//===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/SystemZMCTargetDesc.h" #include "llvm/ADT/STLExtras.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCTargetAsmParser.h" #include "llvm/Support/TargetRegistry.h" using namespace llvm; // Return true if Expr is in the range [MinValue, MaxValue]. static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) { if (auto *CE = dyn_cast(Expr)) { int64_t Value = CE->getValue(); return Value >= MinValue && Value <= MaxValue; } return false; } namespace { enum RegisterKind { GR32Reg, GRH32Reg, GR64Reg, GR128Reg, ADDR32Reg, ADDR64Reg, FP32Reg, FP64Reg, FP128Reg }; enum MemoryKind { BDMem, BDXMem, BDLMem }; class SystemZOperand : public MCParsedAsmOperand { public: private: enum OperandKind { KindInvalid, KindToken, KindReg, KindAccessReg, KindImm, KindMem }; OperandKind Kind; SMLoc StartLoc, EndLoc; // A string of length Length, starting at Data. struct TokenOp { const char *Data; unsigned Length; }; // LLVM register Num, which has kind Kind. In some ways it might be // easier for this class to have a register bank (general, floating-point // or access) and a raw register number (0-15). This would postpone the // interpretation of the operand to the add*() methods and avoid the need // for context-dependent parsing. However, we do things the current way // because of the virtual getReg() method, which needs to distinguish // between (say) %r0 used as a single register and %r0 used as a pair. // Context-dependent parsing can also give us slightly better error // messages when invalid pairs like %r1 are used. struct RegOp { RegisterKind Kind; unsigned Num; }; // Base + Disp + Index, where Base and Index are LLVM registers or 0. // RegKind says what type the registers have (ADDR32Reg or ADDR64Reg). // Length is the operand length for D(L,B)-style operands, otherwise // it is null. struct MemOp { unsigned Base : 8; unsigned Index : 8; unsigned RegKind : 8; unsigned Unused : 8; const MCExpr *Disp; const MCExpr *Length; }; union { TokenOp Token; RegOp Reg; unsigned AccessReg; const MCExpr *Imm; MemOp Mem; }; void addExpr(MCInst &Inst, const MCExpr *Expr) const { // Add as immediates when possible. Null MCExpr = 0. if (!Expr) Inst.addOperand(MCOperand::CreateImm(0)); else if (auto *CE = dyn_cast(Expr)) Inst.addOperand(MCOperand::CreateImm(CE->getValue())); else Inst.addOperand(MCOperand::CreateExpr(Expr)); } public: SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc) : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {} // Create particular kinds of operand. static std::unique_ptr createInvalid(SMLoc StartLoc, SMLoc EndLoc) { return make_unique(KindInvalid, StartLoc, EndLoc); } static std::unique_ptr createToken(StringRef Str, SMLoc Loc) { auto Op = make_unique(KindToken, Loc, Loc); Op->Token.Data = Str.data(); Op->Token.Length = Str.size(); return Op; } static std::unique_ptr createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { auto Op = make_unique(KindReg, StartLoc, EndLoc); Op->Reg.Kind = Kind; Op->Reg.Num = Num; return Op; } static std::unique_ptr createAccessReg(unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { auto Op = make_unique(KindAccessReg, StartLoc, EndLoc); Op->AccessReg = Num; return Op; } static std::unique_ptr createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { auto Op = make_unique(KindImm, StartLoc, EndLoc); Op->Imm = Expr; return Op; } static std::unique_ptr createMem(RegisterKind RegKind, unsigned Base, const MCExpr *Disp, unsigned Index, const MCExpr *Length, SMLoc StartLoc, SMLoc EndLoc) { auto Op = make_unique(KindMem, StartLoc, EndLoc); Op->Mem.RegKind = RegKind; Op->Mem.Base = Base; Op->Mem.Index = Index; Op->Mem.Disp = Disp; Op->Mem.Length = Length; return Op; } // Token operands bool isToken() const override { return Kind == KindToken; } StringRef getToken() const { assert(Kind == KindToken && "Not a token"); return StringRef(Token.Data, Token.Length); } // Register operands. bool isReg() const override { return Kind == KindReg; } bool isReg(RegisterKind RegKind) const { return Kind == KindReg && Reg.Kind == RegKind; } unsigned getReg() const override { assert(Kind == KindReg && "Not a register"); return Reg.Num; } // Access register operands. Access registers aren't exposed to LLVM // as registers. bool isAccessReg() const { return Kind == KindAccessReg; } // Immediate operands. bool isImm() const override { return Kind == KindImm; } bool isImm(int64_t MinValue, int64_t MaxValue) const { return Kind == KindImm && inRange(Imm, MinValue, MaxValue); } const MCExpr *getImm() const { assert(Kind == KindImm && "Not an immediate"); return Imm; } // Memory operands. bool isMem() const override { return Kind == KindMem; } bool isMem(RegisterKind RegKind, MemoryKind MemKind) const { return (Kind == KindMem && Mem.RegKind == RegKind && (MemKind == BDXMem || !Mem.Index) && (MemKind == BDLMem) == (Mem.Length != nullptr)); } bool isMemDisp12(RegisterKind RegKind, MemoryKind MemKind) const { return isMem(RegKind, MemKind) && inRange(Mem.Disp, 0, 0xfff); } bool isMemDisp20(RegisterKind RegKind, MemoryKind MemKind) const { return isMem(RegKind, MemKind) && inRange(Mem.Disp, -524288, 524287); } bool isMemDisp12Len8(RegisterKind RegKind) const { return isMemDisp12(RegKind, BDLMem) && inRange(Mem.Length, 1, 0x100); } // Override MCParsedAsmOperand. SMLoc getStartLoc() const override { return StartLoc; } SMLoc getEndLoc() const override { return EndLoc; } void print(raw_ostream &OS) const override; // Used by the TableGen code to add particular types of operand // to an instruction. void addRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands"); Inst.addOperand(MCOperand::CreateReg(getReg())); } void addAccessRegOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands"); assert(Kind == KindAccessReg && "Invalid operand type"); Inst.addOperand(MCOperand::CreateImm(AccessReg)); } void addImmOperands(MCInst &Inst, unsigned N) const { assert(N == 1 && "Invalid number of operands"); addExpr(Inst, getImm()); } void addBDAddrOperands(MCInst &Inst, unsigned N) const { assert(N == 2 && "Invalid number of operands"); assert(Kind == KindMem && Mem.Index == 0 && "Invalid operand type"); Inst.addOperand(MCOperand::CreateReg(Mem.Base)); addExpr(Inst, Mem.Disp); } void addBDXAddrOperands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands"); assert(Kind == KindMem && "Invalid operand type"); Inst.addOperand(MCOperand::CreateReg(Mem.Base)); addExpr(Inst, Mem.Disp); Inst.addOperand(MCOperand::CreateReg(Mem.Index)); } void addBDLAddrOperands(MCInst &Inst, unsigned N) const { assert(N == 3 && "Invalid number of operands"); assert(Kind == KindMem && "Invalid operand type"); Inst.addOperand(MCOperand::CreateReg(Mem.Base)); addExpr(Inst, Mem.Disp); addExpr(Inst, Mem.Length); } // Used by the TableGen code to check for particular operand types. bool isGR32() const { return isReg(GR32Reg); } bool isGRH32() const { return isReg(GRH32Reg); } bool isGRX32() const { return false; } bool isGR64() const { return isReg(GR64Reg); } bool isGR128() const { return isReg(GR128Reg); } bool isADDR32() const { return isReg(ADDR32Reg); } bool isADDR64() const { return isReg(ADDR64Reg); } bool isADDR128() const { return false; } bool isFP32() const { return isReg(FP32Reg); } bool isFP64() const { return isReg(FP64Reg); } bool isFP128() const { return isReg(FP128Reg); } bool isBDAddr32Disp12() const { return isMemDisp12(ADDR32Reg, BDMem); } bool isBDAddr32Disp20() const { return isMemDisp20(ADDR32Reg, BDMem); } bool isBDAddr64Disp12() const { return isMemDisp12(ADDR64Reg, BDMem); } bool isBDAddr64Disp20() const { return isMemDisp20(ADDR64Reg, BDMem); } bool isBDXAddr64Disp12() const { return isMemDisp12(ADDR64Reg, BDXMem); } bool isBDXAddr64Disp20() const { return isMemDisp20(ADDR64Reg, BDXMem); } bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(ADDR64Reg); } bool isU4Imm() const { return isImm(0, 15); } bool isU6Imm() const { return isImm(0, 63); } bool isU8Imm() const { return isImm(0, 255); } bool isS8Imm() const { return isImm(-128, 127); } bool isU16Imm() const { return isImm(0, 65535); } bool isS16Imm() const { return isImm(-32768, 32767); } bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); } bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); } }; class SystemZAsmParser : public MCTargetAsmParser { #define GET_ASSEMBLER_HEADER #include "SystemZGenAsmMatcher.inc" private: MCSubtargetInfo &STI; MCAsmParser &Parser; enum RegisterGroup { RegGR, RegFP, RegAccess }; struct Register { RegisterGroup Group; unsigned Num; SMLoc StartLoc, EndLoc; }; bool parseRegister(Register &Reg); bool parseRegister(Register &Reg, RegisterGroup Group, const unsigned *Regs, bool IsAddress = false); OperandMatchResultTy parseRegister(OperandVector &Operands, RegisterGroup Group, const unsigned *Regs, RegisterKind Kind); bool parseAddress(unsigned &Base, const MCExpr *&Disp, unsigned &Index, const MCExpr *&Length, const unsigned *Regs, RegisterKind RegKind); OperandMatchResultTy parseAddress(OperandVector &Operands, const unsigned *Regs, RegisterKind RegKind, MemoryKind MemKind); bool parseOperand(OperandVector &Operands, StringRef Mnemonic); public: SystemZAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser, const MCInstrInfo &MII, const MCTargetOptions &Options) : MCTargetAsmParser(), STI(sti), Parser(parser) { MCAsmParserExtension::Initialize(Parser); // Initialize the set of available features. setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); } // Override MCTargetAsmParser. bool ParseDirective(AsmToken DirectiveID) override; bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) override; bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, unsigned &ErrorInfo, bool MatchingInlineAsm) override; // Used by the TableGen code to parse particular operand types. OperandMatchResultTy parseGR32(OperandVector &Operands) { return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, GR32Reg); } OperandMatchResultTy parseGRH32(OperandVector &Operands) { return parseRegister(Operands, RegGR, SystemZMC::GRH32Regs, GRH32Reg); } OperandMatchResultTy parseGRX32(OperandVector &Operands) { llvm_unreachable("GRX32 should only be used for pseudo instructions"); } OperandMatchResultTy parseGR64(OperandVector &Operands) { return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, GR64Reg); } OperandMatchResultTy parseGR128(OperandVector &Operands) { return parseRegister(Operands, RegGR, SystemZMC::GR128Regs, GR128Reg); } OperandMatchResultTy parseADDR32(OperandVector &Operands) { return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, ADDR32Reg); } OperandMatchResultTy parseADDR64(OperandVector &Operands) { return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, ADDR64Reg); } OperandMatchResultTy parseADDR128(OperandVector &Operands) { llvm_unreachable("Shouldn't be used as an operand"); } OperandMatchResultTy parseFP32(OperandVector &Operands) { return parseRegister(Operands, RegFP, SystemZMC::FP32Regs, FP32Reg); } OperandMatchResultTy parseFP64(OperandVector &Operands) { return parseRegister(Operands, RegFP, SystemZMC::FP64Regs, FP64Reg); } OperandMatchResultTy parseFP128(OperandVector &Operands) { return parseRegister(Operands, RegFP, SystemZMC::FP128Regs, FP128Reg); } OperandMatchResultTy parseBDAddr32(OperandVector &Operands) { return parseAddress(Operands, SystemZMC::GR32Regs, ADDR32Reg, BDMem); } OperandMatchResultTy parseBDAddr64(OperandVector &Operands) { return parseAddress(Operands, SystemZMC::GR64Regs, ADDR64Reg, BDMem); } OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) { return parseAddress(Operands, SystemZMC::GR64Regs, ADDR64Reg, BDXMem); } OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) { return parseAddress(Operands, SystemZMC::GR64Regs, ADDR64Reg, BDLMem); } OperandMatchResultTy parseAccessReg(OperandVector &Operands); OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal, int64_t MaxVal); OperandMatchResultTy parsePCRel16(OperandVector &Operands) { return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1); } OperandMatchResultTy parsePCRel32(OperandVector &Operands) { return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1); } }; } // end anonymous namespace #define GET_REGISTER_MATCHER #define GET_SUBTARGET_FEATURE_NAME #define GET_MATCHER_IMPLEMENTATION #include "SystemZGenAsmMatcher.inc" void SystemZOperand::print(raw_ostream &OS) const { llvm_unreachable("Not implemented"); } // Parse one register of the form %. bool SystemZAsmParser::parseRegister(Register &Reg) { Reg.StartLoc = Parser.getTok().getLoc(); // Eat the % prefix. if (Parser.getTok().isNot(AsmToken::Percent)) return Error(Parser.getTok().getLoc(), "register expected"); Parser.Lex(); // Expect a register name. if (Parser.getTok().isNot(AsmToken::Identifier)) return Error(Reg.StartLoc, "invalid register"); // Check that there's a prefix. StringRef Name = Parser.getTok().getString(); if (Name.size() < 2) return Error(Reg.StartLoc, "invalid register"); char Prefix = Name[0]; // Treat the rest of the register name as a register number. if (Name.substr(1).getAsInteger(10, Reg.Num)) return Error(Reg.StartLoc, "invalid register"); // Look for valid combinations of prefix and number. if (Prefix == 'r' && Reg.Num < 16) Reg.Group = RegGR; else if (Prefix == 'f' && Reg.Num < 16) Reg.Group = RegFP; else if (Prefix == 'a' && Reg.Num < 16) Reg.Group = RegAccess; else return Error(Reg.StartLoc, "invalid register"); Reg.EndLoc = Parser.getTok().getLoc(); Parser.Lex(); return false; } // Parse a register of group Group. If Regs is nonnull, use it to map // the raw register number to LLVM numbering, with zero entries indicating // an invalid register. IsAddress says whether the register appears in an // address context. bool SystemZAsmParser::parseRegister(Register &Reg, RegisterGroup Group, const unsigned *Regs, bool IsAddress) { if (parseRegister(Reg)) return true; if (Reg.Group != Group) return Error(Reg.StartLoc, "invalid operand for instruction"); if (Regs && Regs[Reg.Num] == 0) return Error(Reg.StartLoc, "invalid register pair"); if (Reg.Num == 0 && IsAddress) return Error(Reg.StartLoc, "%r0 used in an address"); if (Regs) Reg.Num = Regs[Reg.Num]; return false; } // Parse a register and add it to Operands. The other arguments are as above. SystemZAsmParser::OperandMatchResultTy SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterGroup Group, const unsigned *Regs, RegisterKind Kind) { if (Parser.getTok().isNot(AsmToken::Percent)) return MatchOperand_NoMatch; Register Reg; bool IsAddress = (Kind == ADDR32Reg || Kind == ADDR64Reg); if (parseRegister(Reg, Group, Regs, IsAddress)) return MatchOperand_ParseFail; Operands.push_back(SystemZOperand::createReg(Kind, Reg.Num, Reg.StartLoc, Reg.EndLoc)); return MatchOperand_Success; } // Parse a memory operand into Base, Disp, Index and Length. // Regs maps asm register numbers to LLVM register numbers and RegKind // says what kind of address register we're using (ADDR32Reg or ADDR64Reg). bool SystemZAsmParser::parseAddress(unsigned &Base, const MCExpr *&Disp, unsigned &Index, const MCExpr *&Length, const unsigned *Regs, RegisterKind RegKind) { // Parse the displacement, which must always be present. if (getParser().parseExpression(Disp)) return true; // Parse the optional base and index. Index = 0; Base = 0; Length = nullptr; if (getLexer().is(AsmToken::LParen)) { Parser.Lex(); if (getLexer().is(AsmToken::Percent)) { // Parse the first register and decide whether it's a base or an index. Register Reg; if (parseRegister(Reg, RegGR, Regs, RegKind)) return true; if (getLexer().is(AsmToken::Comma)) Index = Reg.Num; else Base = Reg.Num; } else { // Parse the length. if (getParser().parseExpression(Length)) return true; } // Check whether there's a second register. It's the base if so. if (getLexer().is(AsmToken::Comma)) { Parser.Lex(); Register Reg; if (parseRegister(Reg, RegGR, Regs, RegKind)) return true; Base = Reg.Num; } // Consume the closing bracket. if (getLexer().isNot(AsmToken::RParen)) return Error(Parser.getTok().getLoc(), "unexpected token in address"); Parser.Lex(); } return false; } // Parse a memory operand and add it to Operands. The other arguments // are as above. SystemZAsmParser::OperandMatchResultTy SystemZAsmParser::parseAddress(OperandVector &Operands, const unsigned *Regs, RegisterKind RegKind, MemoryKind MemKind) { SMLoc StartLoc = Parser.getTok().getLoc(); unsigned Base, Index; const MCExpr *Disp; const MCExpr *Length; if (parseAddress(Base, Disp, Index, Length, Regs, RegKind)) return MatchOperand_ParseFail; if (Index && MemKind != BDXMem) { Error(StartLoc, "invalid use of indexed addressing"); return MatchOperand_ParseFail; } if (Length && MemKind != BDLMem) { Error(StartLoc, "invalid use of length addressing"); return MatchOperand_ParseFail; } if (!Length && MemKind == BDLMem) { Error(StartLoc, "missing length in address"); return MatchOperand_ParseFail; } SMLoc EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); Operands.push_back(SystemZOperand::createMem(RegKind, Base, Disp, Index, Length, StartLoc, EndLoc)); return MatchOperand_Success; } bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) { return true; } bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { Register Reg; if (parseRegister(Reg)) return true; if (Reg.Group == RegGR) RegNo = SystemZMC::GR64Regs[Reg.Num]; else if (Reg.Group == RegFP) RegNo = SystemZMC::FP64Regs[Reg.Num]; else // FIXME: Access registers aren't modelled as LLVM registers yet. return Error(Reg.StartLoc, "invalid operand for instruction"); StartLoc = Reg.StartLoc; EndLoc = Reg.EndLoc; return false; } bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands) { Operands.push_back(SystemZOperand::createToken(Name, NameLoc)); // Read the remaining operands. if (getLexer().isNot(AsmToken::EndOfStatement)) { // Read the first operand. if (parseOperand(Operands, Name)) { Parser.eatToEndOfStatement(); return true; } // Read any subsequent operands. while (getLexer().is(AsmToken::Comma)) { Parser.Lex(); if (parseOperand(Operands, Name)) { Parser.eatToEndOfStatement(); return true; } } if (getLexer().isNot(AsmToken::EndOfStatement)) { SMLoc Loc = getLexer().getLoc(); Parser.eatToEndOfStatement(); return Error(Loc, "unexpected token in argument list"); } } // Consume the EndOfStatement. Parser.Lex(); return false; } bool SystemZAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { // Check if the current operand has a custom associated parser, if so, try to // custom parse the operand, or fallback to the general approach. OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); if (ResTy == MatchOperand_Success) return false; // If there wasn't a custom match, try the generic matcher below. Otherwise, // there was a match, but an error occurred, in which case, just return that // the operand parsing failed. if (ResTy == MatchOperand_ParseFail) return true; // Check for a register. All real register operands should have used // a context-dependent parse routine, which gives the required register // class. The code is here to mop up other cases, like those where // the instruction isn't recognized. if (Parser.getTok().is(AsmToken::Percent)) { Register Reg; if (parseRegister(Reg)) return true; Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc)); return false; } // The only other type of operand is an immediate or address. As above, // real address operands should have used a context-dependent parse routine, // so we treat any plain expression as an immediate. SMLoc StartLoc = Parser.getTok().getLoc(); unsigned Base, Index; const MCExpr *Expr, *Length; if (parseAddress(Base, Expr, Index, Length, SystemZMC::GR64Regs, ADDR64Reg)) return true; SMLoc EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); if (Base || Index || Length) Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc)); else Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); return false; } bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, unsigned &ErrorInfo, bool MatchingInlineAsm) { MCInst Inst; unsigned MatchResult; MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); switch (MatchResult) { default: break; case Match_Success: Inst.setLoc(IDLoc); Out.EmitInstruction(Inst, STI); return false; case Match_MissingFeature: { assert(ErrorInfo && "Unknown missing feature!"); // Special case the error message for the very common case where only // a single subtarget feature is missing std::string Msg = "instruction requires:"; unsigned Mask = 1; for (unsigned I = 0; I < sizeof(ErrorInfo) * 8 - 1; ++I) { if (ErrorInfo & Mask) { Msg += " "; Msg += getSubtargetFeatureName(ErrorInfo & Mask); } Mask <<= 1; } return Error(IDLoc, Msg); } case Match_InvalidOperand: { SMLoc ErrorLoc = IDLoc; if (ErrorInfo != ~0U) { if (ErrorInfo >= Operands.size()) return Error(IDLoc, "too few operands for instruction"); ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; } return Error(ErrorLoc, "invalid operand for instruction"); } case Match_MnemonicFail: return Error(IDLoc, "invalid instruction"); } llvm_unreachable("Unexpected match type"); } SystemZAsmParser::OperandMatchResultTy SystemZAsmParser::parseAccessReg(OperandVector &Operands) { if (Parser.getTok().isNot(AsmToken::Percent)) return MatchOperand_NoMatch; Register Reg; if (parseRegister(Reg, RegAccess, nullptr)) return MatchOperand_ParseFail; Operands.push_back(SystemZOperand::createAccessReg(Reg.Num, Reg.StartLoc, Reg.EndLoc)); return MatchOperand_Success; } SystemZAsmParser::OperandMatchResultTy SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal, int64_t MaxVal) { MCContext &Ctx = getContext(); MCStreamer &Out = getStreamer(); const MCExpr *Expr; SMLoc StartLoc = Parser.getTok().getLoc(); if (getParser().parseExpression(Expr)) return MatchOperand_NoMatch; // For consistency with the GNU assembler, treat immediates as offsets // from ".". if (auto *CE = dyn_cast(Expr)) { int64_t Value = CE->getValue(); if ((Value & 1) || Value < MinVal || Value > MaxVal) { Error(StartLoc, "offset out of range"); return MatchOperand_ParseFail; } MCSymbol *Sym = Ctx.CreateTempSymbol(); Out.EmitLabel(Sym); const MCExpr *Base = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_None, Ctx); Expr = Value == 0 ? Base : MCBinaryExpr::CreateAdd(Base, Expr, Ctx); } SMLoc EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); return MatchOperand_Success; } // Force static initialization. extern "C" void LLVMInitializeSystemZAsmParser() { RegisterMCAsmParser X(TheSystemZTarget); }