//===-- SparcV9TargetMachine.cpp - SparcV9 Target Machine Implementation --===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Primary interface to machine description for the UltraSPARC. Primarily just // initializes machine-dependent parameters in class TargetMachine, and creates // machine-dependent subclasses for classes such as TargetInstrInfo. // //===----------------------------------------------------------------------===// #include "llvm/Function.h" #include "llvm/PassManager.h" #include "llvm/Assembly/PrintModulePass.h" #include "llvm/CodeGen/InstrScheduling.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetMachineRegistry.h" #include "llvm/Transforms/Scalar.h" #include "MappingInfo.h" #include "MachineFunctionInfo.h" #include "MachineCodeForInstruction.h" #include "SparcV9Internals.h" #include "SparcV9TargetMachine.h" #include "SparcV9BurgISel.h" #include "Support/CommandLine.h" using namespace llvm; static const unsigned ImplicitRegUseList[] = { 0 }; /* not used yet */ // Build the MachineInstruction Description Array... const TargetInstrDescriptor llvm::SparcV9MachineInstrDesc[] = { #define I(ENUM, OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \ NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS) \ { OPCODESTRING, NUMOPERANDS, RESULTPOS, MAXIMM, IMMSE, \ NUMDELAYSLOTS, LATENCY, SCHEDCLASS, INSTFLAGS, 0, \ ImplicitRegUseList, ImplicitRegUseList }, #include "SparcV9Instr.def" }; //--------------------------------------------------------------------------- // Command line options to control choice of code generation passes. //--------------------------------------------------------------------------- namespace { cl::opt DisableSched("disable-sched", cl::desc("Disable local scheduling pass")); cl::opt DisablePeephole("disable-peephole", cl::desc("Disable peephole optimization pass")); cl::opt EmitMappingInfo("enable-maps", cl::desc("Emit LLVM-to-MachineCode mapping info to assembly")); cl::opt DisableStrip("disable-strip", cl::desc("Do not strip the LLVM bytecode in executable")); // Register the target. RegisterTarget X("sparcv9", " SPARC V9"); } unsigned SparcV9TargetMachine::getJITMatchQuality() { #if defined(sparc) || defined(__sparc__) || defined(__sparcv9) return 10; #else return 0; #endif } unsigned SparcV9TargetMachine::getModuleMatchQuality(const Module &M) { if (M.getEndianness() == Module::BigEndian && M.getPointerSize() == Module::Pointer64) return 10; // Direct match else if (M.getEndianness() != Module::AnyEndianness || M.getPointerSize() != Module::AnyPointerSize) return 0; // Match for some other target return getJITMatchQuality()/2; } //===---------------------------------------------------------------------===// // Code generation/destruction passes //===---------------------------------------------------------------------===// namespace { class ConstructMachineFunction : public FunctionPass { TargetMachine &Target; public: ConstructMachineFunction(TargetMachine &T) : Target(T) {} const char *getPassName() const { return "ConstructMachineFunction"; } bool runOnFunction(Function &F) { MachineFunction::construct(&F, Target).getInfo()->CalculateArgSize(); return false; } }; struct DestroyMachineFunction : public FunctionPass { const char *getPassName() const { return "DestroyMachineFunction"; } static void freeMachineCode(Instruction &I) { MachineCodeForInstruction::destroy(&I); } bool runOnFunction(Function &F) { for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) for (BasicBlock::iterator I = FI->begin(), E = FI->end(); I != E; ++I) MachineCodeForInstruction::get(I).dropAllReferences(); for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) for_each(FI->begin(), FI->end(), freeMachineCode); MachineFunction::destruct(&F); return false; } }; FunctionPass *createMachineCodeConstructionPass(TargetMachine &Target) { return new ConstructMachineFunction(Target); } } FunctionPass *llvm::createSparcV9MachineCodeDestructionPass() { return new DestroyMachineFunction(); } SparcV9TargetMachine::SparcV9TargetMachine(const Module &M, IntrinsicLowering *il) : TargetMachine("UltraSparcV9-Native", il, false), schedInfo(*this), regInfo(*this), frameInfo(*this), jitInfo(*this) { } /// addPassesToEmitAssembly - This method controls the entire code generation /// process for the ultra sparc. /// bool SparcV9TargetMachine::addPassesToEmitAssembly(PassManager &PM, std::ostream &Out) { // FIXME: Implement efficient support for garbage collection intrinsics. PM.add(createLowerGCPass()); // Replace malloc and free instructions with library calls. PM.add(createLowerAllocationsPass()); // FIXME: implement the switch instruction in the instruction selector. PM.add(createLowerSwitchPass()); // FIXME: implement the invoke/unwind instructions! PM.add(createLowerInvokePass()); // decompose multi-dimensional array references into single-dim refs PM.add(createDecomposeMultiDimRefsPass()); // Lower LLVM code to the form expected by the SPARCv9 instruction selector. PM.add(createPreSelectionPass(*this)); PM.add(createLowerSelectPass()); // Run basic LLVM dataflow optimizations, to clean up after pre-selection. PM.add(createReassociatePass()); PM.add(createLICMPass()); PM.add(createGCSEPass()); // If the user's trying to read the generated code, they'll need to see the // transformed input. if (PrintMachineCode) PM.add(new PrintModulePass()); // Construct and initialize the MachineFunction object for this fn. PM.add(createMachineCodeConstructionPass(*this)); // Insert empty stackslots in the stack frame of each function // so %fp+offset-8 and %fp+offset-16 are empty slots now! PM.add(createStackSlotsPass(*this)); PM.add(createSparcV9BurgInstSelector(*this)); if (!DisableSched) PM.add(createInstructionSchedulingWithSSAPass(*this)); if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr, "Before reg alloc:\n")); PM.add(getRegisterAllocator(*this)); if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr, "After reg alloc:\n")); PM.add(createPrologEpilogInsertionPass()); if (!DisablePeephole) PM.add(createPeepholeOptsPass(*this)); if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr, "Final code:\n")); if (EmitMappingInfo) { PM.add(createInternalGlobalMapperPass()); PM.add(getMappingInfoAsmPrinterPass(Out)); } // Output assembly language to the .s file. Assembly emission is split into // two parts: Function output and Global value output. This is because // function output is pipelined with all of the rest of code generation stuff, // allowing machine code representations for functions to be free'd after the // function has been emitted. PM.add(createAsmPrinterPass(Out, *this)); // Free machine-code IR which is no longer needed: PM.add(createSparcV9MachineCodeDestructionPass()); // Emit bytecode to the assembly file into its special section next if (EmitMappingInfo) { // Strip all of the symbols from the bytecode so that it will be smaller... if (!DisableStrip) PM.add(createSymbolStrippingPass()); PM.add(createBytecodeAsmPrinterPass(Out)); } return false; } /// addPassesToJITCompile - This method controls the JIT method of code /// generation for the UltraSparcV9. /// void SparcV9JITInfo::addPassesToJITCompile(FunctionPassManager &PM) { // FIXME: Implement efficient support for garbage collection intrinsics. PM.add(createLowerGCPass()); // Replace malloc and free instructions with library calls. PM.add(createLowerAllocationsPass()); // FIXME: implement the switch instruction in the instruction selector. PM.add(createLowerSwitchPass()); // FIXME: implement the invoke/unwind instructions! PM.add(createLowerInvokePass()); // decompose multi-dimensional array references into single-dim refs PM.add(createDecomposeMultiDimRefsPass()); // Lower LLVM code to the form expected by the SPARCv9 instruction selector. PM.add(createPreSelectionPass(TM)); PM.add(createLowerSelectPass()); // Run basic LLVM dataflow optimizations, to clean up after pre-selection. PM.add(createReassociatePass()); // FIXME: these passes crash the FunctionPassManager when being added... //PM.add(createLICMPass()); //PM.add(createGCSEPass()); // If the user's trying to read the generated code, they'll need to see the // transformed input. if (PrintMachineCode) PM.add(new PrintFunctionPass()); // Construct and initialize the MachineFunction object for this fn. PM.add(createMachineCodeConstructionPass(TM)); PM.add(createSparcV9BurgInstSelector(TM)); if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr, "Before reg alloc:\n")); PM.add(getRegisterAllocator(TM)); if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr, "After reg alloc:\n")); PM.add(createPrologEpilogInsertionPass()); if (!DisablePeephole) PM.add(createPeepholeOptsPass(TM)); if (PrintMachineCode) PM.add(createMachineFunctionPrinterPass(&std::cerr, "Final code:\n")); }