//===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the SystemZ implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "SystemZInstrInfo.h" #include "SystemZInstrBuilder.h" #define GET_INSTRINFO_CTOR #define GET_INSTRMAP_INFO #include "SystemZGenInstrInfo.inc" using namespace llvm; SystemZInstrInfo::SystemZInstrInfo(SystemZTargetMachine &tm) : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP), RI(tm, *this) { } // MI is a 128-bit load or store. Split it into two 64-bit loads or stores, // each having the opcode given by NewOpcode. void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI, unsigned NewOpcode) const { MachineBasicBlock *MBB = MI->getParent(); MachineFunction &MF = *MBB->getParent(); // Get two load or store instructions. Use the original instruction for one // of them (arbitarily the second here) and create a clone for the other. MachineInstr *EarlierMI = MF.CloneMachineInstr(MI); MBB->insert(MI, EarlierMI); // Set up the two 64-bit registers. MachineOperand &HighRegOp = EarlierMI->getOperand(0); MachineOperand &LowRegOp = MI->getOperand(0); HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_high)); LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_low)); // The address in the first (high) instruction is already correct. // Adjust the offset in the second (low) instruction. MachineOperand &HighOffsetOp = EarlierMI->getOperand(2); MachineOperand &LowOffsetOp = MI->getOperand(2); LowOffsetOp.setImm(LowOffsetOp.getImm() + 8); // Set the opcodes. unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm()); unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm()); assert(HighOpcode && LowOpcode && "Both offsets should be in range"); EarlierMI->setDesc(get(HighOpcode)); MI->setDesc(get(LowOpcode)); } // Split ADJDYNALLOC instruction MI. void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const { MachineBasicBlock *MBB = MI->getParent(); MachineFunction &MF = *MBB->getParent(); MachineFrameInfo *MFFrame = MF.getFrameInfo(); MachineOperand &OffsetMO = MI->getOperand(2); uint64_t Offset = (MFFrame->getMaxCallFrameSize() + SystemZMC::CallFrameSize + OffsetMO.getImm()); unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset); assert(NewOpcode && "No support for huge argument lists yet"); MI->setDesc(get(NewOpcode)); OffsetMO.setImm(Offset); } // If MI is a simple load or store for a frame object, return the register // it loads or stores and set FrameIndex to the index of the frame object. // Return 0 otherwise. // // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. static int isSimpleMove(const MachineInstr *MI, int &FrameIndex, int Flag) { const MCInstrDesc &MCID = MI->getDesc(); if ((MCID.TSFlags & Flag) && MI->getOperand(1).isFI() && MI->getOperand(2).getImm() == 0 && MI->getOperand(3).getReg() == 0) { FrameIndex = MI->getOperand(1).getIndex(); return MI->getOperand(0).getReg(); } return 0; } unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const { return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad); } unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const { return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore); } bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const { // Most of the code and comments here are boilerplate. // Start from the bottom of the block and work up, examining the // terminator instructions. MachineBasicBlock::iterator I = MBB.end(); while (I != MBB.begin()) { --I; if (I->isDebugValue()) continue; // Working from the bottom, when we see a non-terminator instruction, we're // done. if (!isUnpredicatedTerminator(I)) break; // A terminator that isn't a branch can't easily be handled by this // analysis. unsigned ThisCond; const MachineOperand *ThisTarget; if (!isBranch(I, ThisCond, ThisTarget)) return true; // Can't handle indirect branches. if (!ThisTarget->isMBB()) return true; if (ThisCond == SystemZ::CCMASK_ANY) { // Handle unconditional branches. if (!AllowModify) { TBB = ThisTarget->getMBB(); continue; } // If the block has any instructions after a JMP, delete them. while (llvm::next(I) != MBB.end()) llvm::next(I)->eraseFromParent(); Cond.clear(); FBB = 0; // Delete the JMP if it's equivalent to a fall-through. if (MBB.isLayoutSuccessor(ThisTarget->getMBB())) { TBB = 0; I->eraseFromParent(); I = MBB.end(); continue; } // TBB is used to indicate the unconditinal destination. TBB = ThisTarget->getMBB(); continue; } // Working from the bottom, handle the first conditional branch. if (Cond.empty()) { // FIXME: add X86-style branch swap FBB = TBB; TBB = ThisTarget->getMBB(); Cond.push_back(MachineOperand::CreateImm(ThisCond)); continue; } // Handle subsequent conditional branches. assert(Cond.size() == 1); assert(TBB); // Only handle the case where all conditional branches branch to the same // destination. if (TBB != ThisTarget->getMBB()) return true; // If the conditions are the same, we can leave them alone. unsigned OldCond = Cond[0].getImm(); if (OldCond == ThisCond) continue; // FIXME: Try combining conditions like X86 does. Should be easy on Z! } return false; } unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { // Most of the code and comments here are boilerplate. MachineBasicBlock::iterator I = MBB.end(); unsigned Count = 0; while (I != MBB.begin()) { --I; if (I->isDebugValue()) continue; unsigned Cond; const MachineOperand *Target; if (!isBranch(I, Cond, Target)) break; if (!Target->isMBB()) break; // Remove the branch. I->eraseFromParent(); I = MBB.end(); ++Count; } return Count; } unsigned SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl &Cond, DebugLoc DL) const { // In this function we output 32-bit branches, which should always // have enough range. They can be shortened and relaxed by later code // in the pipeline, if desired. // Shouldn't be a fall through. assert(TBB && "InsertBranch must not be told to insert a fallthrough"); assert((Cond.size() == 1 || Cond.size() == 0) && "SystemZ branch conditions have one component!"); if (Cond.empty()) { // Unconditional branch? assert(!FBB && "Unconditional branch with multiple successors!"); BuildMI(&MBB, DL, get(SystemZ::JG)).addMBB(TBB); return 1; } // Conditional branch. unsigned Count = 0; unsigned CC = Cond[0].getImm(); BuildMI(&MBB, DL, get(SystemZ::BRCL)).addImm(CC).addMBB(TBB); ++Count; if (FBB) { // Two-way Conditional branch. Insert the second branch. BuildMI(&MBB, DL, get(SystemZ::JG)).addMBB(FBB); ++Count; } return Count; } void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc DL, unsigned DestReg, unsigned SrcReg, bool KillSrc) const { // Split 128-bit GPR moves into two 64-bit moves. This handles ADDR128 too. if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) { copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_high), RI.getSubReg(SrcReg, SystemZ::subreg_high), KillSrc); copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_low), RI.getSubReg(SrcReg, SystemZ::subreg_low), KillSrc); return; } // Everything else needs only one instruction. unsigned Opcode; if (SystemZ::GR32BitRegClass.contains(DestReg, SrcReg)) Opcode = SystemZ::LR; else if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) Opcode = SystemZ::LGR; else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg)) Opcode = SystemZ::LER; else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg)) Opcode = SystemZ::LDR; else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg)) Opcode = SystemZ::LXR; else llvm_unreachable("Impossible reg-to-reg copy"); BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); } void SystemZInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg, bool isKill, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); // Callers may expect a single instruction, so keep 128-bit moves // together for now and lower them after register allocation. unsigned LoadOpcode, StoreOpcode; getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode)) .addReg(SrcReg, getKillRegState(isKill)), FrameIdx); } void SystemZInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const { DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); // Callers may expect a single instruction, so keep 128-bit moves // together for now and lower them after register allocation. unsigned LoadOpcode, StoreOpcode; getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg), FrameIdx); } bool SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { switch (MI->getOpcode()) { case SystemZ::L128: splitMove(MI, SystemZ::LG); return true; case SystemZ::ST128: splitMove(MI, SystemZ::STG); return true; case SystemZ::LX: splitMove(MI, SystemZ::LD); return true; case SystemZ::STX: splitMove(MI, SystemZ::STD); return true; case SystemZ::ADJDYNALLOC: splitAdjDynAlloc(MI); return true; default: return false; } } bool SystemZInstrInfo:: ReverseBranchCondition(SmallVectorImpl &Cond) const { assert(Cond.size() == 1 && "Invalid branch condition!"); Cond[0].setImm(Cond[0].getImm() ^ SystemZ::CCMASK_ANY); return false; } bool SystemZInstrInfo::isBranch(const MachineInstr *MI, unsigned &Cond, const MachineOperand *&Target) const { switch (MI->getOpcode()) { case SystemZ::BR: case SystemZ::J: case SystemZ::JG: Cond = SystemZ::CCMASK_ANY; Target = &MI->getOperand(0); return true; case SystemZ::BRC: case SystemZ::BRCL: Cond = MI->getOperand(0).getImm(); Target = &MI->getOperand(1); return true; default: assert(!MI->getDesc().isBranch() && "Unknown branch opcode"); return false; } } void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC, unsigned &LoadOpcode, unsigned &StoreOpcode) const { if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) { LoadOpcode = SystemZ::L; StoreOpcode = SystemZ::ST32; } else if (RC == &SystemZ::GR64BitRegClass || RC == &SystemZ::ADDR64BitRegClass) { LoadOpcode = SystemZ::LG; StoreOpcode = SystemZ::STG; } else if (RC == &SystemZ::GR128BitRegClass || RC == &SystemZ::ADDR128BitRegClass) { LoadOpcode = SystemZ::L128; StoreOpcode = SystemZ::ST128; } else if (RC == &SystemZ::FP32BitRegClass) { LoadOpcode = SystemZ::LE; StoreOpcode = SystemZ::STE; } else if (RC == &SystemZ::FP64BitRegClass) { LoadOpcode = SystemZ::LD; StoreOpcode = SystemZ::STD; } else if (RC == &SystemZ::FP128BitRegClass) { LoadOpcode = SystemZ::LX; StoreOpcode = SystemZ::STX; } else llvm_unreachable("Unsupported regclass to load or store"); } unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode, int64_t Offset) const { const MCInstrDesc &MCID = get(Opcode); int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset); if (isUInt<12>(Offset) && isUInt<12>(Offset2)) { // Get the instruction to use for unsigned 12-bit displacements. int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode); if (Disp12Opcode >= 0) return Disp12Opcode; // All address-related instructions can use unsigned 12-bit // displacements. return Opcode; } if (isInt<20>(Offset) && isInt<20>(Offset2)) { // Get the instruction to use for signed 20-bit displacements. int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode); if (Disp20Opcode >= 0) return Disp20Opcode; // Check whether Opcode allows signed 20-bit displacements. if (MCID.TSFlags & SystemZII::Has20BitOffset) return Opcode; } return 0; } void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned Reg, uint64_t Value) const { DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); unsigned Opcode; if (isInt<16>(Value)) Opcode = SystemZ::LGHI; else if (SystemZ::isImmLL(Value)) Opcode = SystemZ::LLILL; else if (SystemZ::isImmLH(Value)) { Opcode = SystemZ::LLILH; Value >>= 16; } else { assert(isInt<32>(Value) && "Huge values not handled yet"); Opcode = SystemZ::LGFI; } BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value); }