEBUG(for(std::vector >::iterator I = partialOrder.begin(), E = partialOrder.end(); I !=E; ++I) { std::cerr << "Start set in PO\n"; for(std::vector::iterator J = I->begin(), JE = I->end(); J != JE; ++J) std::cerr << "PO:" << **J << "\n"; }); //Place nodes in final order orderNodes(); //Dump out order of nodes DEBUG(for(std::vector::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) { std::cerr << "FO:" << **I << "\n"; }); //Finally schedule nodes computeSchedule(); //Print out final schedule DEBUG(schedule.print(std::cerr)); //Final scheduling step is to reconstruct the loop reconstructLoop(*BI); //Print out new loop //Clear out our maps for the next basic block that is processed nodeToAttributesMap.clear(); partialOrder.clear(); recurrenceList.clear(); FinalNodeOrder.clear(); schedule.clear(); //Clean up. Nuke old MachineBB and llvmBB //BasicBlock *llvmBB = (BasicBlock*) (*BI)->getBasicBlock(); //Function *parent = (Function*) llvmBB->getParent(); //Should't std::find work?? //parent->getBasicBlockList().erase(std::find(parent->getBasicBlockList().begin(), parent->getBasicBlockList().end(), *llvmBB)); //parent->getBasicBlockList().erase(llvmBB); //delete(llvmBB); //delete(*BI); } return Changed; } /// This function checks if a Machine Basic Block is valid for modulo /// scheduling. This means that it has no control flow (if/else or /// calls) in the block. Currently ModuloScheduling only works on /// single basic block loops. bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) { bool isLoop = false; //Check first if its a valid loop for(succ_const_iterator I = succ_begin(BI->getBasicBlock()), E = succ_end(BI->getBasicBlock()); I != E; ++I) { if (*I == BI->getBasicBlock()) // has single block loop isLoop = true; } if(!isLoop) return false; //Get Target machine instruction info const TargetInstrInfo *TMI = target.getInstrInfo(); //Check each instruction and look for calls for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { //Get opcode to check instruction type MachineOpCode OC = I->getOpcode(); if(TMI->isCall(OC)) return false; } return true; } //ResMII is calculated by determining the usage count for each resource //and using the maximum. //FIXME: In future there should be a way to get alternative resources //for each instruction int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) { const TargetInstrInfo *mii = target.getInstrInfo(); const TargetSchedInfo *msi = target.getSchedInfo(); int ResMII = 0; //Map to keep track of usage count of each resource std::map resourceUsageCount; for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) { //Get resource usage for this instruction InstrRUsage rUsage = msi->getInstrRUsage(I->getOpcode()); std::vector > resources = rUsage.resourcesByCycle; //Loop over resources in each cycle and increments their usage count for(unsigned i=0; i < resources.size(); ++i) for(unsigned j=0; j < resources[i].size(); ++j) { if( resourceUsageCount.find(resources[i][j]) == resourceUsageCount.end()) { resourceUsageCount[resources[i][j]] = 1; } else { resourceUsageCount[resources[i][j]] = resourceUsageCount[resources[i][j]] + 1; } } } //Find maximum usage count //Get max number of instructions that can be issued at once. (FIXME) int issueSlots = msi->maxNumIssueTotal; for(std::map::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) { //Get the total number of the resources in our cpu int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers; //Get total usage count for this resources unsigned usageCount = RB->second; //Divide the usage count by either the max number we can issue or the number of //resources (whichever is its upper bound) double finalUsageCount; if( resourceNum <= issueSlots) finalUsageCount = ceil(1.0 * usageCount / resourceNum); else finalUsageCount = ceil(1.0 * usageCount / issueSlots); //Only keep track of the max ResMII = std::max( (int) finalUsageCount, ResMII); } return ResMII; } /// calculateRecMII - Calculates the value of the highest recurrence /// By value we mean the total latency int ModuloSchedulingPass::calculateRecMII(MSchedGraph *graph, int MII) { std::vector vNodes; //Loop over all nodes in the graph for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) { findAllReccurrences(I->second, vNodes, MII); vNodes.clear(); } int RecMII = 0; for(std::set > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) { DEBUG(for(std::vector::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) { std::cerr << **N << "\n"; }); RecMII = std::max(RecMII, I->first); } return MII; } /// calculateNodeAttributes - The following properties are calculated for /// each node in the dependence graph: ASAP, ALAP, Depth, Height, and /// MOB. void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) { //Loop over the nodes and add them to the map for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) { //Assert if its already in the map assert(nodeToAttributesMap.find(I->second) == nodeToAttributesMap.end() && "Node attributes are already in the map"); //Put into the map with default attribute values nodeToAttributesMap[I->second] = MSNodeAttributes(); } //Create set to deal with reccurrences std::set visitedNodes; //Now Loop over map and calculate the node attributes for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { calculateASAP(I->first, MII, (MSchedGraphNode*) 0); visitedNodes.clear(); } int maxASAP = findMaxASAP(); //Calculate ALAP which depends on ASAP being totally calculated for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { calculateALAP(I->first, MII, maxASAP, (MSchedGraphNode*) 0); visitedNodes.clear(); } //Calculate MOB which depends on ASAP being totally calculated, also do depth and height for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP); DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n"); calculateDepth(I->first, (MSchedGraphNode*) 0); calculateHeight(I->first, (MSchedGraphNode*) 0); } } /// ignoreEdge - Checks to see if this edge of a recurrence should be ignored or not bool ModuloSchedulingPass::ignoreEdge(MSchedGraphNode *srcNode, MSchedGraphNode *destNode) { if(destNode == 0 || srcNode ==0) return false; bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode))); return findEdge; } /// calculateASAP - Calculates the int ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, int MII, MSchedGraphNode *destNode) { DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n"); //Get current node attributes MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; if(attributes.ASAP != -1) return attributes.ASAP; int maxPredValue = 0; //Iterate over all of the predecessors and find max for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { //Only process if we are not ignoring the edge if(!ignoreEdge(*P, node)) { int predASAP = -1; predASAP = calculateASAP(*P, MII, node); assert(predASAP != -1 && "ASAP has not been calculated"); int iteDiff = node->getInEdge(*P).getIteDiff(); int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII); DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n"); maxPredValue = std::max(maxPredValue, currentPredValue); } } attributes.ASAP = maxPredValue; DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n"); return maxPredValue; } int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII, int maxASAP, MSchedGraphNode *srcNode) { DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n"); MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; if(attributes.ALAP != -1) return attributes.ALAP; if(node->hasSuccessors()) { //Trying to deal with the issue where the node has successors, but //we are ignoring all of the edges to them. So this is my hack for //now.. there is probably a more elegant way of doing this (FIXME) bool processedOneEdge = false; //FIXME, set to something high to start int minSuccValue = 9999999; //Iterate over all of the predecessors and fine max for(MSchedGraphNode::succ_iterator P = node->succ_begin(), E = node->succ_end(); P != E; ++P) { //Only process if we are not ignoring the edge if(!ignoreEdge(node, *P)) { processedOneEdge = true; int succALAP = -1; succALAP = calculateALAP(*P, MII, maxASAP, node); assert(succALAP != -1 && "Successors ALAP should have been caclulated"); int iteDiff = P.getEdge().getIteDiff(); int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII; DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n"); minSuccValue = std::min(minSuccValue, currentSuccValue); } } if(processedOneEdge) attributes.ALAP = minSuccValue; else attributes.ALAP = maxASAP; } else attributes.ALAP = maxASAP; DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n"); if(attributes.ALAP < 0) attributes.ALAP = 0; return attributes.ALAP; } int ModuloSchedulingPass::findMaxASAP() { int maxASAP = 0; for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) maxASAP = std::max(maxASAP, I->second.ASAP); return maxASAP; } int ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node,MSchedGraphNode *srcNode) { MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; if(attributes.height != -1) return attributes.height; int maxHeight = 0; //Iterate over all of the predecessors and find max for(MSchedGraphNode::succ_iterator P = node->succ_begin(), E = node->succ_end(); P != E; ++P) { if(!ignoreEdge(node, *P)) { int succHeight = calculateHeight(*P, node); assert(succHeight != -1 && "Successors Height should have been caclulated"); int currentHeight = succHeight + node->getLatency(); maxHeight = std::max(maxHeight, currentHeight); } } attributes.height = maxHeight; DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n"); return maxHeight; } int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node, MSchedGraphNode *destNode) { MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second; if(attributes.depth != -1) return attributes.depth; int maxDepth = 0; //Iterate over all of the predecessors and fine max for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) { if(!ignoreEdge(*P, node)) { int predDepth = -1; predDepth = calculateDepth(*P, node); assert(predDepth != -1 && "Predecessors ASAP should have been caclulated"); int currentDepth = predDepth + (*P)->getLatency(); maxDepth = std::max(maxDepth, currentDepth); } } attributes.depth = maxDepth; DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n"); return maxDepth; } void ModuloSchedulingPass::addReccurrence(std::vector &recurrence, int II, MSchedGraphNode *srcBENode, MSchedGraphNode *destBENode) { //Check to make sure that this recurrence is unique bool same = false; //Loop over all recurrences already in our list for(std::set > >::iterator R = recurrenceList.begin(), RE = recurrenceList.end(); R != RE; ++R) { bool all_same = true; //First compare size if(R->second.size() == recurrence.size()) { for(std::vector::const_iterator node = R->second.begin(), end = R->second.end(); node != end; ++node) { if(find(recurrence.begin(), recurrence.end(), *node) == recurrence.end()) { all_same = all_same && false; break; } else all_same = all_same && true; } if(all_same) { same = true; break; } } } if(!same) { srcBENode = recurrence.back(); destBENode = recurrence.front(); //FIXME if(destBENode->getInEdge(srcBENode).getIteDiff() == 0) { //DEBUG(std::cerr << "NOT A BACKEDGE\n"); //find actual backedge HACK HACK for(unsigned i=0; i< recurrence.size()-1; ++i) { if(recurrence[i+1]->getInEdge(recurrence[i]).getIteDiff() == 1) { srcBENode = recurrence[i]; destBENode = recurrence[i+1]; break; } } } DEBUG(std::cerr << "Back Edge to Remove: " << *srcBENode << " to " << *destBENode << "\n"); edgesToIgnore.insert(std::make_pair(srcBENode, destBENode->getInEdgeNum(srcBENode))); recurrenceList.insert(std::make_pair(II, recurrence)); } } void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node, std::vector &visitedNodes, int II) { if(find(visitedNodes.begin(), visitedNodes.end(), node) != visitedNodes.end()) { std::vector recurrence; bool first = true; int delay = 0; int distance = 0; int RecMII = II; //Starting value MSchedGraphNode *last = node; MSchedGraphNode *srcBackEdge = 0; MSchedGraphNode *destBackEdge = 0; for(std::vector::iterator I = visitedNodes.begin(), E = visitedNodes.end(); I !=E; ++I) { if(*I == node) first = false; if(first) continue; delay = delay + (*I)->getLatency(); if(*I != node) { int diff = (*I)->getInEdge(last).getIteDiff(); distance += diff; if(diff > 0) { srcBackEdge = last; destBackEdge = *I; } } recurrence.push_back(*I); last = *I; } //Get final distance calc distance += node->getInEdge(last).getIteDiff(); //Adjust II until we get close to the inequality delay - II*distance <= 0 int value = delay-(RecMII * distance); int lastII = II; while(value <= 0) { lastII = RecMII; RecMII--; value = delay-(RecMII * distance); } DEBUG(std::cerr << "Final II for this recurrence: " << lastII << "\n"); addReccurrence(recurrence, lastII, srcBackEdge, destBackEdge); assert(distance != 0 && "Recurrence distance should not be zero"); return; } for(MSchedGraphNode::succ_iterator I = node->succ_begin(), E = node->succ_end(); I != E; ++I) { visitedNodes.push_back(node); findAllReccurrences(*I, visitedNodes, II); visitedNodes.pop_back(); } } void ModuloSchedulingPass::computePartialOrder() { //Loop over all recurrences and add to our partial order //be sure to remove nodes that are already in the partial order in //a different recurrence and don't add empty recurrences. for(std::set > >::reverse_iterator I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) { //Add nodes that connect this recurrence to the previous recurrence //If this is the first recurrence in the partial order, add all predecessors for(std::vector::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) { } std::vector new_recurrence; //Loop through recurrence and remove any nodes already in the partial order for(std::vector::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) { bool found = false; for(std::vector >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) { if(find(PO->begin(), PO->end(), *N) != PO->end()) found = true; } if(!found) { new_recurrence.push_back(*N); if(partialOrder.size() == 0) //For each predecessors, add it to this recurrence ONLY if it is not already in it for(MSchedGraphNode::pred_iterator P = (*N)->pred_begin(), PE = (*N)->pred_end(); P != PE; ++P) { //Check if we are supposed to ignore this edge or not if(!ignoreEdge(*P, *N)) //Check if already in this recurrence if(find(I->second.begin(), I->second.end(), *P) == I->second.end()) { //Also need to check if in partial order bool predFound = false; for(std::vector >::iterator PO = partialOrder.begin(), PEND = partialOrder.end(); PO != PEND; ++PO) { if(find(PO->begin(), PO->end(), *P) != PO->end()) predFound = true; } if(!predFound) if(find(new_recurrence.begin(), new_recurrence.end(), *P) == new_recurrence.end()) new_recurrence.push_back(*P); } } } } if(new_recurrence.size() > 0) partialOrder.push_back(new_recurrence); } //Add any nodes that are not already in the partial order std::vector lastNodes; for(std::map::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) { bool found = false; //Check if its already in our partial order, if not add it to the final vector for(std::vector >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) { if(find(PO->begin(), PO->end(), I->first) != PO->end()) found = true; } if(!found) lastNodes.push_back(I->first); } if(lastNodes.size() > 0) partialOrder.push_back(lastNodes); } void ModuloSchedulingPass::predIntersect(std::vector &CurrentSet, std::vector &IntersectResult) { //Sort CurrentSet so we can use lowerbound sort(CurrentSet.begin(), CurrentSet.end()); for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { for(MSchedGraphNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(), E = FinalNodeOrder[j]->pred_end(); P != E; ++P) { //Check if we are supposed to ignore this edge or not if(ignoreEdge(*P,FinalNodeOrder[j])) continue; if(find(CurrentSet.begin(), CurrentSet.end(), *P) != CurrentSet.end()) if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) IntersectResult.push_back(*P); } } } void ModuloSchedulingPass::succIntersect(std::vector &CurrentSet, std::vector &IntersectResult) { //Sort CurrentSet so we can use lowerbound sort(CurrentSet.begin(), CurrentSet.end()); for(unsigned j=0; j < FinalNodeOrder.size(); ++j) { for(MSchedGraphNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(), E = FinalNodeOrder[j]->succ_end(); P != E; ++P) { //Check if we are supposed to ignore this edge or not if(ignoreEdge(FinalNodeOrder[j],*P)) continue; if(find(CurrentSet.begin(), CurrentSet.end(), *P) != CurrentSet.end()) if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end()) IntersectResult.push_back(*P); } } } void dumpIntersection(std::vector &IntersectCurrent) { std::cerr << "Intersection ("; for(std::vector::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I) std::cerr << **I << ", "; std::cerr << ")\n"; } void ModuloSchedulingPass::orderNodes() { int BOTTOM_UP = 0; int TOP_DOWN = 1; //Set default order int order = BOTTOM_UP; //Loop over all the sets and place them in the final node order for(std::vector >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) { DEBUG(std::cerr << "Processing set in S\n"); DEBUG(dumpIntersection(*CurrentSet)); //Result of intersection std::vector IntersectCurrent; predIntersect(*CurrentSet, IntersectCurrent); //If the intersection of predecessor and current set is not empty //sort nodes bottom up if(IntersectCurrent.size() != 0) { DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is NOT empty\n"); order = BOTTOM_UP; } //If empty, use successors else { DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is empty\n"); succIntersect(*CurrentSet, IntersectCurrent); //sort top-down if(IntersectCurrent.size() != 0) { DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n"); order = TOP_DOWN; } else { DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n"); //Find node with max ASAP in current Set MSchedGraphNode *node; int maxASAP = 0; DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n"); for(unsigned j=0; j < CurrentSet->size(); ++j) { //Get node attributes MSNodeAttributes nodeAttr= nodeToAttributesMap.find((*CurrentSet)[j])->second; //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!"); DEBUG(std::cerr << "CurrentSet index " << j << "has ASAP: " << nodeAttr.ASAP << "\n"); if(maxASAP < nodeAttr.ASAP) { maxASAP = nodeAttr.ASAP; node = (*CurrentSet)[j]; } } assert(node != 0 && "In node ordering node should not be null"); IntersectCurrent.push_back(node); order = BOTTOM_UP; } } //Repeat until all nodes are put into the final order from current set while(IntersectCurrent.size() > 0) { if(order == TOP_DOWN) { DEBUG(std::cerr << "Order is TOP DOWN\n"); while(IntersectCurrent.size() > 0) { DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n"); int MOB = 0; int height = 0; MSchedGraphNode *highestHeightNode = IntersectCurrent[0]; //Find node in intersection with highest heigh and lowest MOB for(std::vector::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I) { //Get current nodes properties MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; if(height < nodeAttr.height) { highestHeightNode = *I; height = nodeAttr.height; MOB = nodeAttr.MOB; } else if(height == nodeAttr.height) { if(MOB > nodeAttr.height) { highestHeightNode = *I; height = nodeAttr.height; MOB = nodeAttr.MOB; } } } //Append our node with greatest height to the NodeOrder if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) { DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n"); FinalNodeOrder.push_back(highestHeightNode); } //Remove V from IntersectOrder IntersectCurrent.erase(find(IntersectCurrent.begin(), IntersectCurrent.end(), highestHeightNode)); //Intersect V's successors with CurrentSet for(MSchedGraphNode::succ_iterator P = highestHeightNode->succ_begin(), E = highestHeightNode->succ_end(); P != E; ++P) { //if(lower_bound(CurrentSet->begin(), // CurrentSet->end(), *P) != CurrentSet->end()) { if(find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) { if(ignoreEdge(highestHeightNode, *P)) continue; //If not already in Intersect, add if(find(IntersectCurrent.begin(), IntersectCurrent.end(), *P) == IntersectCurrent.end()) IntersectCurrent.push_back(*P); } } } //End while loop over Intersect Size //Change direction order = BOTTOM_UP; //Reset Intersect to reflect changes in OrderNodes IntersectCurrent.clear(); predIntersect(*CurrentSet, IntersectCurrent); } //End If TOP_DOWN //Begin if BOTTOM_UP else { DEBUG(std::cerr << "Order is BOTTOM UP\n"); while(IntersectCurrent.size() > 0) { DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n"); //dump intersection DEBUG(dumpIntersection(IntersectCurrent)); //Get node with highest depth, if a tie, use one with lowest //MOB int MOB = 0; int depth = 0; MSchedGraphNode *highestDepthNode = IntersectCurrent[0]; for(std::vector::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I) { //Find node attribute in graph MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second; if(depth < nodeAttr.depth) { highestDepthNode = *I; depth = nodeAttr.depth; MOB = nodeAttr.MOB; } else if(depth == nodeAttr.depth) { if(MOB > nodeAttr.MOB) { highestDepthNode = *I; depth = nodeAttr.depth; MOB = nodeAttr.MOB; } } } //Append highest depth node to the NodeOrder if(find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) { DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n"); FinalNodeOrder.push_back(highestDepthNode); } //Remove heightestDepthNode from IntersectOrder IntersectCurrent.erase(find(IntersectCurrent.begin(), IntersectCurrent.end(),highestDepthNode)); //Intersect heightDepthNode's pred with CurrentSet for(MSchedGraphNode::pred_iterator P = highestDepthNode->pred_begin(), E = highestDepthNode->pred_end(); P != E; ++P) { //if(lower_bound(CurrentSet->begin(), // CurrentSet->end(), *P) != CurrentSet->end()) { if(find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) { if(ignoreEdge(*P, highestDepthNode)) continue; //If not already in Intersect, add if(find(IntersectCurrent.begin(), IntersectCurrent.end(), *P) == IntersectCurrent.end()) IntersectCurrent.push_back(*P); } } } //End while loop over Intersect Size //Change order order = TOP_DOWN; //Reset IntersectCurrent to reflect changes in OrderNodes IntersectCurrent.clear(); succIntersect(*CurrentSet, IntersectCurrent); } //End if BOTTOM_DOWN } //End Wrapping while loop }//End for over all sets of nodes //Return final Order //return FinalNodeOrder; } void ModuloSchedulingPass::computeSchedule() { bool success = false; while(!success) { //Loop over the final node order and process each node for(std::vector::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) { //CalculateEarly and Late start int EarlyStart = -1; int LateStart = 99999; //Set to something higher then we would ever expect (FIXME) bool hasSucc = false; bool hasPred = false; if(!(*I)->isBranch()) { //Loop over nodes in the schedule and determine if they are predecessors //or successors of the node we are trying to schedule for(MSSchedule::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end(); nodesByCycle != nodesByCycleEnd; ++nodesByCycle) { //For this cycle, get the vector of nodes schedule and loop over it for(std::vector::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) { if((*I)->isPredecessor(*schedNode)) { if(!ignoreEdge(*schedNode, *I)) { int diff = (*I)->getInEdge(*schedNode).getIteDiff(); int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II; DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n"); DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n"); EarlyStart = std::max(EarlyStart, ES_Temp); hasPred = true; } } if((*I)->isSuccessor(*schedNode)) { if(!ignoreEdge(*I,*schedNode)) { int diff = (*schedNode)->getInEdge(*I).getIteDiff(); int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II; DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n"); DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n"); LateStart = std::min(LateStart, LS_Temp); hasSucc = true; } } } } } else { //WARNING: HACK! FIXME!!!! EarlyStart = II-1; LateStart = II-1; hasPred = 1; hasSucc = 1; } DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n"); DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n"); //Check if the node has no pred or successors and set Early Start to its ASAP if(!hasSucc && !hasPred) EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP; //Now, try to schedule this node depending upon its pred and successor in the schedule //already if(!hasSucc && hasPred) success = scheduleNode(*I, EarlyStart, (EarlyStart + II -1)); else if(!hasPred && hasSucc) success = scheduleNode(*I, LateStart, (LateStart - II +1)); else if(hasPred && hasSucc) success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1))); else success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1); if(!success) { ++II; schedule.clear(); break; } } DEBUG(std::cerr << "Constructing Kernel\n"); success = schedule.constructKernel(II); if(!success) { ++II; schedule.clear(); } } } bool ModuloSchedulingPass::scheduleNode(MSchedGraphNode *node, int start, int end) { bool success = false; DEBUG(std::cerr << *node << " (Start Cycle: " << start << ", End Cycle: " << end << ")\n"); //Make sure start and end are not negative if(start < 0) start = 0; if(end < 0) end = 0; bool forward = true; if(start > end) forward = false; bool increaseSC = true; int cycle = start ; while(increaseSC) { increaseSC = false; increaseSC = schedule.insert(node, cycle); if(!increaseSC) return true; //Increment cycle to try again if(forward) { ++cycle; DEBUG(std::cerr << "Increase cycle: " << cycle << "\n"); if(cycle > end) return false; } else { --cycle; DEBUG(std::cerr << "Decrease cycle: " << cycle << "\n"); if(cycle < end) return false; } } return success; } void ModuloSchedulingPass::writePrologues(std::vector &prologues, MachineBasicBlock *origBB, std::vector &llvm_prologues, std::map > &valuesToSave, std::map > > &newValues, std::map &newValLocation) { //Keep a map to easily know whats in the kernel std::map > inKernel; int maxStageCount = 0; MSchedGraphNode *branch = 0; for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { maxStageCount = std::max(maxStageCount, I->second); //Ignore the branch, we will handle this separately if(I->first->isBranch()) { branch = I->first; continue; } //Put int the map so we know what instructions in each stage are in the kernel DEBUG(std::cerr << "Inserting instruction " << *(I->first->getInst()) << " into map at stage " << I->second << "\n"); inKernel[I->second].insert(I->first->getInst()); } //Get target information to look at machine operands const TargetInstrInfo *mii = target.getInstrInfo(); //Now write the prologues for(int i = 0; i < maxStageCount; ++i) { BasicBlock *llvmBB = new BasicBlock("PROLOGUE", (Function*) (origBB->getBasicBlock()->getParent())); MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB); DEBUG(std::cerr << "i=" << i << "\n"); for(int j = 0; j <= i; ++j) { for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) { if(inKernel[j].count(&*MI)) { machineBB->push_back(MI->clone()); Instruction *tmp; //After cloning, we may need to save the value that this instruction defines for(unsigned opNum=0; opNum < MI->getNumOperands(); ++opNum) { //get machine operand const MachineOperand &mOp = MI->getOperand(opNum); if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { //Check if this is a value we should save if(valuesToSave.count(mOp.getVRegValue())) { //Save copy in tmpInstruction tmp = new TmpInstruction(mOp.getVRegValue()); DEBUG(std::cerr << "Value: " << mOp.getVRegValue() << " New Value: " << tmp << " Stage: " << i << "\n"); newValues[mOp.getVRegValue()][i].push_back(tmp); newValLocation[tmp] = machineBB; DEBUG(std::cerr << "Machine Instr Operands: " << mOp.getVRegValue() << ", 0, " << tmp << "\n"); //Create machine instruction and put int machineBB MachineInstr *saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); DEBUG(std::cerr << "Created new machine instr: " << *saveValue << "\n"); } } } } } } //Stick in branch at the end machineBB->push_back(branch->getInst()->clone()); (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB); prologues.push_back(machineBB); llvm_prologues.push_back(llvmBB); } } void ModuloSchedulingPass::writeEpilogues(std::vector &epilogues, const MachineBasicBlock *origBB, std::vector &llvm_epilogues, std::map > &valuesToSave, std::map > > &newValues,std::map &newValLocation ) { std::map > inKernel; int maxStageCount = 0; for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { maxStageCount = std::max(maxStageCount, I->second); //Ignore the branch, we will handle this separately if(I->first->isBranch()) continue; //Put int the map so we know what instructions in each stage are in the kernel inKernel[I->second].insert(I->first->getInst()); } std::map valPHIs; //Now write the epilogues for(int i = maxStageCount-1; i >= 0; --i) { BasicBlock *llvmBB = new BasicBlock("EPILOGUE", (Function*) (origBB->getBasicBlock()->getParent())); MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB); DEBUG(std::cerr << " i: " << i << "\n"); //Spit out phi nodes for(std::map > >::iterator V = newValues.begin(), E = newValues.end(); V != E; ++V) { DEBUG(std::cerr << "Writing phi for" << *(V->first)); for(std::map >::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I) { if(I->first == i) { DEBUG(std::cerr << "BLAH " << i << "\n"); //Vector must have two elements in it: assert(I->second.size() == 2 && "Vector size should be two\n"); Instruction *tmp = new TmpInstruction(I->second[0]); MachineInstr *saveValue = BuildMI(machineBB, V9::PHI, 3).addReg(I->second[0]).addReg(I->second[1]).addRegDef(tmp); valPHIs[V->first] = tmp; } } } for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) { for(int j=maxStageCount; j > i; --j) { if(inKernel[j].count(&*MI)) { DEBUG(std::cerr << "Cloning instruction " << *MI << "\n"); MachineInstr *clone = MI->clone(); //Update operands that need to use the result from the phi for(unsigned i=0; i < clone->getNumOperands(); ++i) { //get machine operand const MachineOperand &mOp = clone->getOperand(i); if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse())) { if(valPHIs.count(mOp.getVRegValue())) { //Update the operand in the cloned instruction clone->getOperand(i).setValueReg(valPHIs[mOp.getVRegValue()]); } } } machineBB->push_back(clone); } } } (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB); epilogues.push_back(machineBB); llvm_epilogues.push_back(llvmBB); } } void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *machineBB, std::map > &valuesToSave, std::map > > &newValues, std::map &newValLocation) { //Keep track of operands that are read and saved from a previous iteration. The new clone //instruction will use the result of the phi instead. std::map finalPHIValue; std::map kernelValue; //Create TmpInstructions for the final phis for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { //Clone instruction const MachineInstr *inst = I->first->getInst(); MachineInstr *instClone = inst->clone(); //If this instruction is from a previous iteration, update its operands if(I->second > 0) { //Loop over Machine Operands const MachineInstr *inst = I->first->getInst(); for(unsigned i=0; i < inst->getNumOperands(); ++i) { //get machine operand const MachineOperand &mOp = inst->getOperand(i); if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { //If its in the value saved, we need to create a temp instruction and use that instead if(valuesToSave.count(mOp.getVRegValue())) { TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue()); //Update the operand in the cloned instruction instClone->getOperand(i).setValueReg(tmp); //save this as our final phi finalPHIValue[mOp.getVRegValue()] = tmp; newValLocation[tmp] = machineBB; } } } //Insert into machine basic block machineBB->push_back(instClone); } //Otherwise we just check if we need to save a value or not else { //Insert into machine basic block machineBB->push_back(instClone); //Loop over Machine Operands const MachineInstr *inst = I->first->getInst(); for(unsigned i=0; i < inst->getNumOperands(); ++i) { //get machine operand const MachineOperand &mOp = inst->getOperand(i); if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) { if(valuesToSave.count(mOp.getVRegValue())) { TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue()); //Create new machine instr and put in MBB MachineInstr *saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); //Save for future cleanup kernelValue[mOp.getVRegValue()] = tmp; newValLocation[tmp] = machineBB; } } } } } //Clean up by writing phis for(std::map > >::iterator V = newValues.begin(), E = newValues.end(); V != E; ++V) { DEBUG(std::cerr << "Writing phi for" << *(V->first)); //FIXME int maxStage = 1; //Last phi Instruction *lastPHI = 0; for(std::map >::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I) { int stage = I->first; DEBUG(std::cerr << "Stage: " << I->first << " vector size: " << I->second.size() << "\n"); //Assert if this vector is ever greater then 1. This should not happen //FIXME: Get rid of vector if we convince ourselves this won't happn assert(I->second.size() == 1 && "Vector of values should be of size \n"); //We must handle the first and last phi specially if(stage == maxStage) { //The resulting value must be the Value* we created earlier assert(lastPHI != 0 && "Last phi is NULL!\n"); MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPHI).addReg(I->second[0]).addRegDef(finalPHIValue[V->first]); I->second.push_back(finalPHIValue[V->first]); } else if(stage == 0) { lastPHI = new TmpInstruction(I->second[0]); MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(kernelValue[V->first]).addReg(I->second[0]).addRegDef(lastPHI); I->second.push_back(lastPHI); newValLocation[lastPHI] = machineBB; } else { Instruction *tmp = new TmpInstruction(I->second[0]); MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPHI).addReg(I->second[0]).addRegDef(tmp); lastPHI = tmp; I->second.push_back(lastPHI); newValLocation[tmp] = machineBB; } } } } void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vector &prologues, std::vector &epilogues, MachineBasicBlock *kernelBB, std::map &newValLocation) { //Worklist to delete things std::vector > worklist; const TargetInstrInfo *TMI = target.getInstrInfo(); //Start with the kernel and for each phi insert a copy for the phi def and for each arg for(MachineBasicBlock::iterator I = kernelBB->begin(), E = kernelBB->end(); I != E; ++I) { //Get op code and check if its a phi if(I->getOpcode() == V9::PHI) { Instruction *tmp = 0; for(unsigned i = 0; i < I->getNumOperands(); ++i) { //Get Operand const MachineOperand &mOp = I->getOperand(i); assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n"); if(!tmp) { tmp = new TmpInstruction(mOp.getVRegValue()); } //Now for all our arguments we read, OR to the new TmpInstruction that we created if(mOp.isUse()) { DEBUG(std::cerr << "Use: " << mOp << "\n"); //Place a copy at the end of its BB but before the branches assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n"); //Reverse iterate to find the branches, we can safely assume no instructions have been //put in the nop positions for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) { MachineOpCode opc = inst->getOpcode(); if(TMI->isBranch(opc) || TMI->isNop(opc)) continue; else { BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); break; } } } else { //Remove the phi and replace it with an OR DEBUG(std::cerr << "Def: " << mOp << "\n"); BuildMI(*kernelBB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue()); worklist.push_back(std::make_pair(kernelBB, I)); } } } } //Remove phis from epilogue for(std::vector::iterator MB = epilogues.begin(), ME = epilogues.end(); MB != ME; ++MB) { for(MachineBasicBlock::iterator I = (*MB)->begin(), E = (*MB)->end(); I != E; ++I) { //Get op code and check if its a phi if(I->getOpcode() == V9::PHI) { Instruction *tmp = 0; for(unsigned i = 0; i < I->getNumOperands(); ++i) { //Get Operand const MachineOperand &mOp = I->getOperand(i); assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n"); if(!tmp) { tmp = new TmpInstruction(mOp.getVRegValue()); } //Now for all our arguments we read, OR to the new TmpInstruction that we created if(mOp.isUse()) { DEBUG(std::cerr << "Use: " << mOp << "\n"); //Place a copy at the end of its BB but before the branches assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n"); //Reverse iterate to find the branches, we can safely assume no instructions have been //put in the nop positions for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) { MachineOpCode opc = inst->getOpcode(); if(TMI->isBranch(opc) || TMI->isNop(opc)) continue; else { BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp); break; } } } else { //Remove the phi and replace it with an OR DEBUG(std::cerr << "Def: " << mOp << "\n"); BuildMI(**MB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue()); worklist.push_back(std::make_pair(*MB,I)); } } } } } //Delete the phis for(std::vector >::iterator I = worklist.begin(), E = worklist.end(); I != E; ++I) { I->first->erase(I->second); } } void ModuloSchedulingPass::reconstructLoop(MachineBasicBlock *BB) { //First find the value *'s that we need to "save" std::map > valuesToSave; //Loop over kernel and only look at instructions from a stage > 0 //Look at its operands and save values *'s that are read for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) { if(I->second > 0) { //For this instruction, get the Value*'s that it reads and put them into the set. //Assert if there is an operand of another type that we need to save const MachineInstr *inst = I->first->getInst(); for(unsigned i=0; i < inst->getNumOperands(); ++i) { //get machine operand const MachineOperand &mOp = inst->getOperand(i); if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) { //find the value in the map if (const Value* srcI = mOp.getVRegValue()) valuesToSave[srcI] = std::make_pair(I->first, i); } if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) { assert("Our assumption is wrong. We have another type of register that needs to be saved\n"); } } } } //The new loop will consist of one or more prologues, the kernel, and one or more epilogues. //Map to keep track of old to new values std::map > > newValues; //Another map to keep track of what machine basic blocks these new value*s are in since //they have no llvm instruction equivalent std::map newValLocation; std::vector prologues; std::vector llvm_prologues; //Write prologue writePrologues(prologues, BB, llvm_prologues, valuesToSave, newValues, newValLocation); BasicBlock *llvmKernelBB = new BasicBlock("Kernel", (Function*) (BB->getBasicBlock()->getParent())); MachineBasicBlock *machineKernelBB = new MachineBasicBlock(llvmKernelBB); writeKernel(llvmKernelBB, machineKernelBB, valuesToSave, newValues, newValLocation); (((MachineBasicBlock*)BB)->getParent())->getBasicBlockList().push_back(machineKernelBB); std::vector epilogues; std::vector llvm_epilogues; //Write epilogues writeEpilogues(epilogues, BB, llvm_epilogues, valuesToSave, newValues, newValLocation); const TargetInstrInfo *TMI = target.getInstrInfo(); //Fix up machineBB and llvmBB branches for(unsigned I = 0; I < prologues.size(); ++I) { MachineInstr *branch = 0; //Find terminator since getFirstTerminator does not work! for(MachineBasicBlock::reverse_iterator mInst = prologues[I]->rbegin(), mInstEnd = prologues[I]->rend(); mInst != mInstEnd; ++mInst) { MachineOpCode OC = mInst->getOpcode(); if(TMI->isBranch(OC)) { branch = &*mInst; DEBUG(std::cerr << *mInst << "\n"); break; } } //Update branch for(unsigned opNum = 0; opNum < branch->getNumOperands(); ++opNum) { MachineOperand &mOp = branch->getOperand(opNum); if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { mOp.setValueReg(llvm_epilogues[(llvm_epilogues.size()-1-I)]); } } //Update llvm basic block with our new branch instr DEBUG(std::cerr << BB->getBasicBlock()->getTerminator() << "\n"); const BranchInst *branchVal = dyn_cast(BB->getBasicBlock()->getTerminator()); TmpInstruction *tmp = new TmpInstruction(branchVal->getCondition()); if(I == prologues.size()-1) { TerminatorInst *newBranch = new BranchInst(llvmKernelBB, llvm_epilogues[(llvm_epilogues.size()-1-I)], tmp, llvm_prologues[I]); } else TerminatorInst *newBranch = new BranchInst(llvm_prologues[I+1], llvm_epilogues[(llvm_epilogues.size()-1-I)], tmp, llvm_prologues[I]); assert(branch != 0 && "There must be a terminator for this machine basic block!\n"); //Push nop onto end of machine basic block BuildMI(prologues[I], V9::NOP, 0); //Now since I don't trust fall throughs, add a unconditional branch to the next prologue if(I != prologues.size()-1) BuildMI(prologues[I], V9::BA, 1).addReg(llvm_prologues[I+1]); else BuildMI(prologues[I], V9::BA, 1).addReg(llvmKernelBB); //Add one more nop! BuildMI(prologues[I], V9::NOP, 0); } //Fix up kernel machine branches MachineInstr *branch = 0; for(MachineBasicBlock::reverse_iterator mInst = machineKernelBB->rbegin(), mInstEnd = machineKernelBB->rend(); mInst != mInstEnd; ++mInst) { MachineOpCode OC = mInst->getOpcode(); if(TMI->isBranch(OC)) { branch = &*mInst; DEBUG(std::cerr << *mInst << "\n"); break; } } assert(branch != 0 && "There must be a terminator for the kernel machine basic block!\n"); //Update kernel self loop branch for(unsigned opNum = 0; opNum < branch->getNumOperands(); ++opNum) { MachineOperand &mOp = branch->getOperand(opNum); if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { mOp.setValueReg(llvmKernelBB); } } //Update kernelLLVM branches const BranchInst *branchVal = dyn_cast(BB->getBasicBlock()->getTerminator()); TerminatorInst *newBranch = new BranchInst(llvmKernelBB, llvm_epilogues[0], new TmpInstruction(branchVal->getCondition()), llvmKernelBB); //Add kernel noop BuildMI(machineKernelBB, V9::NOP, 0); //Add unconditional branch to first epilogue BuildMI(machineKernelBB, V9::BA, 1).addReg(llvm_epilogues[0]); //Add kernel noop BuildMI(machineKernelBB, V9::NOP, 0); //Lastly add unconditional branches for the epilogues for(unsigned I = 0; I < epilogues.size(); ++I) { //Now since I don't trust fall throughs, add a unconditional branch to the next prologue if(I != epilogues.size()-1) { BuildMI(epilogues[I], V9::BA, 1).addReg(llvm_epilogues[I+1]); //Add unconditional branch to end of epilogue TerminatorInst *newBranch = new BranchInst(llvm_epilogues[I+1], llvm_epilogues[I]); } else { MachineBasicBlock *origBlock = (MachineBasicBlock*) BB; for(MachineBasicBlock::reverse_iterator inst = origBlock->rbegin(), instEnd = origBlock->rend(); inst != instEnd; ++inst) { MachineOpCode OC = inst->getOpcode(); if(TMI->isBranch(OC)) { branch = &*inst; DEBUG(std::cerr << *inst << "\n"); break; } for(unsigned opNum = 0; opNum < branch->getNumOperands(); ++opNum) { MachineOperand &mOp = branch->getOperand(opNum); if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { BuildMI(epilogues[I], V9::BA, 1).addReg(mOp.getVRegValue()); break; } } } //Update last epilogue exit branch BranchInst *branchVal = (BranchInst*) dyn_cast(BB->getBasicBlock()->getTerminator()); //Find where we are supposed to branch to BasicBlock *nextBlock = 0; for(unsigned j=0; j getNumSuccessors(); ++j) { if(branchVal->getSuccessor(j) != BB->getBasicBlock()) nextBlock = branchVal->getSuccessor(j); } TerminatorInst *newBranch = new BranchInst(nextBlock, llvm_epilogues[I]); } //Add one more nop! BuildMI(epilogues[I], V9::NOP, 0); } //FIX UP Machine BB entry!! //We are looking at the predecesor of our loop basic block and we want to change its ba instruction //Find all llvm basic blocks that branch to the loop entry and change to our first prologue. const BasicBlock *llvmBB = BB->getBasicBlock(); for(pred_const_iterator P = pred_begin(llvmBB), PE = pred_end(llvmBB); P != PE; ++PE) { if(*P == llvmBB) continue; else { DEBUG(std::cerr << "Found our entry BB\n"); //Get the Terminator instruction for this basic block and print it out DEBUG(std::cerr << *((*P)->getTerminator()) << "\n"); //Update the terminator TerminatorInst *term = ((BasicBlock*)*P)->getTerminator(); for(unsigned i=0; i < term->getNumSuccessors(); ++i) { if(term->getSuccessor(i) == llvmBB) { DEBUG(std::cerr << "Replacing successor bb\n"); if(llvm_prologues.size() > 0) { term->setSuccessor(i, llvm_prologues[0]); //Also update its corresponding machine instruction MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(term); for (unsigned j = 0; j < tempMvec.size(); j++) { MachineInstr *temp = tempMvec[j]; MachineOpCode opc = temp->getOpcode(); if(TMI->isBranch(opc)) { DEBUG(std::cerr << *temp << "\n"); //Update branch for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) { MachineOperand &mOp = temp->getOperand(opNum); if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { mOp.setValueReg(llvm_prologues[0]); } } } } } else { term->setSuccessor(i, llvmKernelBB); //Also update its corresponding machine instruction MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(term); for (unsigned j = 0; j < tempMvec.size(); j++) { MachineInstr *temp = tempMvec[j]; MachineOpCode opc = temp->getOpcode(); if(TMI->isBranch(opc)) { DEBUG(std::cerr << *temp << "\n"); //Update branch for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) { MachineOperand &mOp = temp->getOperand(opNum); if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) { mOp.setValueReg(llvmKernelBB); } } } } } } } break; } } removePHIs(BB, prologues, epilogues, machineKernelBB, newValLocation); //Print out epilogues and prologue DEBUG(for(std::vector::iterator I = prologues.begin(), E = prologues.end(); I != E; ++I) { std::cerr << "PROLOGUE\n"; (*I)->print(std::cerr); }); DEBUG(std::cerr << "KERNEL\n"); DEBUG(machineKernelBB->print(std::cerr)); DEBUG(for(std::vector::iterator I = epilogues.begin(), E = epilogues.end(); I != E; ++I) { std::cerr << "EPILOGUE\n"; (*I)->print(std::cerr); }); DEBUG(std::cerr << "New Machine Function" << "\n"); DEBUG(std::cerr << BB->getParent() << "\n"); BB->getParent()->getBasicBlockList().erase(BB); }