//===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/Target/TargetAsmBackend.h" #include "X86.h" #include "X86FixupKinds.h" #include "llvm/ADT/Twine.h" #include "llvm/MC/ELFObjectWriter.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCObjectWriter.h" #include "llvm/MC/MCSectionCOFF.h" #include "llvm/MC/MCSectionELF.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MachObjectWriter.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetRegistry.h" #include "llvm/Target/TargetAsmBackend.h" using namespace llvm; static unsigned getFixupKindLog2Size(unsigned Kind) { switch (Kind) { default: assert(0 && "invalid fixup kind!"); case X86::reloc_pcrel_1byte: case FK_Data_1: return 0; case X86::reloc_pcrel_2byte: case FK_Data_2: return 1; case X86::reloc_pcrel_4byte: case X86::reloc_riprel_4byte: case X86::reloc_riprel_4byte_movq_load: case X86::reloc_signed_4byte: case FK_Data_4: return 2; case FK_Data_8: return 3; } } namespace { class X86AsmBackend : public TargetAsmBackend { public: X86AsmBackend(const Target &T) : TargetAsmBackend(T) {} void ApplyFixup(const MCFixup &Fixup, MCDataFragment &DF, uint64_t Value) const { unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind()); assert(Fixup.getOffset() + Size <= DF.getContents().size() && "Invalid fixup offset!"); for (unsigned i = 0; i != Size; ++i) DF.getContents()[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8)); } bool MayNeedRelaxation(const MCInst &Inst) const; void RelaxInstruction(const MCInst &Inst, MCInst &Res) const; bool WriteNopData(uint64_t Count, MCObjectWriter *OW) const; }; } // end anonymous namespace static unsigned getRelaxedOpcode(unsigned Op) { switch (Op) { default: return Op; case X86::JAE_1: return X86::JAE_4; case X86::JA_1: return X86::JA_4; case X86::JBE_1: return X86::JBE_4; case X86::JB_1: return X86::JB_4; case X86::JE_1: return X86::JE_4; case X86::JGE_1: return X86::JGE_4; case X86::JG_1: return X86::JG_4; case X86::JLE_1: return X86::JLE_4; case X86::JL_1: return X86::JL_4; case X86::JMP_1: return X86::JMP_4; case X86::JNE_1: return X86::JNE_4; case X86::JNO_1: return X86::JNO_4; case X86::JNP_1: return X86::JNP_4; case X86::JNS_1: return X86::JNS_4; case X86::JO_1: return X86::JO_4; case X86::JP_1: return X86::JP_4; case X86::JS_1: return X86::JS_4; } } bool X86AsmBackend::MayNeedRelaxation(const MCInst &Inst) const { // Check if this instruction is ever relaxable. if (getRelaxedOpcode(Inst.getOpcode()) == Inst.getOpcode()) return false; // If so, just assume it can be relaxed. Once we support relaxing more complex // instructions we should check that the instruction actually has symbolic // operands before doing this, but we need to be careful about things like // PCrel. return true; } // FIXME: Can tblgen help at all here to verify there aren't other instructions // we can relax? void X86AsmBackend::RelaxInstruction(const MCInst &Inst, MCInst &Res) const { // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel. unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode()); if (RelaxedOp == Inst.getOpcode()) { SmallString<256> Tmp; raw_svector_ostream OS(Tmp); Inst.dump_pretty(OS); OS << "\n"; report_fatal_error("unexpected instruction to relax: " + OS.str()); } Res = Inst; Res.setOpcode(RelaxedOp); } /// WriteNopData - Write optimal nops to the output file for the \arg Count /// bytes. This returns the number of bytes written. It may return 0 if /// the \arg Count is more than the maximum optimal nops. /// /// FIXME this is X86 32-bit specific and should move to a better place. bool X86AsmBackend::WriteNopData(uint64_t Count, MCObjectWriter *OW) const { static const uint8_t Nops[16][16] = { // nop {0x90}, // xchg %ax,%ax {0x66, 0x90}, // nopl (%[re]ax) {0x0f, 0x1f, 0x00}, // nopl 0(%[re]ax) {0x0f, 0x1f, 0x40, 0x00}, // nopl 0(%[re]ax,%[re]ax,1) {0x0f, 0x1f, 0x44, 0x00, 0x00}, // nopw 0(%[re]ax,%[re]ax,1) {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00}, // nopl 0L(%[re]ax) {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00}, // nopl 0L(%[re]ax,%[re]ax,1) {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, // nopw 0L(%[re]ax,%[re]ax,1) {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, // nopw %cs:0L(%[re]ax,%[re]ax,1) {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, // nopl 0(%[re]ax,%[re]ax,1) // nopw 0(%[re]ax,%[re]ax,1) {0x0f, 0x1f, 0x44, 0x00, 0x00, 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00}, // nopw 0(%[re]ax,%[re]ax,1) // nopw 0(%[re]ax,%[re]ax,1) {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00, 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00}, // nopw 0(%[re]ax,%[re]ax,1) // nopl 0L(%[re]ax) */ {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00, 0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00}, // nopl 0L(%[re]ax) // nopl 0L(%[re]ax) {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00, 0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00}, // nopl 0L(%[re]ax) // nopl 0L(%[re]ax,%[re]ax,1) {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00} }; // Write an optimal sequence for the first 15 bytes. uint64_t OptimalCount = (Count < 16) ? Count : 15; for (uint64_t i = 0, e = OptimalCount; i != e; i++) OW->Write8(Nops[OptimalCount - 1][i]); // Finish with single byte nops. for (uint64_t i = OptimalCount, e = Count; i != e; ++i) OW->Write8(0x90); return true; } /* *** */ namespace { class ELFX86AsmBackend : public X86AsmBackend { public: Triple::OSType OSType; ELFX86AsmBackend(const Target &T, Triple::OSType _OSType) : X86AsmBackend(T), OSType(_OSType) { HasAbsolutizedSet = true; HasScatteredSymbols = true; HasReliableSymbolDifference = true; } virtual bool doesSectionRequireSymbols(const MCSection &Section) const { const MCSectionELF &ES = static_cast(Section); return ES.getFlags() & MCSectionELF::SHF_MERGE; } bool isVirtualSection(const MCSection &Section) const { const MCSectionELF &SE = static_cast(Section); return SE.getType() == MCSectionELF::SHT_NOBITS; } }; class ELFX86_32AsmBackend : public ELFX86AsmBackend { public: ELFX86_32AsmBackend(const Target &T, Triple::OSType OSType) : ELFX86AsmBackend(T, OSType) {} unsigned getPointerSize() const { return 4; } MCObjectWriter *createObjectWriter(raw_ostream &OS) const { return new ELFObjectWriter(OS, /*Is64Bit=*/false, OSType, /*IsLittleEndian=*/true, /*HasRelocationAddend=*/false); } }; class ELFX86_64AsmBackend : public ELFX86AsmBackend { public: ELFX86_64AsmBackend(const Target &T, Triple::OSType OSType) : ELFX86AsmBackend(T, OSType) {} unsigned getPointerSize() const { return 8; } MCObjectWriter *createObjectWriter(raw_ostream &OS) const { return new ELFObjectWriter(OS, /*Is64Bit=*/true, OSType, /*IsLittleEndian=*/true, /*HasRelocationAddend=*/true); } }; class WindowsX86AsmBackend : public X86AsmBackend { bool Is64Bit; public: WindowsX86AsmBackend(const Target &T, bool is64Bit) : X86AsmBackend(T) , Is64Bit(is64Bit) { HasScatteredSymbols = true; } unsigned getPointerSize() const { if (Is64Bit) return 8; else return 4; } MCObjectWriter *createObjectWriter(raw_ostream &OS) const { return createWinCOFFObjectWriter(OS, Is64Bit); } bool isVirtualSection(const MCSection &Section) const { const MCSectionCOFF &SE = static_cast(Section); return SE.getCharacteristics() & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; } }; class DarwinX86AsmBackend : public X86AsmBackend { public: DarwinX86AsmBackend(const Target &T) : X86AsmBackend(T) { HasAbsolutizedSet = true; HasScatteredSymbols = true; } bool isVirtualSection(const MCSection &Section) const { const MCSectionMachO &SMO = static_cast(Section); return (SMO.getType() == MCSectionMachO::S_ZEROFILL || SMO.getType() == MCSectionMachO::S_GB_ZEROFILL || SMO.getType() == MCSectionMachO::S_THREAD_LOCAL_ZEROFILL); } }; class DarwinX86_32AsmBackend : public DarwinX86AsmBackend { public: DarwinX86_32AsmBackend(const Target &T) : DarwinX86AsmBackend(T) {} unsigned getPointerSize() const { return 4; } MCObjectWriter *createObjectWriter(raw_ostream &OS) const { return new MachObjectWriter(OS, /*Is64Bit=*/false); } }; class DarwinX86_64AsmBackend : public DarwinX86AsmBackend { public: DarwinX86_64AsmBackend(const Target &T) : DarwinX86AsmBackend(T) { HasReliableSymbolDifference = true; } unsigned getPointerSize() const { return 8; } MCObjectWriter *createObjectWriter(raw_ostream &OS) const { return new MachObjectWriter(OS, /*Is64Bit=*/true); } virtual bool doesSectionRequireSymbols(const MCSection &Section) const { // Temporary labels in the string literals sections require symbols. The // issue is that the x86_64 relocation format does not allow symbol + // offset, and so the linker does not have enough information to resolve the // access to the appropriate atom unless an external relocation is used. For // non-cstring sections, we expect the compiler to use a non-temporary label // for anything that could have an addend pointing outside the symbol. // // See . const MCSectionMachO &SMO = static_cast(Section); return SMO.getType() == MCSectionMachO::S_CSTRING_LITERALS; } virtual bool isSectionAtomizable(const MCSection &Section) const { const MCSectionMachO &SMO = static_cast(Section); // Fixed sized data sections are uniqued, they cannot be diced into atoms. switch (SMO.getType()) { default: return true; case MCSectionMachO::S_4BYTE_LITERALS: case MCSectionMachO::S_8BYTE_LITERALS: case MCSectionMachO::S_16BYTE_LITERALS: case MCSectionMachO::S_LITERAL_POINTERS: case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS: case MCSectionMachO::S_LAZY_SYMBOL_POINTERS: case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS: case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS: case MCSectionMachO::S_INTERPOSING: return false; } } }; } // end anonymous namespace TargetAsmBackend *llvm::createX86_32AsmBackend(const Target &T, const std::string &TT) { switch (Triple(TT).getOS()) { case Triple::Darwin: return new DarwinX86_32AsmBackend(T); case Triple::MinGW32: case Triple::Cygwin: case Triple::Win32: return new WindowsX86AsmBackend(T, false); default: return new ELFX86_32AsmBackend(T, Triple(TT).getOS()); } } TargetAsmBackend *llvm::createX86_64AsmBackend(const Target &T, const std::string &TT) { switch (Triple(TT).getOS()) { case Triple::Darwin: return new DarwinX86_64AsmBackend(T); case Triple::MinGW64: case Triple::Cygwin: case Triple::Win32: return new WindowsX86AsmBackend(T, true); default: return new ELFX86_64AsmBackend(T, Triple(TT).getOS()); } }