//===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the pass that transforms the X86 machine instructions into // relocatable machine code. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "x86-emitter" #include "X86InstrInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "X86Relocations.h" #include "X86.h" #include "llvm/PassManager.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Function.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Compiler.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; STATISTIC(NumEmitted, "Number of machine instructions emitted"); namespace { class VISIBILITY_HIDDEN Emitter : public MachineFunctionPass { const X86InstrInfo *II; const TargetData *TD; TargetMachine &TM; MachineCodeEmitter &MCE; bool Is64BitMode; public: static const int ID; explicit Emitter(TargetMachine &tm, MachineCodeEmitter &mce) : MachineFunctionPass((intptr_t)&ID), II(0), TD(0), TM(tm), MCE(mce), Is64BitMode(false) {} Emitter(TargetMachine &tm, MachineCodeEmitter &mce, const X86InstrInfo &ii, const TargetData &td, bool is64) : MachineFunctionPass((intptr_t)&ID), II(&ii), TD(&td), TM(tm), MCE(mce), Is64BitMode(is64) {} bool runOnMachineFunction(MachineFunction &MF); virtual const char *getPassName() const { return "X86 Machine Code Emitter"; } void emitInstruction(const MachineInstr &MI); private: void emitPCRelativeBlockAddress(MachineBasicBlock *MBB); void emitPCRelativeValue(intptr_t Address); void emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub); void emitGlobalAddressForPtr(GlobalValue *GV, unsigned Reloc, int Disp = 0, unsigned PCAdj = 0); void emitExternalSymbolAddress(const char *ES, unsigned Reloc); void emitConstPoolAddress(unsigned CPI, unsigned Reloc, int Disp = 0, unsigned PCAdj = 0); void emitJumpTableAddress(unsigned JTI, unsigned Reloc, unsigned PCAdj = 0); void emitDisplacementField(const MachineOperand *RelocOp, int DispVal, unsigned PCAdj = 0); void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField); void emitSIBByte(unsigned SS, unsigned Index, unsigned Base); void emitConstant(uint64_t Val, unsigned Size); void emitMemModRMByte(const MachineInstr &MI, unsigned Op, unsigned RegOpcodeField, unsigned PCAdj = 0); unsigned getX86RegNum(unsigned RegNo); bool isX86_64ExtendedReg(const MachineOperand &MO); unsigned determineREX(const MachineInstr &MI); }; const int Emitter::ID = 0; } /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code /// to the specified MCE object. FunctionPass *llvm::createX86CodeEmitterPass(X86TargetMachine &TM, MachineCodeEmitter &MCE) { return new Emitter(TM, MCE); } bool Emitter::runOnMachineFunction(MachineFunction &MF) { assert((MF.getTarget().getRelocationModel() != Reloc::Default || MF.getTarget().getRelocationModel() != Reloc::Static) && "JIT relocation model must be set to static or default!"); II = ((X86TargetMachine&)MF.getTarget()).getInstrInfo(); TD = ((X86TargetMachine&)MF.getTarget()).getTargetData(); Is64BitMode = ((X86TargetMachine&)MF.getTarget()).getSubtarget().is64Bit(); do { MCE.startFunction(MF); for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); MBB != E; ++MBB) { MCE.StartMachineBasicBlock(MBB); for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) emitInstruction(*I); } } while (MCE.finishFunction(MF)); return false; } /// emitPCRelativeValue - Emit a PC relative address. /// void Emitter::emitPCRelativeValue(intptr_t Address) { MCE.emitWordLE(Address-MCE.getCurrentPCValue()-4); } /// emitPCRelativeBlockAddress - This method keeps track of the information /// necessary to resolve the address of this block later and emits a dummy /// value. /// void Emitter::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) { // Remember where this reference was and where it is to so we can // deal with it later. MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(), X86::reloc_pcrel_word, MBB)); MCE.emitWordLE(0); } /// emitGlobalAddressForCall - Emit the specified address to the code stream /// assuming this is part of a function call, which is PC relative. /// void Emitter::emitGlobalAddressForCall(GlobalValue *GV, bool DoesntNeedStub) { MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), X86::reloc_pcrel_word, GV, 0, DoesntNeedStub)); MCE.emitWordLE(0); } /// emitGlobalAddress - Emit the specified address to the code stream assuming /// this is part of a "take the address of a global" instruction. /// void Emitter::emitGlobalAddressForPtr(GlobalValue *GV, unsigned Reloc, int Disp /* = 0 */, unsigned PCAdj /* = 0 */) { MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc, GV, PCAdj)); if (Reloc == X86::reloc_absolute_dword) MCE.emitWordLE(0); MCE.emitWordLE(Disp); // The relocated value will be added to the displacement } /// emitExternalSymbolAddress - Arrange for the address of an external symbol to /// be emitted to the current location in the function, and allow it to be PC /// relative. void Emitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) { MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(), Reloc, ES)); if (Reloc == X86::reloc_absolute_dword) MCE.emitWordLE(0); MCE.emitWordLE(0); } /// emitConstPoolAddress - Arrange for the address of an constant pool /// to be emitted to the current location in the function, and allow it to be PC /// relative. void Emitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc, int Disp /* = 0 */, unsigned PCAdj /* = 0 */) { MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(), Reloc, CPI, PCAdj)); if (Reloc == X86::reloc_absolute_dword) MCE.emitWordLE(0); MCE.emitWordLE(Disp); // The relocated value will be added to the displacement } /// emitJumpTableAddress - Arrange for the address of a jump table to /// be emitted to the current location in the function, and allow it to be PC /// relative. void Emitter::emitJumpTableAddress(unsigned JTI, unsigned Reloc, unsigned PCAdj /* = 0 */) { MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(), Reloc, JTI, PCAdj)); if (Reloc == X86::reloc_absolute_dword) MCE.emitWordLE(0); MCE.emitWordLE(0); // The relocated value will be added to the displacement } /// N86 namespace - Native X86 Register numbers... used by X86 backend. /// namespace N86 { enum { EAX = 0, ECX = 1, EDX = 2, EBX = 3, ESP = 4, EBP = 5, ESI = 6, EDI = 7 }; } // getX86RegNum - This function maps LLVM register identifiers to their X86 // specific numbering, which is used in various places encoding instructions. // unsigned Emitter::getX86RegNum(unsigned RegNo) { switch(RegNo) { case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX; case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX; case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX; case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX; case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH: return N86::ESP; case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH: return N86::EBP; case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH: return N86::ESI; case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH: return N86::EDI; case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B: return N86::EAX; case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B: return N86::ECX; case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B: return N86::EDX; case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B: return N86::EBX; case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B: return N86::ESP; case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B: return N86::EBP; case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B: return N86::ESI; case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B: return N86::EDI; case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3: case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7: return RegNo-X86::ST0; case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3: case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: return II->getRegisterInfo().getDwarfRegNum(RegNo) - II->getRegisterInfo().getDwarfRegNum(X86::XMM0); case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11: case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15: return II->getRegisterInfo().getDwarfRegNum(RegNo) - II->getRegisterInfo().getDwarfRegNum(X86::XMM8); default: assert(MRegisterInfo::isVirtualRegister(RegNo) && "Unknown physical register!"); assert(0 && "Register allocator hasn't allocated reg correctly yet!"); return 0; } } inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) { assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); return RM | (RegOpcode << 3) | (Mod << 6); } void Emitter::emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeFld){ MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg))); } void Emitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base) { // SIB byte is in the same format as the ModRMByte... MCE.emitByte(ModRMByte(SS, Index, Base)); } void Emitter::emitConstant(uint64_t Val, unsigned Size) { // Output the constant in little endian byte order... for (unsigned i = 0; i != Size; ++i) { MCE.emitByte(Val & 255); Val >>= 8; } } /// isDisp8 - Return true if this signed displacement fits in a 8-bit /// sign-extended field. static bool isDisp8(int Value) { return Value == (signed char)Value; } void Emitter::emitDisplacementField(const MachineOperand *RelocOp, int DispVal, unsigned PCAdj) { // If this is a simple integer displacement that doesn't require a relocation, // emit it now. if (!RelocOp) { emitConstant(DispVal, 4); return; } // Otherwise, this is something that requires a relocation. Emit it as such // now. if (RelocOp->isGlobalAddress()) { // In 64-bit static small code model, we could potentially emit absolute. // But it's probably not beneficial. // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute unsigned rt= Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_absolute_word; emitGlobalAddressForPtr(RelocOp->getGlobal(), rt, RelocOp->getOffset(), PCAdj); } else if (RelocOp->isConstantPoolIndex()) { // Must be in 64-bit mode. emitConstPoolAddress(RelocOp->getConstantPoolIndex(), X86::reloc_pcrel_word, RelocOp->getOffset(), PCAdj); } else if (RelocOp->isJumpTableIndex()) { // Must be in 64-bit mode. emitJumpTableAddress(RelocOp->getJumpTableIndex(), X86::reloc_pcrel_word, PCAdj); } else { assert(0 && "Unknown value to relocate!"); } } void Emitter::emitMemModRMByte(const MachineInstr &MI, unsigned Op, unsigned RegOpcodeField, unsigned PCAdj) { const MachineOperand &Op3 = MI.getOperand(Op+3); int DispVal = 0; const MachineOperand *DispForReloc = 0; // Figure out what sort of displacement we have to handle here. if (Op3.isGlobalAddress()) { DispForReloc = &Op3; } else if (Op3.isConstantPoolIndex()) { if (Is64BitMode) { DispForReloc = &Op3; } else { DispVal += MCE.getConstantPoolEntryAddress(Op3.getConstantPoolIndex()); DispVal += Op3.getOffset(); } } else if (Op3.isJumpTableIndex()) { if (Is64BitMode) { DispForReloc = &Op3; } else { DispVal += MCE.getJumpTableEntryAddress(Op3.getJumpTableIndex()); } } else { DispVal = Op3.getImm(); } const MachineOperand &Base = MI.getOperand(Op); const MachineOperand &Scale = MI.getOperand(Op+1); const MachineOperand &IndexReg = MI.getOperand(Op+2); unsigned BaseReg = Base.getReg(); // Is a SIB byte needed? if (IndexReg.getReg() == 0 && (BaseReg == 0 || getX86RegNum(BaseReg) != N86::ESP)) { if (BaseReg == 0) { // Just a displacement? // Emit special case [disp32] encoding MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); emitDisplacementField(DispForReloc, DispVal, PCAdj); } else { unsigned BaseRegNo = getX86RegNum(BaseReg); if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) { // Emit simple indirect register encoding... [EAX] f.e. MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo)); } else if (!DispForReloc && isDisp8(DispVal)) { // Emit the disp8 encoding... [REG+disp8] MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo)); emitConstant(DispVal, 1); } else { // Emit the most general non-SIB encoding: [REG+disp32] MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo)); emitDisplacementField(DispForReloc, DispVal, PCAdj); } } } else { // We need a SIB byte, so start by outputting the ModR/M byte first assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); bool ForceDisp32 = false; bool ForceDisp8 = false; if (BaseReg == 0) { // If there is no base register, we emit the special case SIB byte with // MOD=0, BASE=5, to JUST get the index, scale, and displacement. MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); ForceDisp32 = true; } else if (DispForReloc) { // Emit the normal disp32 encoding. MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); ForceDisp32 = true; } else if (DispVal == 0 && getX86RegNum(BaseReg) != N86::EBP) { // Emit no displacement ModR/M byte MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); } else if (isDisp8(DispVal)) { // Emit the disp8 encoding... MCE.emitByte(ModRMByte(1, RegOpcodeField, 4)); ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP } else { // Emit the normal disp32 encoding... MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); } // Calculate what the SS field value should be... static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 }; unsigned SS = SSTable[Scale.getImm()]; if (BaseReg == 0) { // Handle the SIB byte for the case where there is no base. The // displacement has already been output. assert(IndexReg.getReg() && "Index register must be specified!"); emitSIBByte(SS, getX86RegNum(IndexReg.getReg()), 5); } else { unsigned BaseRegNo = getX86RegNum(BaseReg); unsigned IndexRegNo; if (IndexReg.getReg()) IndexRegNo = getX86RegNum(IndexReg.getReg()); else IndexRegNo = 4; // For example [ESP+1*+4] emitSIBByte(SS, IndexRegNo, BaseRegNo); } // Do we need to output a displacement? if (ForceDisp8) { emitConstant(DispVal, 1); } else if (DispVal != 0 || ForceDisp32) { emitDisplacementField(DispForReloc, DispVal, PCAdj); } } } static unsigned sizeOfImm(const TargetInstrDescriptor *Desc) { switch (Desc->TSFlags & X86II::ImmMask) { case X86II::Imm8: return 1; case X86II::Imm16: return 2; case X86II::Imm32: return 4; case X86II::Imm64: return 8; default: assert(0 && "Immediate size not set!"); return 0; } } /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register? /// e.g. r8, xmm8, etc. bool Emitter::isX86_64ExtendedReg(const MachineOperand &MO) { if (!MO.isRegister()) return false; unsigned RegNo = MO.getReg(); int DWNum = II->getRegisterInfo().getDwarfRegNum(RegNo); if (DWNum >= II->getRegisterInfo().getDwarfRegNum(X86::R8) && DWNum <= II->getRegisterInfo().getDwarfRegNum(X86::R15)) return true; if (DWNum >= II->getRegisterInfo().getDwarfRegNum(X86::XMM8) && DWNum <= II->getRegisterInfo().getDwarfRegNum(X86::XMM15)) return true; return false; } inline static bool isX86_64TruncToByte(unsigned oc) { return (oc == X86::TRUNC_64to8 || oc == X86::TRUNC_32to8 || oc == X86::TRUNC_16to8); } inline static bool isX86_64NonExtLowByteReg(unsigned reg) { return (reg == X86::SPL || reg == X86::BPL || reg == X86::SIL || reg == X86::DIL); } /// determineREX - Determine if the MachineInstr has to be encoded with a X86-64 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand /// size, and 3) use of X86-64 extended registers. unsigned Emitter::determineREX(const MachineInstr &MI) { unsigned REX = 0; const TargetInstrDescriptor *Desc = MI.getInstrDescriptor(); unsigned Opcode = Desc->Opcode; // Pseudo instructions do not need REX prefix byte. if ((Desc->TSFlags & X86II::FormMask) == X86II::Pseudo) return 0; if (Desc->TSFlags & X86II::REX_W) REX |= 1 << 3; unsigned NumOps = Desc->numOperands; if (NumOps) { bool isTwoAddr = NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1; // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix. bool isTrunc8 = isX86_64TruncToByte(Opcode); unsigned i = isTwoAddr ? 1 : 0; for (unsigned e = NumOps; i != e; ++i) { const MachineOperand& MO = MI.getOperand(i); if (MO.isRegister()) { unsigned Reg = MO.getReg(); // Trunc to byte are actually movb. The real source operand is the low // byte of the register. if (isTrunc8 && i == 1) Reg = getX86SubSuperRegister(Reg, MVT::i8); if (isX86_64NonExtLowByteReg(Reg)) REX |= 0x40; } } switch (Desc->TSFlags & X86II::FormMask) { case X86II::MRMInitReg: if (isX86_64ExtendedReg(MI.getOperand(0))) REX |= (1 << 0) | (1 << 2); break; case X86II::MRMSrcReg: { if (isX86_64ExtendedReg(MI.getOperand(0))) REX |= 1 << 2; i = isTwoAddr ? 2 : 1; for (unsigned e = NumOps; i != e; ++i) { const MachineOperand& MO = MI.getOperand(i); if (isX86_64ExtendedReg(MO)) REX |= 1 << 0; } break; } case X86II::MRMSrcMem: { if (isX86_64ExtendedReg(MI.getOperand(0))) REX |= 1 << 2; unsigned Bit = 0; i = isTwoAddr ? 2 : 1; for (; i != NumOps; ++i) { const MachineOperand& MO = MI.getOperand(i); if (MO.isRegister()) { if (isX86_64ExtendedReg(MO)) REX |= 1 << Bit; Bit++; } } break; } case X86II::MRM0m: case X86II::MRM1m: case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: case X86II::MRMDestMem: { unsigned e = isTwoAddr ? 5 : 4; i = isTwoAddr ? 1 : 0; if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e))) REX |= 1 << 2; unsigned Bit = 0; for (; i != e; ++i) { const MachineOperand& MO = MI.getOperand(i); if (MO.isRegister()) { if (isX86_64ExtendedReg(MO)) REX |= 1 << Bit; Bit++; } } break; } default: { if (isX86_64ExtendedReg(MI.getOperand(0))) REX |= 1 << 0; i = isTwoAddr ? 2 : 1; for (unsigned e = NumOps; i != e; ++i) { const MachineOperand& MO = MI.getOperand(i); if (isX86_64ExtendedReg(MO)) REX |= 1 << 2; } break; } } } return REX; } void Emitter::emitInstruction(const MachineInstr &MI) { NumEmitted++; // Keep track of the # of mi's emitted const TargetInstrDescriptor *Desc = MI.getInstrDescriptor(); unsigned Opcode = Desc->Opcode; // Emit the repeat opcode prefix as needed. if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) MCE.emitByte(0xF3); // Emit the operand size opcode prefix as needed. if (Desc->TSFlags & X86II::OpSize) MCE.emitByte(0x66); // Emit the address size opcode prefix as needed. if (Desc->TSFlags & X86II::AdSize) MCE.emitByte(0x67); bool Need0FPrefix = false; switch (Desc->TSFlags & X86II::Op0Mask) { case X86II::TB: Need0FPrefix = true; // Two-byte opcode prefix break; case X86II::T8: MCE.emitByte(0x0F); MCE.emitByte(0x38); break; case X86II::TA: MCE.emitByte(0x0F); MCE.emitByte(0x3A); break; case X86II::REP: break; // already handled. case X86II::XS: // F3 0F MCE.emitByte(0xF3); Need0FPrefix = true; break; case X86II::XD: // F2 0F MCE.emitByte(0xF2); Need0FPrefix = true; break; case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB: case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF: MCE.emitByte(0xD8+ (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8) >> X86II::Op0Shift)); break; // Two-byte opcode prefix default: assert(0 && "Invalid prefix!"); case 0: break; // No prefix! } if (Is64BitMode) { // REX prefix unsigned REX = determineREX(MI); if (REX) MCE.emitByte(0x40 | REX); } // 0x0F escape code must be emitted just before the opcode. if (Need0FPrefix) MCE.emitByte(0x0F); // If this is a two-address instruction, skip one of the register operands. unsigned NumOps = Desc->numOperands; unsigned CurOp = 0; if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1) CurOp++; unsigned char BaseOpcode = II->getBaseOpcodeFor(Desc); switch (Desc->TSFlags & X86II::FormMask) { default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!"); case X86II::Pseudo: #ifndef NDEBUG switch (Opcode) { default: assert(0 && "psuedo instructions should be removed before code emission"); case TargetInstrInfo::INLINEASM: assert(0 && "JIT does not support inline asm!\n"); case TargetInstrInfo::LABEL: assert(0 && "JIT does not support meta labels!\n"); case X86::IMPLICIT_USE: case X86::IMPLICIT_DEF: case X86::IMPLICIT_DEF_GR8: case X86::IMPLICIT_DEF_GR16: case X86::IMPLICIT_DEF_GR32: case X86::IMPLICIT_DEF_GR64: case X86::IMPLICIT_DEF_FR32: case X86::IMPLICIT_DEF_FR64: case X86::IMPLICIT_DEF_VR64: case X86::IMPLICIT_DEF_VR128: case X86::FP_REG_KILL: break; } #endif CurOp = NumOps; break; case X86II::RawFrm: MCE.emitByte(BaseOpcode); if (CurOp != NumOps) { const MachineOperand &MO = MI.getOperand(CurOp++); if (MO.isMachineBasicBlock()) { emitPCRelativeBlockAddress(MO.getMachineBasicBlock()); } else if (MO.isGlobalAddress()) { bool NeedStub = Is64BitMode || Opcode == X86::TAILJMPd || Opcode == X86::TAILJMPr || Opcode == X86::TAILJMPm; emitGlobalAddressForCall(MO.getGlobal(), !NeedStub); } else if (MO.isExternalSymbol()) { emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word); } else if (MO.isImmediate()) { emitConstant(MO.getImm(), sizeOfImm(Desc)); } else { assert(0 && "Unknown RawFrm operand!"); } } break; case X86II::AddRegFrm: MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg())); if (CurOp != NumOps) { const MachineOperand &MO1 = MI.getOperand(CurOp++); unsigned Size = sizeOfImm(Desc); if (MO1.isImmediate()) emitConstant(MO1.getImm(), Size); else { unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_absolute_word; if (Opcode == X86::MOV64ri) rt = X86::reloc_absolute_dword; // FIXME: add X86II flag? if (MO1.isGlobalAddress()) emitGlobalAddressForPtr(MO1.getGlobal(), rt, MO1.getOffset()); else if (MO1.isExternalSymbol()) emitExternalSymbolAddress(MO1.getSymbolName(), rt); else if (MO1.isConstantPoolIndex()) emitConstPoolAddress(MO1.getConstantPoolIndex(), rt); else if (MO1.isJumpTableIndex()) emitJumpTableAddress(MO1.getJumpTableIndex(), rt); } } break; case X86II::MRMDestReg: { MCE.emitByte(BaseOpcode); emitRegModRMByte(MI.getOperand(CurOp).getReg(), getX86RegNum(MI.getOperand(CurOp+1).getReg())); CurOp += 2; if (CurOp != NumOps) emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc)); break; } case X86II::MRMDestMem: { MCE.emitByte(BaseOpcode); emitMemModRMByte(MI, CurOp, getX86RegNum(MI.getOperand(CurOp+4).getReg())); CurOp += 5; if (CurOp != NumOps) emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc)); break; } case X86II::MRMSrcReg: MCE.emitByte(BaseOpcode); emitRegModRMByte(MI.getOperand(CurOp+1).getReg(), getX86RegNum(MI.getOperand(CurOp).getReg())); CurOp += 2; if (CurOp != NumOps) emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc)); break; case X86II::MRMSrcMem: { unsigned PCAdj = (CurOp+5 != NumOps) ? sizeOfImm(Desc) : 0; MCE.emitByte(BaseOpcode); emitMemModRMByte(MI, CurOp+1, getX86RegNum(MI.getOperand(CurOp).getReg()), PCAdj); CurOp += 5; if (CurOp != NumOps) emitConstant(MI.getOperand(CurOp++).getImm(), sizeOfImm(Desc)); break; } case X86II::MRM0r: case X86II::MRM1r: case X86II::MRM2r: case X86II::MRM3r: case X86II::MRM4r: case X86II::MRM5r: case X86II::MRM6r: case X86II::MRM7r: MCE.emitByte(BaseOpcode); emitRegModRMByte(MI.getOperand(CurOp++).getReg(), (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r); if (CurOp != NumOps) { const MachineOperand &MO1 = MI.getOperand(CurOp++); unsigned Size = sizeOfImm(Desc); if (MO1.isImmediate()) emitConstant(MO1.getImm(), Size); else { unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_absolute_word; if (Opcode == X86::MOV64ri32) rt = X86::reloc_absolute_word; // FIXME: add X86II flag? if (MO1.isGlobalAddress()) emitGlobalAddressForPtr(MO1.getGlobal(), rt, MO1.getOffset()); else if (MO1.isExternalSymbol()) emitExternalSymbolAddress(MO1.getSymbolName(), rt); else if (MO1.isConstantPoolIndex()) emitConstPoolAddress(MO1.getConstantPoolIndex(), rt); else if (MO1.isJumpTableIndex()) emitJumpTableAddress(MO1.getJumpTableIndex(), rt); } } break; case X86II::MRM0m: case X86II::MRM1m: case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: { unsigned PCAdj = (CurOp+4 != NumOps) ? (MI.getOperand(CurOp+4).isImmediate() ? sizeOfImm(Desc) : 4) : 0; MCE.emitByte(BaseOpcode); emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m, PCAdj); CurOp += 4; if (CurOp != NumOps) { const MachineOperand &MO = MI.getOperand(CurOp++); unsigned Size = sizeOfImm(Desc); if (MO.isImmediate()) emitConstant(MO.getImm(), Size); else { unsigned rt = Is64BitMode ? X86::reloc_pcrel_word : X86::reloc_absolute_word; if (Opcode == X86::MOV64mi32) rt = X86::reloc_absolute_word; // FIXME: add X86II flag? if (MO.isGlobalAddress()) emitGlobalAddressForPtr(MO.getGlobal(), rt, MO.getOffset()); else if (MO.isExternalSymbol()) emitExternalSymbolAddress(MO.getSymbolName(), rt); else if (MO.isConstantPoolIndex()) emitConstPoolAddress(MO.getConstantPoolIndex(), rt); else if (MO.isJumpTableIndex()) emitJumpTableAddress(MO.getJumpTableIndex(), rt); } } break; } case X86II::MRMInitReg: MCE.emitByte(BaseOpcode); // Duplicate register, used by things like MOV8r0 (aka xor reg,reg). emitRegModRMByte(MI.getOperand(CurOp).getReg(), getX86RegNum(MI.getOperand(CurOp).getReg())); ++CurOp; break; } assert((Desc->Flags & M_VARIABLE_OPS) != 0 || CurOp == NumOps && "Unknown encoding!"); }