//===-- SystemZOperators.td - SystemZ-specific operators ------*- tblgen-*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Type profiles //===----------------------------------------------------------------------===// def SDT_CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i64>]>; def SDT_CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i64>, SDTCisVT<1, i64>]>; def SDT_ZCall : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>; def SDT_ZCmp : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>; def SDT_ZICmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisVT<2, i32>]>; def SDT_ZBRCCMask : SDTypeProfile<0, 3, [SDTCisVT<0, i8>, SDTCisVT<1, i8>, SDTCisVT<2, OtherVT>]>; def SDT_ZSelectCCMask : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i8>, SDTCisVT<4, i8>]>; def SDT_ZWrapPtr : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>; def SDT_ZWrapOffset : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisPtrTy<0>]>; def SDT_ZAdjDynAlloc : SDTypeProfile<1, 0, [SDTCisVT<0, i64>]>; def SDT_ZExtractAccess : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i8>]>; def SDT_ZGR128Binary32 : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>, SDTCisVT<1, untyped>, SDTCisVT<2, i32>]>; def SDT_ZGR128Binary64 : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>, SDTCisVT<1, untyped>, SDTCisVT<2, i64>]>; def SDT_ZAtomicLoadBinaryW : SDTypeProfile<1, 5, [SDTCisVT<0, i32>, SDTCisPtrTy<1>, SDTCisVT<2, i32>, SDTCisVT<3, i32>, SDTCisVT<4, i32>, SDTCisVT<5, i32>]>; def SDT_ZAtomicCmpSwapW : SDTypeProfile<1, 6, [SDTCisVT<0, i32>, SDTCisPtrTy<1>, SDTCisVT<2, i32>, SDTCisVT<3, i32>, SDTCisVT<4, i32>, SDTCisVT<5, i32>, SDTCisVT<6, i32>]>; def SDT_ZMemMemLength : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisPtrTy<1>, SDTCisVT<2, i64>]>; def SDT_ZMemMemLoop : SDTypeProfile<0, 4, [SDTCisPtrTy<0>, SDTCisPtrTy<1>, SDTCisVT<2, i64>, SDTCisVT<3, i64>]>; def SDT_ZString : SDTypeProfile<1, 3, [SDTCisPtrTy<0>, SDTCisPtrTy<1>, SDTCisPtrTy<2>, SDTCisVT<3, i32>]>; def SDT_ZI32Intrinsic : SDTypeProfile<1, 0, [SDTCisVT<0, i32>]>; def SDT_ZPrefetch : SDTypeProfile<0, 2, [SDTCisVT<0, i8>, SDTCisPtrTy<1>]>; //===----------------------------------------------------------------------===// // Node definitions //===----------------------------------------------------------------------===// // These are target-independent nodes, but have target-specific formats. def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_CallSeqStart, [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>; def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_CallSeqEnd, [SDNPHasChain, SDNPSideEffect, SDNPOptInGlue, SDNPOutGlue]>; // Nodes for SystemZISD::*. See SystemZISelLowering.h for more details. def z_retflag : SDNode<"SystemZISD::RET_FLAG", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; def z_call : SDNode<"SystemZISD::CALL", SDT_ZCall, [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue, SDNPVariadic]>; def z_sibcall : SDNode<"SystemZISD::SIBCALL", SDT_ZCall, [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue, SDNPVariadic]>; def z_pcrel_wrapper : SDNode<"SystemZISD::PCREL_WRAPPER", SDT_ZWrapPtr, []>; def z_pcrel_offset : SDNode<"SystemZISD::PCREL_OFFSET", SDT_ZWrapOffset, []>; def z_iabs : SDNode<"SystemZISD::IABS", SDTIntUnaryOp, []>; def z_icmp : SDNode<"SystemZISD::ICMP", SDT_ZICmp, [SDNPOutGlue]>; def z_fcmp : SDNode<"SystemZISD::FCMP", SDT_ZCmp, [SDNPOutGlue]>; def z_tm : SDNode<"SystemZISD::TM", SDT_ZICmp, [SDNPOutGlue]>; def z_br_ccmask : SDNode<"SystemZISD::BR_CCMASK", SDT_ZBRCCMask, [SDNPHasChain, SDNPInGlue]>; def z_select_ccmask : SDNode<"SystemZISD::SELECT_CCMASK", SDT_ZSelectCCMask, [SDNPInGlue]>; def z_adjdynalloc : SDNode<"SystemZISD::ADJDYNALLOC", SDT_ZAdjDynAlloc>; def z_extract_access : SDNode<"SystemZISD::EXTRACT_ACCESS", SDT_ZExtractAccess>; def z_umul_lohi64 : SDNode<"SystemZISD::UMUL_LOHI64", SDT_ZGR128Binary64>; def z_sdivrem32 : SDNode<"SystemZISD::SDIVREM32", SDT_ZGR128Binary32>; def z_sdivrem64 : SDNode<"SystemZISD::SDIVREM64", SDT_ZGR128Binary64>; def z_udivrem32 : SDNode<"SystemZISD::UDIVREM32", SDT_ZGR128Binary32>; def z_udivrem64 : SDNode<"SystemZISD::UDIVREM64", SDT_ZGR128Binary64>; def z_serialize : SDNode<"SystemZISD::SERIALIZE", SDTNone, [SDNPHasChain, SDNPMayStore]>; class AtomicWOp : SDNode<"SystemZISD::"##name, profile, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def z_atomic_swapw : AtomicWOp<"ATOMIC_SWAPW">; def z_atomic_loadw_add : AtomicWOp<"ATOMIC_LOADW_ADD">; def z_atomic_loadw_sub : AtomicWOp<"ATOMIC_LOADW_SUB">; def z_atomic_loadw_and : AtomicWOp<"ATOMIC_LOADW_AND">; def z_atomic_loadw_or : AtomicWOp<"ATOMIC_LOADW_OR">; def z_atomic_loadw_xor : AtomicWOp<"ATOMIC_LOADW_XOR">; def z_atomic_loadw_nand : AtomicWOp<"ATOMIC_LOADW_NAND">; def z_atomic_loadw_min : AtomicWOp<"ATOMIC_LOADW_MIN">; def z_atomic_loadw_max : AtomicWOp<"ATOMIC_LOADW_MAX">; def z_atomic_loadw_umin : AtomicWOp<"ATOMIC_LOADW_UMIN">; def z_atomic_loadw_umax : AtomicWOp<"ATOMIC_LOADW_UMAX">; def z_atomic_cmp_swapw : AtomicWOp<"ATOMIC_CMP_SWAPW", SDT_ZAtomicCmpSwapW>; def z_mvc : SDNode<"SystemZISD::MVC", SDT_ZMemMemLength, [SDNPHasChain, SDNPMayStore, SDNPMayLoad]>; def z_mvc_loop : SDNode<"SystemZISD::MVC_LOOP", SDT_ZMemMemLoop, [SDNPHasChain, SDNPMayStore, SDNPMayLoad]>; def z_nc : SDNode<"SystemZISD::NC", SDT_ZMemMemLength, [SDNPHasChain, SDNPMayStore, SDNPMayLoad]>; def z_nc_loop : SDNode<"SystemZISD::NC_LOOP", SDT_ZMemMemLoop, [SDNPHasChain, SDNPMayStore, SDNPMayLoad]>; def z_oc : SDNode<"SystemZISD::OC", SDT_ZMemMemLength, [SDNPHasChain, SDNPMayStore, SDNPMayLoad]>; def z_oc_loop : SDNode<"SystemZISD::OC_LOOP", SDT_ZMemMemLoop, [SDNPHasChain, SDNPMayStore, SDNPMayLoad]>; def z_xc : SDNode<"SystemZISD::XC", SDT_ZMemMemLength, [SDNPHasChain, SDNPMayStore, SDNPMayLoad]>; def z_xc_loop : SDNode<"SystemZISD::XC_LOOP", SDT_ZMemMemLoop, [SDNPHasChain, SDNPMayStore, SDNPMayLoad]>; def z_clc : SDNode<"SystemZISD::CLC", SDT_ZMemMemLength, [SDNPHasChain, SDNPOutGlue, SDNPMayLoad]>; def z_clc_loop : SDNode<"SystemZISD::CLC_LOOP", SDT_ZMemMemLoop, [SDNPHasChain, SDNPOutGlue, SDNPMayLoad]>; def z_strcmp : SDNode<"SystemZISD::STRCMP", SDT_ZString, [SDNPHasChain, SDNPOutGlue, SDNPMayLoad]>; def z_stpcpy : SDNode<"SystemZISD::STPCPY", SDT_ZString, [SDNPHasChain, SDNPMayStore, SDNPMayLoad]>; def z_search_string : SDNode<"SystemZISD::SEARCH_STRING", SDT_ZString, [SDNPHasChain, SDNPOutGlue, SDNPMayLoad]>; def z_ipm : SDNode<"SystemZISD::IPM", SDT_ZI32Intrinsic, [SDNPInGlue]>; def z_prefetch : SDNode<"SystemZISD::PREFETCH", SDT_ZPrefetch, [SDNPHasChain, SDNPMayLoad, SDNPMayStore, SDNPMemOperand]>; //===----------------------------------------------------------------------===// // Pattern fragments //===----------------------------------------------------------------------===// // Signed and unsigned comparisons. def z_scmp : PatFrag<(ops node:$a, node:$b), (z_icmp node:$a, node:$b, imm), [{ unsigned Type = cast(N->getOperand(2))->getZExtValue(); return Type != SystemZICMP::UnsignedOnly; }]>; def z_ucmp : PatFrag<(ops node:$a, node:$b), (z_icmp node:$a, node:$b, imm), [{ unsigned Type = cast(N->getOperand(2))->getZExtValue(); return Type != SystemZICMP::SignedOnly; }]>; // Register- and memory-based TEST UNDER MASK. def z_tm_reg : PatFrag<(ops node:$a, node:$b), (z_tm node:$a, node:$b, imm)>; def z_tm_mem : PatFrag<(ops node:$a, node:$b), (z_tm node:$a, node:$b, 0)>; // Register sign-extend operations. Sub-32-bit values are represented as i32s. def sext8 : PatFrag<(ops node:$src), (sext_inreg node:$src, i8)>; def sext16 : PatFrag<(ops node:$src), (sext_inreg node:$src, i16)>; def sext32 : PatFrag<(ops node:$src), (sext (i32 node:$src))>; // Register zero-extend operations. Sub-32-bit values are represented as i32s. def zext8 : PatFrag<(ops node:$src), (and node:$src, 0xff)>; def zext16 : PatFrag<(ops node:$src), (and node:$src, 0xffff)>; def zext32 : PatFrag<(ops node:$src), (zext (i32 node:$src))>; // Typed floating-point loads. def loadf32 : PatFrag<(ops node:$src), (f32 (load node:$src))>; def loadf64 : PatFrag<(ops node:$src), (f64 (load node:$src))>; // Extending loads in which the extension type can be signed. def asextload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr), [{ unsigned Type = cast(N)->getExtensionType(); return Type == ISD::EXTLOAD || Type == ISD::SEXTLOAD; }]>; def asextloadi8 : PatFrag<(ops node:$ptr), (asextload node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i8; }]>; def asextloadi16 : PatFrag<(ops node:$ptr), (asextload node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i16; }]>; def asextloadi32 : PatFrag<(ops node:$ptr), (asextload node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i32; }]>; // Extending loads in which the extension type can be unsigned. def azextload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr), [{ unsigned Type = cast(N)->getExtensionType(); return Type == ISD::EXTLOAD || Type == ISD::ZEXTLOAD; }]>; def azextloadi8 : PatFrag<(ops node:$ptr), (azextload node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i8; }]>; def azextloadi16 : PatFrag<(ops node:$ptr), (azextload node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i16; }]>; def azextloadi32 : PatFrag<(ops node:$ptr), (azextload node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i32; }]>; // Extending loads in which the extension type doesn't matter. def anyextload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr), [{ return cast(N)->getExtensionType() != ISD::NON_EXTLOAD; }]>; def anyextloadi8 : PatFrag<(ops node:$ptr), (anyextload node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i8; }]>; def anyextloadi16 : PatFrag<(ops node:$ptr), (anyextload node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i16; }]>; def anyextloadi32 : PatFrag<(ops node:$ptr), (anyextload node:$ptr), [{ return cast(N)->getMemoryVT() == MVT::i32; }]>; // Aligned loads. class AlignedLoad : PatFrag<(ops node:$addr), (load node:$addr), [{ auto *Load = cast(N); return Load->getAlignment() >= Load->getMemoryVT().getStoreSize(); }]>; def aligned_load : AlignedLoad; def aligned_asextloadi16 : AlignedLoad; def aligned_asextloadi32 : AlignedLoad; def aligned_azextloadi16 : AlignedLoad; def aligned_azextloadi32 : AlignedLoad; // Aligned stores. class AlignedStore : PatFrag<(ops node:$src, node:$addr), (store node:$src, node:$addr), [{ auto *Store = cast(N); return Store->getAlignment() >= Store->getMemoryVT().getStoreSize(); }]>; def aligned_store : AlignedStore; def aligned_truncstorei16 : AlignedStore; def aligned_truncstorei32 : AlignedStore; // Non-volatile loads. Used for instructions that might access the storage // location multiple times. class NonvolatileLoad : PatFrag<(ops node:$addr), (load node:$addr), [{ auto *Load = cast(N); return !Load->isVolatile(); }]>; def nonvolatile_load : NonvolatileLoad; def nonvolatile_anyextloadi8 : NonvolatileLoad; def nonvolatile_anyextloadi16 : NonvolatileLoad; def nonvolatile_anyextloadi32 : NonvolatileLoad; // Non-volatile stores. class NonvolatileStore : PatFrag<(ops node:$src, node:$addr), (store node:$src, node:$addr), [{ auto *Store = cast(N); return !Store->isVolatile(); }]>; def nonvolatile_store : NonvolatileStore; def nonvolatile_truncstorei8 : NonvolatileStore; def nonvolatile_truncstorei16 : NonvolatileStore; def nonvolatile_truncstorei32 : NonvolatileStore; // A store of a load that can be implemented using MVC. def mvc_store : PatFrag<(ops node:$value, node:$addr), (unindexedstore node:$value, node:$addr), [{ return storeLoadCanUseMVC(N); }]>; // Binary read-modify-write operations on memory in which the other // operand is also memory and for which block operations like NC can // be used. There are two patterns for each operator, depending on // which operand contains the "other" load. multiclass block_op { def "1" : PatFrag<(ops node:$value, node:$addr), (unindexedstore (operator node:$value, (unindexedload node:$addr)), node:$addr), [{ return storeLoadCanUseBlockBinary(N, 0); }]>; def "2" : PatFrag<(ops node:$value, node:$addr), (unindexedstore (operator (unindexedload node:$addr), node:$value), node:$addr), [{ return storeLoadCanUseBlockBinary(N, 1); }]>; } defm block_and : block_op; defm block_or : block_op; defm block_xor : block_op; // Insertions. def inserti8 : PatFrag<(ops node:$src1, node:$src2), (or (and node:$src1, -256), node:$src2)>; def insertll : PatFrag<(ops node:$src1, node:$src2), (or (and node:$src1, 0xffffffffffff0000), node:$src2)>; def insertlh : PatFrag<(ops node:$src1, node:$src2), (or (and node:$src1, 0xffffffff0000ffff), node:$src2)>; def inserthl : PatFrag<(ops node:$src1, node:$src2), (or (and node:$src1, 0xffff0000ffffffff), node:$src2)>; def inserthh : PatFrag<(ops node:$src1, node:$src2), (or (and node:$src1, 0x0000ffffffffffff), node:$src2)>; def insertlf : PatFrag<(ops node:$src1, node:$src2), (or (and node:$src1, 0xffffffff00000000), node:$src2)>; def inserthf : PatFrag<(ops node:$src1, node:$src2), (or (and node:$src1, 0x00000000ffffffff), node:$src2)>; // ORs that can be treated as insertions. def or_as_inserti8 : PatFrag<(ops node:$src1, node:$src2), (or node:$src1, node:$src2), [{ unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits(); return CurDAG->MaskedValueIsZero(N->getOperand(0), APInt::getLowBitsSet(BitWidth, 8)); }]>; // ORs that can be treated as reversed insertions. def or_as_revinserti8 : PatFrag<(ops node:$src1, node:$src2), (or node:$src1, node:$src2), [{ unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits(); return CurDAG->MaskedValueIsZero(N->getOperand(1), APInt::getLowBitsSet(BitWidth, 8)); }]>; // Negative integer absolute. def z_inegabs : PatFrag<(ops node:$src), (ineg (z_iabs node:$src))>; // Integer absolute, matching the canonical form generated by DAGCombiner. def z_iabs32 : PatFrag<(ops node:$src), (xor (add node:$src, (sra node:$src, (i32 31))), (sra node:$src, (i32 31)))>; def z_iabs64 : PatFrag<(ops node:$src), (xor (add node:$src, (sra node:$src, (i32 63))), (sra node:$src, (i32 63)))>; def z_inegabs32 : PatFrag<(ops node:$src), (ineg (z_iabs32 node:$src))>; def z_inegabs64 : PatFrag<(ops node:$src), (ineg (z_iabs64 node:$src))>; // Fused multiply-add and multiply-subtract, but with the order of the // operands matching SystemZ's MA and MS instructions. def z_fma : PatFrag<(ops node:$src1, node:$src2, node:$src3), (fma node:$src2, node:$src3, node:$src1)>; def z_fms : PatFrag<(ops node:$src1, node:$src2, node:$src3), (fma node:$src2, node:$src3, (fneg node:$src1))>; // Floating-point negative absolute. def fnabs : PatFrag<(ops node:$ptr), (fneg (fabs node:$ptr))>; // Create a unary operator that loads from memory and then performs // the given operation on it. class loadu : PatFrag<(ops node:$addr), (operator (load node:$addr))>; // Create a store operator that performs the given unary operation // on the value before storing it. class storeu : PatFrag<(ops node:$value, node:$addr), (store (operator node:$value), node:$addr)>;