//==- SystemZInstrFP.td - Floating-point SystemZ instructions --*- tblgen-*-==// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Control-flow instructions //===----------------------------------------------------------------------===// // C's ?: operator for floating-point operands. def SelectF32 : SelectWrapper; def SelectF64 : SelectWrapper; def SelectF128 : SelectWrapper; //===----------------------------------------------------------------------===// // Move instructions //===----------------------------------------------------------------------===// // Load zero. let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in { def LZER : InherentRRE<"lzer", 0xB374, FP32, (fpimm0)>; def LZDR : InherentRRE<"lzdr", 0xB375, FP64, (fpimm0)>; def LZXR : InherentRRE<"lzxr", 0xB376, FP128, (fpimm0)>; } // Moves between two floating-point registers. let neverHasSideEffects = 1 in { def LER : UnaryRR <"ler", 0x38, null_frag, FP32, FP32>; def LDR : UnaryRR <"ldr", 0x28, null_frag, FP64, FP64>; def LXR : UnaryRRE<"lxr", 0xB365, null_frag, FP128, FP128>; } // Moves between 64-bit integer and floating-point registers. def LGDR : UnaryRRE<"lgdr", 0xB3CD, bitconvert, GR64, FP64>; def LDGR : UnaryRRE<"ldgr", 0xB3C1, bitconvert, FP64, GR64>; // fcopysign with an FP32 result. let isCodeGenOnly = 1 in { def CPSDRss : BinaryRRF<"cpsdr", 0xB372, fcopysign, FP32, FP32>; def CPSDRsd : BinaryRRF<"cpsdr", 0xB372, fcopysign, FP32, FP64>; } // The sign of an FP128 is in the high register. def : Pat<(fcopysign FP32:$src1, FP128:$src2), (CPSDRsd FP32:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_high))>; // fcopysign with an FP64 result. let isCodeGenOnly = 1 in def CPSDRds : BinaryRRF<"cpsdr", 0xB372, fcopysign, FP64, FP32>; def CPSDRdd : BinaryRRF<"cpsdr", 0xB372, fcopysign, FP64, FP64>; // The sign of an FP128 is in the high register. def : Pat<(fcopysign FP64:$src1, FP128:$src2), (CPSDRdd FP64:$src1, (EXTRACT_SUBREG FP128:$src2, subreg_high))>; // fcopysign with an FP128 result. Use "upper" as the high half and leave // the low half as-is. class CopySign128 : Pat<(fcopysign FP128:$src1, cls:$src2), (INSERT_SUBREG FP128:$src1, upper, subreg_high)>; def : CopySign128; def : CopySign128; def : CopySign128; //===----------------------------------------------------------------------===// // Load instructions //===----------------------------------------------------------------------===// let canFoldAsLoad = 1, SimpleBDXLoad = 1 in { defm LE : UnaryRXPair<"le", 0x78, 0xED64, load, FP32>; defm LD : UnaryRXPair<"ld", 0x68, 0xED65, load, FP64>; // These instructions are split after register allocation, so we don't // want a custom inserter. let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { def LX : Pseudo<(outs FP128:$dst), (ins bdxaddr20only128:$src), [(set FP128:$dst, (load bdxaddr20only128:$src))]>; } } //===----------------------------------------------------------------------===// // Store instructions //===----------------------------------------------------------------------===// let SimpleBDXStore = 1 in { defm STE : StoreRXPair<"ste", 0x70, 0xED66, store, FP32>; defm STD : StoreRXPair<"std", 0x60, 0xED67, store, FP64>; // These instructions are split after register allocation, so we don't // want a custom inserter. let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { def STX : Pseudo<(outs), (ins FP128:$src, bdxaddr20only128:$dst), [(store FP128:$src, bdxaddr20only128:$dst)]>; } } //===----------------------------------------------------------------------===// // Conversion instructions //===----------------------------------------------------------------------===// // Convert floating-point values to narrower representations, rounding // according to the current mode. The destination of LEXBR and LDXBR // is a 128-bit value, but only the first register of the pair is used. def LEDBR : UnaryRRE<"ledbr", 0xB344, fround, FP32, FP64>; def LEXBR : UnaryRRE<"lexbr", 0xB346, null_frag, FP128, FP128>; def LDXBR : UnaryRRE<"ldxbr", 0xB345, null_frag, FP128, FP128>; def : Pat<(f32 (fround FP128:$src)), (EXTRACT_SUBREG (LEXBR FP128:$src), subreg_32bit)>; def : Pat<(f64 (fround FP128:$src)), (EXTRACT_SUBREG (LDXBR FP128:$src), subreg_high)>; // Extend register floating-point values to wider representations. def LDEBR : UnaryRRE<"ldebr", 0xB304, fextend, FP64, FP32>; def LXEBR : UnaryRRE<"lxebr", 0xB306, fextend, FP128, FP32>; def LXDBR : UnaryRRE<"lxdbr", 0xB305, fextend, FP128, FP64>; // Extend memory floating-point values to wider representations. def LDEB : UnaryRXE<"ldeb", 0xED04, extloadf32, FP64>; def LXEB : UnaryRXE<"lxeb", 0xED06, extloadf32, FP128>; def LXDB : UnaryRXE<"lxdb", 0xED05, extloadf64, FP128>; // Convert a signed integer register value to a floating-point one. let Defs = [PSW] in { def CEFBR : UnaryRRE<"cefbr", 0xB394, sint_to_fp, FP32, GR32>; def CDFBR : UnaryRRE<"cdfbr", 0xB395, sint_to_fp, FP64, GR32>; def CXFBR : UnaryRRE<"cxfbr", 0xB396, sint_to_fp, FP128, GR32>; def CEGBR : UnaryRRE<"cegbr", 0xB3A4, sint_to_fp, FP32, GR64>; def CDGBR : UnaryRRE<"cdgbr", 0xB3A5, sint_to_fp, FP64, GR64>; def CXGBR : UnaryRRE<"cxgbr", 0xB3A6, sint_to_fp, FP128, GR64>; } // Convert a floating-point register value to a signed integer value, // with the second operand (modifier M3) specifying the rounding mode. let Defs = [PSW] in { def CFEBR : UnaryRRF<"cfebr", 0xB398, GR32, FP32>; def CFDBR : UnaryRRF<"cfdbr", 0xB399, GR32, FP64>; def CFXBR : UnaryRRF<"cfxbr", 0xB39A, GR32, FP128>; def CGEBR : UnaryRRF<"cgebr", 0xB3A8, GR64, FP32>; def CGDBR : UnaryRRF<"cgdbr", 0xB3A9, GR64, FP64>; def CGXBR : UnaryRRF<"cgxbr", 0xB3AA, GR64, FP128>; } // fp_to_sint always rounds towards zero, which is modifier value 5. def : Pat<(i32 (fp_to_sint FP32:$src)), (CFEBR 5, FP32:$src)>; def : Pat<(i32 (fp_to_sint FP64:$src)), (CFDBR 5, FP64:$src)>; def : Pat<(i32 (fp_to_sint FP128:$src)), (CFXBR 5, FP128:$src)>; def : Pat<(i64 (fp_to_sint FP32:$src)), (CGEBR 5, FP32:$src)>; def : Pat<(i64 (fp_to_sint FP64:$src)), (CGDBR 5, FP64:$src)>; def : Pat<(i64 (fp_to_sint FP128:$src)), (CGXBR 5, FP128:$src)>; //===----------------------------------------------------------------------===// // Unary arithmetic //===----------------------------------------------------------------------===// // Negation (Load Complement). let Defs = [PSW] in { def LCEBR : UnaryRRE<"lcebr", 0xB303, fneg, FP32, FP32>; def LCDBR : UnaryRRE<"lcdbr", 0xB313, fneg, FP64, FP64>; def LCXBR : UnaryRRE<"lcxbr", 0xB343, fneg, FP128, FP128>; } // Absolute value (Load Positive). let Defs = [PSW] in { def LPEBR : UnaryRRE<"lpebr", 0xB300, fabs, FP32, FP32>; def LPDBR : UnaryRRE<"lpdbr", 0xB310, fabs, FP64, FP64>; def LPXBR : UnaryRRE<"lpxbr", 0xB340, fabs, FP128, FP128>; } // Negative absolute value (Load Negative). let Defs = [PSW] in { def LNEBR : UnaryRRE<"lnebr", 0xB301, fnabs, FP32, FP32>; def LNDBR : UnaryRRE<"lndbr", 0xB311, fnabs, FP64, FP64>; def LNXBR : UnaryRRE<"lnxbr", 0xB341, fnabs, FP128, FP128>; } // Square root. def SQEBR : UnaryRRE<"sqebr", 0xB314, fsqrt, FP32, FP32>; def SQDBR : UnaryRRE<"sqdbr", 0xB315, fsqrt, FP64, FP64>; def SQXBR : UnaryRRE<"sqxbr", 0xB316, fsqrt, FP128, FP128>; def SQEB : UnaryRXE<"sqeb", 0xED14, loadu, FP32>; def SQDB : UnaryRXE<"sqdb", 0xED15, loadu, FP64>; // Round to an integer, with the second operand (modifier M3) specifying // the rounding mode. // // These forms always check for inexact conditions. z196 added versions // that allow this to suppressed (as for fnearbyint), but we don't yet // support -march=z196. let Defs = [PSW] in { def FIEBR : UnaryRRF<"fiebr", 0xB357, FP32, FP32>; def FIDBR : UnaryRRF<"fidbr", 0xB35F, FP64, FP64>; def FIXBR : UnaryRRF<"fixbr", 0xB347, FP128, FP128>; } // frint rounds according to the current mode (modifier 0) and detects // inexact conditions. def : Pat<(frint FP32:$src), (FIEBR 0, FP32:$src)>; def : Pat<(frint FP64:$src), (FIDBR 0, FP64:$src)>; def : Pat<(frint FP128:$src), (FIXBR 0, FP128:$src)>; //===----------------------------------------------------------------------===// // Binary arithmetic //===----------------------------------------------------------------------===// // Addition. let Defs = [PSW] in { let isCommutable = 1 in { def AEBR : BinaryRRE<"aebr", 0xB30A, fadd, FP32, FP32>; def ADBR : BinaryRRE<"adbr", 0xB31A, fadd, FP64, FP64>; def AXBR : BinaryRRE<"axbr", 0xB34A, fadd, FP128, FP128>; } def AEB : BinaryRXE<"aeb", 0xED0A, fadd, FP32, load>; def ADB : BinaryRXE<"adb", 0xED1A, fadd, FP64, load>; } // Subtraction. let Defs = [PSW] in { def SEBR : BinaryRRE<"sebr", 0xB30B, fsub, FP32, FP32>; def SDBR : BinaryRRE<"sdbr", 0xB31B, fsub, FP64, FP64>; def SXBR : BinaryRRE<"sxbr", 0xB34B, fsub, FP128, FP128>; def SEB : BinaryRXE<"seb", 0xED0B, fsub, FP32, load>; def SDB : BinaryRXE<"sdb", 0xED1B, fsub, FP64, load>; } // Multiplication. let isCommutable = 1 in { def MEEBR : BinaryRRE<"meebr", 0xB317, fmul, FP32, FP32>; def MDBR : BinaryRRE<"mdbr", 0xB31C, fmul, FP64, FP64>; def MXBR : BinaryRRE<"mxbr", 0xB34C, fmul, FP128, FP128>; } def MEEB : BinaryRXE<"meeb", 0xED17, fmul, FP32, load>; def MDB : BinaryRXE<"mdb", 0xED1C, fmul, FP64, load>; // f64 multiplication of two FP32 registers. def MDEBR : BinaryRRE<"mdebr", 0xB30C, null_frag, FP64, FP32>; def : Pat<(fmul (f64 (fextend FP32:$src1)), (f64 (fextend FP32:$src2))), (MDEBR (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_32bit), FP32:$src2)>; // f64 multiplication of an FP32 register and an f32 memory. def MDEB : BinaryRXE<"mdeb", 0xED0C, null_frag, FP64, load>; def : Pat<(fmul (f64 (fextend FP32:$src1)), (f64 (extloadf32 bdxaddr12only:$addr))), (MDEB (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_32bit), bdxaddr12only:$addr)>; // f128 multiplication of two FP64 registers. def MXDBR : BinaryRRE<"mxdbr", 0xB307, null_frag, FP128, FP64>; def : Pat<(fmul (f128 (fextend FP64:$src1)), (f128 (fextend FP64:$src2))), (MXDBR (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_high), FP64:$src2)>; // f128 multiplication of an FP64 register and an f64 memory. def MXDB : BinaryRXE<"mxdb", 0xED07, null_frag, FP128, load>; def : Pat<(fmul (f128 (fextend FP64:$src1)), (f128 (extloadf64 bdxaddr12only:$addr))), (MXDB (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_high), bdxaddr12only:$addr)>; // Fused multiply-add. def MAEBR : TernaryRRD<"maebr", 0xB30E, z_fma, FP32>; def MADBR : TernaryRRD<"madbr", 0xB31E, z_fma, FP64>; def MAEB : TernaryRXF<"maeb", 0xED0E, z_fma, FP32, load>; def MADB : TernaryRXF<"madb", 0xED1E, z_fma, FP64, load>; // Fused multiply-subtract. def MSEBR : TernaryRRD<"msebr", 0xB30F, z_fms, FP32>; def MSDBR : TernaryRRD<"msdbr", 0xB31F, z_fms, FP64>; def MSEB : TernaryRXF<"mseb", 0xED0F, z_fms, FP32, load>; def MSDB : TernaryRXF<"msdb", 0xED1F, z_fms, FP64, load>; // Division. def DEBR : BinaryRRE<"debr", 0xB30D, fdiv, FP32, FP32>; def DDBR : BinaryRRE<"ddbr", 0xB31D, fdiv, FP64, FP64>; def DXBR : BinaryRRE<"dxbr", 0xB34D, fdiv, FP128, FP128>; def DEB : BinaryRXE<"deb", 0xED0D, fdiv, FP32, load>; def DDB : BinaryRXE<"ddb", 0xED1D, fdiv, FP64, load>; //===----------------------------------------------------------------------===// // Comparisons //===----------------------------------------------------------------------===// let Defs = [PSW] in { def CEBR : CompareRRE<"cebr", 0xB309, z_cmp, FP32, FP32>; def CDBR : CompareRRE<"cdbr", 0xB319, z_cmp, FP64, FP64>; def CXBR : CompareRRE<"cxbr", 0xB349, z_cmp, FP128, FP128>; def CEB : CompareRXE<"ceb", 0xED09, z_cmp, FP32, load>; def CDB : CompareRXE<"cdb", 0xED19, z_cmp, FP64, load>; } //===----------------------------------------------------------------------===// // Peepholes //===----------------------------------------------------------------------===// def : Pat<(f32 fpimmneg0), (LCEBR (LZER))>; def : Pat<(f64 fpimmneg0), (LCDBR (LZDR))>; def : Pat<(f128 fpimmneg0), (LCXBR (LZXR))>;