//===-- LiveRangeInfo.cpp -------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Live range construction for coloring-based register allocation for LLVM. // //===----------------------------------------------------------------------===// #include "IGNode.h" #include "LiveRangeInfo.h" #include "RegAllocCommon.h" #include "RegClass.h" #include "llvm/Function.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "../SparcV9RegInfo.h" #include "llvm/ADT/SetOperations.h" #include namespace llvm { unsigned LiveRange::getRegClassID() const { return getRegClass()->getID(); } LiveRangeInfo::LiveRangeInfo(const Function *F, const TargetMachine &tm, std::vector &RCL) : Meth(F), TM(tm), RegClassList(RCL), MRI(*tm.getRegInfo()) { } LiveRangeInfo::~LiveRangeInfo() { for (LiveRangeMapType::iterator MI = LiveRangeMap.begin(); MI != LiveRangeMap.end(); ++MI) { if (MI->first && MI->second) { LiveRange *LR = MI->second; // we need to be careful in deleting LiveRanges in LiveRangeMap // since two/more Values in the live range map can point to the same // live range. We have to make the other entries NULL when we delete // a live range. for (LiveRange::iterator LI = LR->begin(); LI != LR->end(); ++LI) LiveRangeMap[*LI] = 0; delete LR; } } } //--------------------------------------------------------------------------- // union two live ranges into one. The 2nd LR is deleted. Used for coalescing. // Note: the caller must make sure that L1 and L2 are distinct and both // LRs don't have suggested colors //--------------------------------------------------------------------------- void LiveRangeInfo::unionAndUpdateLRs(LiveRange *L1, LiveRange *L2) { assert(L1 != L2 && (!L1->hasSuggestedColor() || !L2->hasSuggestedColor())); assert(! (L1->hasColor() && L2->hasColor()) || L1->getColor() == L2->getColor()); L2->insert (L1->begin(), L1->end()); // add elements of L2 to L1 for(LiveRange::iterator L2It = L2->begin(); L2It != L2->end(); ++L2It) { L1->insert(*L2It); // add the var in L2 to L1 LiveRangeMap[*L2It] = L1; // now the elements in L2 should map //to L1 } // set call interference for L1 from L2 if (L2->isCallInterference()) L1->setCallInterference(); // add the spill costs L1->addSpillCost(L2->getSpillCost()); // If L2 has a color, give L1 that color. Note that L1 may have had the same // color or none, but would not have a different color as asserted above. if (L2->hasColor()) L1->setColor(L2->getColor()); // Similarly, if LROfUse(L2) has a suggested color, the new range // must have the same color. if (L2->hasSuggestedColor()) L1->setSuggestedColor(L2->getSuggestedColor()); delete L2; // delete L2 as it is no longer needed } //--------------------------------------------------------------------------- // Method for creating a single live range for a definition. // The definition must be represented by a virtual register (a Value). // Note: this function does *not* check that no live range exists for def. //--------------------------------------------------------------------------- LiveRange* LiveRangeInfo::createNewLiveRange(const Value* Def, bool isCC /* = false*/) { LiveRange* DefRange = new LiveRange(); // Create a new live range, DefRange->insert(Def); // add Def to it, LiveRangeMap[Def] = DefRange; // and update the map. // set the register class of the new live range DefRange->setRegClass(RegClassList[MRI.getRegClassIDOfType(Def->getType(), isCC)]); if (DEBUG_RA >= RA_DEBUG_LiveRanges) { std::cerr << " Creating a LR for def "; if (isCC) std::cerr << " (CC Register!)"; std::cerr << " : " << RAV(Def) << "\n"; } return DefRange; } LiveRange* LiveRangeInfo::createOrAddToLiveRange(const Value* Def, bool isCC /* = false*/) { LiveRange *DefRange = LiveRangeMap[Def]; // check if the LR is already there (because of multiple defs) if (!DefRange) { DefRange = createNewLiveRange(Def, isCC); } else { // live range already exists DefRange->insert(Def); // add the operand to the range LiveRangeMap[Def] = DefRange; // make operand point to merged set if (DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << " Added to existing LR for def: " << RAV(Def) << "\n"; } return DefRange; } //--------------------------------------------------------------------------- // Method for constructing all live ranges in a function. It creates live // ranges for all values defined in the instruction stream. Also, it // creates live ranges for all incoming arguments of the function. //--------------------------------------------------------------------------- void LiveRangeInfo::constructLiveRanges() { if (DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "Constructing Live Ranges ...\n"; // first find the live ranges for all incoming args of the function since // those LRs start from the start of the function for (Function::const_aiterator AI = Meth->abegin(); AI != Meth->aend(); ++AI) createNewLiveRange(AI, /*isCC*/ false); // Now suggest hardware registers for these function args MRI.suggestRegs4MethodArgs(Meth, *this); // Now create LRs for machine instructions. A new LR will be created // only for defs in the machine instr since, we assume that all Values are // defined before they are used. However, there can be multiple defs for // the same Value in machine instructions. // // Also, find CALL and RETURN instructions, which need extra work. // MachineFunction &MF = MachineFunction::get(Meth); for (MachineFunction::iterator BBI = MF.begin(); BBI != MF.end(); ++BBI) { MachineBasicBlock &MBB = *BBI; // iterate over all the machine instructions in BB for(MachineBasicBlock::iterator MInstIterator = MBB.begin(); MInstIterator != MBB.end(); ++MInstIterator) { MachineInstr *MInst = MInstIterator; // If the machine instruction is a call/return instruction, add it to // CallRetInstrList for processing its args, ret value, and ret addr. // if(TM.getInstrInfo()->isReturn(MInst->getOpcode()) || TM.getInstrInfo()->isCall(MInst->getOpcode())) CallRetInstrList.push_back(MInst); // iterate over explicit MI operands and create a new LR // for each operand that is defined by the instruction for (MachineInstr::val_op_iterator OpI = MInst->begin(), OpE = MInst->end(); OpI != OpE; ++OpI) if (OpI.isDef()) { const Value *Def = *OpI; bool isCC = (OpI.getMachineOperand().getType() == MachineOperand::MO_CCRegister); LiveRange* LR = createOrAddToLiveRange(Def, isCC); // If the operand has a pre-assigned register, // set it directly in the LiveRange if (OpI.getMachineOperand().hasAllocatedReg()) { unsigned getClassId; LR->setColor(MRI.getClassRegNum(OpI.getMachineOperand().getReg(), getClassId)); } } // iterate over implicit MI operands and create a new LR // for each operand that is defined by the instruction for (unsigned i = 0; i < MInst->getNumImplicitRefs(); ++i) if (MInst->getImplicitOp(i).isDef()) { const Value *Def = MInst->getImplicitRef(i); LiveRange* LR = createOrAddToLiveRange(Def, /*isCC*/ false); // If the implicit operand has a pre-assigned register, // set it directly in the LiveRange if (MInst->getImplicitOp(i).hasAllocatedReg()) { unsigned getClassId; LR->setColor(MRI.getClassRegNum( MInst->getImplicitOp(i).getReg(), getClassId)); } } } // for all machine instructions in the BB } // for all BBs in function // Now we have to suggest clors for call and return arg live ranges. // Also, if there are implicit defs (e.g., retun value of a call inst) // they must be added to the live range list // suggestRegs4CallRets(); if( DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "Initial Live Ranges constructed!\n"; } //--------------------------------------------------------------------------- // If some live ranges must be colored with specific hardware registers // (e.g., for outgoing call args), suggesting of colors for such live // ranges is done using target specific function. Those functions are called // from this function. The target specific methods must: // 1) suggest colors for call and return args. // 2) create new LRs for implicit defs in machine instructions //--------------------------------------------------------------------------- void LiveRangeInfo::suggestRegs4CallRets() { std::vector::iterator It = CallRetInstrList.begin(); for( ; It != CallRetInstrList.end(); ++It) { MachineInstr *MInst = *It; MachineOpCode OpCode = MInst->getOpcode(); if (TM.getInstrInfo()->isReturn(OpCode)) MRI.suggestReg4RetValue(MInst, *this); else if (TM.getInstrInfo()->isCall(OpCode)) MRI.suggestRegs4CallArgs(MInst, *this); else assert( 0 && "Non call/ret instr in CallRetInstrList" ); } } //-------------------------------------------------------------------------- // The following method coalesces live ranges when possible. This method // must be called after the interference graph has been constructed. /* Algorithm: for each BB in function for each machine instruction (inst) for each definition (def) in inst for each operand (op) of inst that is a use if the def and op are of the same register type if the def and op do not interfere //i.e., not simultaneously live if (degree(LR of def) + degree(LR of op)) <= # avail regs if both LRs do not have suggested colors merge2IGNodes(def, op) // i.e., merge 2 LRs */ //--------------------------------------------------------------------------- // Checks if live range LR interferes with any node assigned or suggested to // be assigned the specified color // inline bool InterferesWithColor(const LiveRange& LR, unsigned color) { IGNode* lrNode = LR.getUserIGNode(); for (unsigned n=0, NN = lrNode->getNumOfNeighbors(); n < NN; n++) { LiveRange *neighLR = lrNode->getAdjIGNode(n)->getParentLR(); if (neighLR->hasColor() && neighLR->getColor() == color) return true; if (neighLR->hasSuggestedColor() && neighLR->getSuggestedColor() == color) return true; } return false; } // Cannot coalesce if any of the following is true: // (1) Both LRs have suggested colors (should be "different suggested colors"?) // (2) Both LR1 and LR2 have colors and the colors are different // (but if the colors are the same, it is definitely safe to coalesce) // (3) LR1 has color and LR2 interferes with any LR that has the same color // (4) LR2 has color and LR1 interferes with any LR that has the same color // inline bool InterfsPreventCoalescing(const LiveRange& LROfDef, const LiveRange& LROfUse) { // (4) if they have different suggested colors, cannot coalesce if (LROfDef.hasSuggestedColor() && LROfUse.hasSuggestedColor()) return true; // if neither has a color, nothing more to do. if (! LROfDef.hasColor() && ! LROfUse.hasColor()) return false; // (2, 3) if L1 has color... if (LROfDef.hasColor()) { if (LROfUse.hasColor()) return (LROfUse.getColor() != LROfDef.getColor()); return InterferesWithColor(LROfUse, LROfDef.getColor()); } // (4) else only LROfUse has a color: check if that could interfere return InterferesWithColor(LROfDef, LROfUse.getColor()); } void LiveRangeInfo::coalesceLRs() { if(DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "\nCoalescing LRs ...\n"; MachineFunction &MF = MachineFunction::get(Meth); for (MachineFunction::iterator BBI = MF.begin(); BBI != MF.end(); ++BBI) { MachineBasicBlock &MBB = *BBI; // iterate over all the machine instructions in BB for(MachineBasicBlock::iterator MII = MBB.begin(); MII != MBB.end(); ++MII){ const MachineInstr *MI = MII; if( DEBUG_RA >= RA_DEBUG_LiveRanges) { std::cerr << " *Iterating over machine instr "; MI->dump(); std::cerr << "\n"; } // iterate over MI operands to find defs for(MachineInstr::const_val_op_iterator DefI = MI->begin(), DefE = MI->end(); DefI != DefE; ++DefI) { if (DefI.isDef()) { // this operand is modified LiveRange *LROfDef = getLiveRangeForValue( *DefI ); RegClass *RCOfDef = LROfDef->getRegClass(); MachineInstr::const_val_op_iterator UseI = MI->begin(), UseE = MI->end(); for( ; UseI != UseE; ++UseI) { // for all uses LiveRange *LROfUse = getLiveRangeForValue( *UseI ); if (!LROfUse) { // if LR of use is not found //don't warn about labels if (!isa(*UseI) && DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << " !! Warning: No LR for use " << RAV(*UseI)<< "\n"; continue; // ignore and continue } if (LROfUse == LROfDef) // nothing to merge if they are same continue; if (MRI.getRegTypeForLR(LROfDef) == MRI.getRegTypeForLR(LROfUse)) { // If the two RegTypes are the same if (!RCOfDef->getInterference(LROfDef, LROfUse) ) { unsigned CombinedDegree = LROfDef->getUserIGNode()->getNumOfNeighbors() + LROfUse->getUserIGNode()->getNumOfNeighbors(); if (CombinedDegree > RCOfDef->getNumOfAvailRegs()) { // get more precise estimate of combined degree CombinedDegree = LROfDef->getUserIGNode()-> getCombinedDegree(LROfUse->getUserIGNode()); } if (CombinedDegree <= RCOfDef->getNumOfAvailRegs()) { // if both LRs do not have different pre-assigned colors // and both LRs do not have suggested colors if (! InterfsPreventCoalescing(*LROfDef, *LROfUse)) { RCOfDef->mergeIGNodesOfLRs(LROfDef, LROfUse); unionAndUpdateLRs(LROfDef, LROfUse); } } // if combined degree is less than # of regs } // if def and use do not interfere }// if reg classes are the same } // for all uses } // if def } // for all defs } // for all machine instructions } // for all BBs if (DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "\nCoalescing Done!\n"; } /*--------------------------- Debug code for printing ---------------*/ void LiveRangeInfo::printLiveRanges() { LiveRangeMapType::iterator HMI = LiveRangeMap.begin(); // hash map iterator std::cerr << "\nPrinting Live Ranges from Hash Map:\n"; for( ; HMI != LiveRangeMap.end(); ++HMI) { if (HMI->first && HMI->second) { std::cerr << " Value* " << RAV(HMI->first) << "\t: "; if (IGNode* igNode = HMI->second->getUserIGNode()) std::cerr << "LR# " << igNode->getIndex(); else std::cerr << "LR# " << ""; std::cerr << "\t:Values = " << *HMI->second << "\n"; } } } } // End llvm namespace