//=====- SystemZOperands.td - SystemZ Operands defs ---------*- tblgen-*-=====// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the various SystemZ instruction operands. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Instruction Pattern Stuff. //===----------------------------------------------------------------------===// // SystemZ specific condition code. These correspond to CondCode in // SystemZ.h. They must be kept in synch. def SYSTEMZ_COND_O : PatLeaf<(i8 0)>; def SYSTEMZ_COND_H : PatLeaf<(i8 1)>; def SYSTEMZ_COND_NLE : PatLeaf<(i8 2)>; def SYSTEMZ_COND_L : PatLeaf<(i8 3)>; def SYSTEMZ_COND_NHE : PatLeaf<(i8 4)>; def SYSTEMZ_COND_LH : PatLeaf<(i8 5)>; def SYSTEMZ_COND_NE : PatLeaf<(i8 6)>; def SYSTEMZ_COND_E : PatLeaf<(i8 7)>; def SYSTEMZ_COND_NLH : PatLeaf<(i8 8)>; def SYSTEMZ_COND_HE : PatLeaf<(i8 9)>; def SYSTEMZ_COND_NL : PatLeaf<(i8 10)>; def SYSTEMZ_COND_LE : PatLeaf<(i8 11)>; def SYSTEMZ_COND_NH : PatLeaf<(i8 12)>; def SYSTEMZ_COND_NO : PatLeaf<(i8 13)>; def LO8 : SDNodeXFormgetZExtValue() & 0x00000000000000FFULL); }]>; def LL16 : SDNodeXFormgetZExtValue() & 0x000000000000FFFFULL); }]>; def LH16 : SDNodeXFormgetZExtValue() & 0x00000000FFFF0000ULL) >> 16); }]>; def HL16 : SDNodeXFormgetZExtValue() & 0x0000FFFF00000000ULL) >> 32); }]>; def HH16 : SDNodeXFormgetZExtValue() & 0xFFFF000000000000ULL) >> 48); }]>; def LO32 : SDNodeXFormgetZExtValue() & 0x00000000FFFFFFFFULL); }]>; def HI32 : SDNodeXFormgetZExtValue() >> 32); }]>; def i32ll16 : PatLeaf<(i32 imm), [{ // i32ll16 predicate - true if the 32-bit immediate has only rightmost 16 // bits set. return ((N->getZExtValue() & 0x000000000000FFFFULL) == N->getZExtValue()); }], LL16>; def i32lh16 : PatLeaf<(i32 imm), [{ // i32lh16 predicate - true if the 32-bit immediate has only bits 16-31 set. return ((N->getZExtValue() & 0x00000000FFFF0000ULL) == N->getZExtValue()); }], LH16>; def i32ll16c : PatLeaf<(i32 imm), [{ // i32ll16c predicate - true if the 32-bit immediate has all bits 16-31 set. return ((N->getZExtValue() | 0x00000000FFFF0000ULL) == N->getZExtValue()); }], LL16>; def i32lh16c : PatLeaf<(i32 imm), [{ // i32lh16c predicate - true if the 32-bit immediate has all rightmost 16 // bits set. return ((N->getZExtValue() | 0x000000000000FFFFULL) == N->getZExtValue()); }], LH16>; def i64ll16 : PatLeaf<(i64 imm), [{ // i64ll16 predicate - true if the 64-bit immediate has only rightmost 16 // bits set. return ((N->getZExtValue() & 0x000000000000FFFFULL) == N->getZExtValue()); }], LL16>; def i64lh16 : PatLeaf<(i64 imm), [{ // i64lh16 predicate - true if the 64-bit immediate has only bits 16-31 set. return ((N->getZExtValue() & 0x00000000FFFF0000ULL) == N->getZExtValue()); }], LH16>; def i64hl16 : PatLeaf<(i64 imm), [{ // i64hl16 predicate - true if the 64-bit immediate has only bits 32-47 set. return ((N->getZExtValue() & 0x0000FFFF00000000ULL) == N->getZExtValue()); }], HL16>; def i64hh16 : PatLeaf<(i64 imm), [{ // i64hh16 predicate - true if the 64-bit immediate has only bits 48-63 set. return ((N->getZExtValue() & 0xFFFF000000000000ULL) == N->getZExtValue()); }], HH16>; def i64ll16c : PatLeaf<(i64 imm), [{ // i64ll16c predicate - true if the 64-bit immediate has only rightmost 16 // bits set. return ((N->getZExtValue() | 0xFFFFFFFFFFFF0000ULL) == N->getZExtValue()); }], LL16>; def i64lh16c : PatLeaf<(i64 imm), [{ // i64lh16c predicate - true if the 64-bit immediate has only bits 16-31 set. return ((N->getZExtValue() | 0xFFFFFFFF0000FFFFULL) == N->getZExtValue()); }], LH16>; def i64hl16c : PatLeaf<(i64 imm), [{ // i64hl16c predicate - true if the 64-bit immediate has only bits 32-47 set. return ((N->getZExtValue() | 0xFFFF0000FFFFFFFFULL) == N->getZExtValue()); }], HL16>; def i64hh16c : PatLeaf<(i64 imm), [{ // i64hh16c predicate - true if the 64-bit immediate has only bits 48-63 set. return ((N->getZExtValue() | 0x0000FFFFFFFFFFFFULL) == N->getZExtValue()); }], HH16>; def immSExt16 : PatLeaf<(imm), [{ // immSExt16 predicate - true if the immediate fits in a 16-bit sign extended // field. if (N->getValueType(0) == MVT::i64) { uint64_t val = N->getZExtValue(); return ((int64_t)val == (int16_t)val); } else if (N->getValueType(0) == MVT::i32) { uint32_t val = N->getZExtValue(); return ((int32_t)val == (int16_t)val); } return false; }], LL16>; def immSExt32 : PatLeaf<(i64 imm), [{ // immSExt32 predicate - true if the immediate fits in a 32-bit sign extended // field. uint64_t val = N->getZExtValue(); return ((int64_t)val == (int32_t)val); }], LO32>; def i64lo32 : PatLeaf<(i64 imm), [{ // i64lo32 predicate - true if the 64-bit immediate has only rightmost 32 // bits set. return ((N->getZExtValue() & 0x00000000FFFFFFFFULL) == N->getZExtValue()); }], LO32>; def i64hi32 : PatLeaf<(i64 imm), [{ // i64hi32 predicate - true if the 64-bit immediate has only bits 32-63 set. return ((N->getZExtValue() & 0xFFFFFFFF00000000ULL) == N->getZExtValue()); }], HI32>; def i64lo32c : PatLeaf<(i64 imm), [{ // i64lo32 predicate - true if the 64-bit immediate has only rightmost 32 // bits set. return ((N->getZExtValue() | 0xFFFFFFFF00000000ULL) == N->getZExtValue()); }], LO32>; def i64hi32c : PatLeaf<(i64 imm), [{ // i64hi32 predicate - true if the 64-bit immediate has only bits 32-63 set. return ((N->getZExtValue() | 0x00000000FFFFFFFFULL) == N->getZExtValue()); }], HI32>; def i32immSExt8 : PatLeaf<(i32 imm), [{ // i32immSExt8 predicate - True if the 32-bit immediate fits in a 8-bit // sign extended field. return (int32_t)N->getZExtValue() == (int8_t)N->getZExtValue(); }], LO8>; def i32immSExt16 : PatLeaf<(i32 imm), [{ // i32immSExt16 predicate - True if the 32-bit immediate fits in a 16-bit // sign extended field. return (int32_t)N->getZExtValue() == (int16_t)N->getZExtValue(); }], LL16>; def i64immSExt32 : PatLeaf<(i64 imm), [{ // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit // sign extended field. return (int64_t)N->getZExtValue() == (int32_t)N->getZExtValue(); }], LO32>; def i64immZExt32 : PatLeaf<(i64 imm), [{ // i64immZExt32 predicate - True if the 64-bit immediate fits in a 32-bit // zero extended field. return (uint64_t)N->getZExtValue() == (uint32_t)N->getZExtValue(); }], LO32>; // extloads def extloadi32i8 : PatFrag<(ops node:$ptr), (i32 (extloadi8 node:$ptr))>; def extloadi32i16 : PatFrag<(ops node:$ptr), (i32 (extloadi16 node:$ptr))>; def extloadi64i8 : PatFrag<(ops node:$ptr), (i64 (extloadi8 node:$ptr))>; def extloadi64i16 : PatFrag<(ops node:$ptr), (i64 (extloadi16 node:$ptr))>; def extloadi64i32 : PatFrag<(ops node:$ptr), (i64 (extloadi32 node:$ptr))>; def sextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (sextloadi8 node:$ptr))>; def sextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (sextloadi16 node:$ptr))>; def sextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (sextloadi8 node:$ptr))>; def sextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (sextloadi16 node:$ptr))>; def sextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (sextloadi32 node:$ptr))>; def zextloadi32i8 : PatFrag<(ops node:$ptr), (i32 (zextloadi8 node:$ptr))>; def zextloadi32i16 : PatFrag<(ops node:$ptr), (i32 (zextloadi16 node:$ptr))>; def zextloadi64i8 : PatFrag<(ops node:$ptr), (i64 (zextloadi8 node:$ptr))>; def zextloadi64i16 : PatFrag<(ops node:$ptr), (i64 (zextloadi16 node:$ptr))>; def zextloadi64i32 : PatFrag<(ops node:$ptr), (i64 (zextloadi32 node:$ptr))>; // A couple of more descriptive operand definitions. // 32-bits but only 8 bits are significant. def i32i8imm : Operand; // 32-bits but only 16 bits are significant. def i32i16imm : Operand; // 64-bits but only 32 bits are significant. def i64i32imm : Operand; // Branch targets have OtherVT type. def brtarget : Operand; // Unsigned i12 def u12imm : Operand { let PrintMethod = "printU12ImmOperand"; } def u12imm64 : Operand { let PrintMethod = "printU12ImmOperand"; } // Signed i16 def s16imm : Operand { let PrintMethod = "printS16ImmOperand"; } def s16imm64 : Operand { let PrintMethod = "printS16ImmOperand"; } // Signed i20 def s20imm : Operand { let PrintMethod = "printS20ImmOperand"; } def s20imm64 : Operand { let PrintMethod = "printS20ImmOperand"; } // Signed i32 def s32imm : Operand { let PrintMethod = "printS32ImmOperand"; } def s32imm64 : Operand { let PrintMethod = "printS32ImmOperand"; } def imm_pcrel : Operand { let PrintMethod = "printPCRelImmOperand"; } //===----------------------------------------------------------------------===// // SystemZ Operand Definitions. //===----------------------------------------------------------------------===// // Address operands // riaddr := reg + imm def riaddr32 : Operand, ComplexPattern { let PrintMethod = "printRIAddrOperand"; let MIOperandInfo = (ops ADDR64:$base, u12imm:$disp); } def riaddr12 : Operand, ComplexPattern { let PrintMethod = "printRIAddrOperand"; let MIOperandInfo = (ops ADDR64:$base, u12imm64:$disp); } def riaddr : Operand, ComplexPattern { let PrintMethod = "printRIAddrOperand"; let MIOperandInfo = (ops ADDR64:$base, s20imm64:$disp); } //===----------------------------------------------------------------------===// // rriaddr := reg + reg + imm def rriaddr12 : Operand, ComplexPattern { let PrintMethod = "printRRIAddrOperand"; let MIOperandInfo = (ops ADDR64:$base, u12imm64:$disp, ADDR64:$index); } def rriaddr : Operand, ComplexPattern { let PrintMethod = "printRRIAddrOperand"; let MIOperandInfo = (ops ADDR64:$base, s20imm64:$disp, ADDR64:$index); } def laaddr : Operand, ComplexPattern { let PrintMethod = "printRRIAddrOperand"; let MIOperandInfo = (ops ADDR64:$base, s20imm64:$disp, ADDR64:$index); }