//===-- SchedInfo.cpp - Generic code to support target schedulers ----------==// // // This file implements the generic part of a Scheduler description for a // target. This functionality is defined in the llvm/Target/SchedInfo.h file. // //===----------------------------------------------------------------------===// #include "llvm/Target/TargetSchedInfo.h" #include "llvm/Target/TargetMachine.h" resourceId_t MachineResource::nextId = 0; // Check if fromRVec and toRVec have *any* common entries. // Assume the vectors are sorted in increasing order. // Algorithm copied from function set_intersection() for sorted ranges // (stl_algo.h). // inline static bool RUConflict(const std::vector& fromRVec, const std::vector& toRVec) { unsigned fN = fromRVec.size(), tN = toRVec.size(); unsigned fi = 0, ti = 0; while (fi < fN && ti < tN) { if (fromRVec[fi] < toRVec[ti]) ++fi; else if (toRVec[ti] < fromRVec[fi]) ++ti; else return true; } return false; } static cycles_t ComputeMinGap(const InstrRUsage &fromRU, const InstrRUsage &toRU) { cycles_t minGap = 0; if (fromRU.numBubbles > 0) minGap = fromRU.numBubbles; if (minGap < fromRU.numCycles) { // only need to check from cycle `minGap' onwards for (cycles_t gap=minGap; gap <= fromRU.numCycles-1; gap++) { // check if instr. #2 can start executing `gap' cycles after #1 // by checking for resource conflicts in each overlapping cycle cycles_t numOverlap =std::min(fromRU.numCycles - gap, toRU.numCycles); for (cycles_t c = 0; c <= numOverlap-1; c++) if (RUConflict(fromRU.resourcesByCycle[gap + c], toRU.resourcesByCycle[c])) { // conflict found so minGap must be more than `gap' minGap = gap+1; break; } } } return minGap; } //--------------------------------------------------------------------------- // class TargetSchedInfo // Interface to machine description for instruction scheduling //--------------------------------------------------------------------------- TargetSchedInfo::TargetSchedInfo(const TargetMachine& tgt, int NumSchedClasses, const InstrClassRUsage* ClassRUsages, const InstrRUsageDelta* UsageDeltas, const InstrIssueDelta* IssueDeltas, unsigned NumUsageDeltas, unsigned NumIssueDeltas) : target(tgt), numSchedClasses(NumSchedClasses), mii(& tgt.getInstrInfo()), classRUsages(ClassRUsages), usageDeltas(UsageDeltas), issueDeltas(IssueDeltas), numUsageDeltas(NumUsageDeltas), numIssueDeltas(NumIssueDeltas) {} void TargetSchedInfo::initializeResources() { assert(MAX_NUM_SLOTS >= (int)getMaxNumIssueTotal() && "Insufficient slots for static data! Increase MAX_NUM_SLOTS"); // First, compute common resource usage info for each class because // most instructions will probably behave the same as their class. // Cannot allocate a vector of InstrRUsage so new each one. // std::vector instrRUForClasses; instrRUForClasses.resize(numSchedClasses); for (InstrSchedClass sc = 0; sc < numSchedClasses; sc++) { // instrRUForClasses.push_back(new InstrRUsage); instrRUForClasses[sc].setMaxSlots(getMaxNumIssueTotal()); instrRUForClasses[sc].setTo(classRUsages[sc]); } computeInstrResources(instrRUForClasses); computeIssueGaps(instrRUForClasses); } void TargetSchedInfo::computeInstrResources(const std::vector& instrRUForClasses) { int numOpCodes = mii->getNumRealOpCodes(); instrRUsages.resize(numOpCodes); // First get the resource usage information from the class resource usages. for (MachineOpCode op = 0; op < numOpCodes; ++op) { InstrSchedClass sc = getSchedClass(op); assert(sc < numSchedClasses); instrRUsages[op] = instrRUForClasses[sc]; } // Now, modify the resource usages as specified in the deltas. for (unsigned i = 0; i < numUsageDeltas; ++i) { MachineOpCode op = usageDeltas[i].opCode; assert(op < numOpCodes); instrRUsages[op].addUsageDelta(usageDeltas[i]); } // Then modify the issue restrictions as specified in the deltas. for (unsigned i = 0; i < numIssueDeltas; ++i) { MachineOpCode op = issueDeltas[i].opCode; assert(op < numOpCodes); instrRUsages[issueDeltas[i].opCode].addIssueDelta(issueDeltas[i]); } } void TargetSchedInfo::computeIssueGaps(const std::vector& instrRUForClasses) { int numOpCodes = mii->getNumRealOpCodes(); issueGaps.resize(numOpCodes); conflictLists.resize(numOpCodes); assert(numOpCodes < (1 << MAX_OPCODE_SIZE) - 1 && "numOpCodes invalid for implementation of class OpCodePair!"); // First, compute issue gaps between pairs of classes based on common // resources usages for each class, because most instruction pairs will // usually behave the same as their class. // int classPairGaps[numSchedClasses][numSchedClasses]; for (InstrSchedClass fromSC=0; fromSC < numSchedClasses; fromSC++) for (InstrSchedClass toSC=0; toSC < numSchedClasses; toSC++) { int classPairGap = ComputeMinGap(instrRUForClasses[fromSC], instrRUForClasses[toSC]); classPairGaps[fromSC][toSC] = classPairGap; } // Now, for each pair of instructions, use the class pair gap if both // instructions have identical resource usage as their respective classes. // If not, recompute the gap for the pair from scratch. longestIssueConflict = 0; for (MachineOpCode fromOp=0; fromOp < numOpCodes; fromOp++) for (MachineOpCode toOp=0; toOp < numOpCodes; toOp++) { int instrPairGap = (instrRUsages[fromOp].sameAsClass && instrRUsages[toOp].sameAsClass) ? classPairGaps[getSchedClass(fromOp)][getSchedClass(toOp)] : ComputeMinGap(instrRUsages[fromOp], instrRUsages[toOp]); if (instrPairGap > 0) { this->setGap(instrPairGap, fromOp, toOp); conflictLists[fromOp].push_back(toOp); longestIssueConflict=std::max(longestIssueConflict, instrPairGap); } } } void InstrRUsage::setTo(const InstrClassRUsage& classRU) { sameAsClass = true; isSingleIssue = classRU.isSingleIssue; breaksGroup = classRU.breaksGroup; numBubbles = classRU.numBubbles; for (unsigned i=0; i < classRU.numSlots; i++) { unsigned slot = classRU.feasibleSlots[i]; assert(slot < feasibleSlots.size() && "Invalid slot specified!"); this->feasibleSlots[slot] = true; } numCycles = classRU.totCycles; resourcesByCycle.resize(this->numCycles); for (unsigned i=0; i < classRU.numRUEntries; i++) for (unsigned c=classRU.V[i].startCycle, NC = c + classRU.V[i].numCycles; c < NC; c++) this->resourcesByCycle[c].push_back(classRU.V[i].resourceId); // Sort each resource usage vector by resourceId_t to speed up conflict // checking for (unsigned i=0; i < this->resourcesByCycle.size(); i++) sort(resourcesByCycle[i].begin(), resourcesByCycle[i].end()); } // Add the extra resource usage requirements specified in the delta. // Note that a negative value of `numCycles' means one entry for that // resource should be deleted for each cycle. // void InstrRUsage::addUsageDelta(const InstrRUsageDelta &delta) { int NC = delta.numCycles; sameAsClass = false; // resize the resources vector if more cycles are specified unsigned maxCycles = this->numCycles; maxCycles = std::max(maxCycles, delta.startCycle + abs(NC) - 1); if (maxCycles > this->numCycles) { this->resourcesByCycle.resize(maxCycles); this->numCycles = maxCycles; } if (NC >= 0) for (unsigned c=delta.startCycle, last=c+NC-1; c <= last; c++) this->resourcesByCycle[c].push_back(delta.resourceId); else // Remove the resource from all NC cycles. for (unsigned c=delta.startCycle, last=(c-NC)-1; c <= last; c++) { // Look for the resource backwards so we remove the last entry // for that resource in each cycle. std::vector& rvec = this->resourcesByCycle[c]; int r; for (r = rvec.size() - 1; r >= 0; r--) if (rvec[r] == delta.resourceId) { // found last entry for the resource rvec.erase(rvec.begin() + r); break; } assert(r >= 0 && "Resource to remove was unused in cycle c!"); } }